JPH05299413A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPH05299413A
JPH05299413A JP10308092A JP10308092A JPH05299413A JP H05299413 A JPH05299413 A JP H05299413A JP 10308092 A JP10308092 A JP 10308092A JP 10308092 A JP10308092 A JP 10308092A JP H05299413 A JPH05299413 A JP H05299413A
Authority
JP
Japan
Prior art keywords
heat treatment
silicon substrate
substrate
treatment furnace
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10308092A
Other languages
Japanese (ja)
Other versions
JP3095519B2 (en
Inventor
Yoshio Ozawa
良夫 小澤
Kikuo Yamabe
紀久夫 山部
Souichi Nadahara
壮一 灘原
Hideyuki Kobayashi
英行 小林
Kunihiro Terasaka
国博 寺坂
Akito Yamamoto
明人 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP04103080A priority Critical patent/JP3095519B2/en
Publication of JPH05299413A publication Critical patent/JPH05299413A/en
Application granted granted Critical
Publication of JP3095519B2 publication Critical patent/JP3095519B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To prevent a semiconductor substrate surface from being undulated by forming a coating thereon before taking it out of a heat treatment chamber. CONSTITUTION:In a heat treatment furnace 1 a silicon substrate 10 having a exposed surface is treated by heating to remove oxygen contained therein. A coating which will not be etched in an atmosphere outside the heat treatment furnace 1 is formed on the surface of the silicon substrate 10 before taking it therefrom. The heat treatment to the silicon substrate 10 is conducted at 90 deg.C or above. An oxide or nitride film is preferable for the coating formed on the surface of the silicon substrate 10. This obtains a semiconductor substrate excellent in quality without deteriorating the working efficiency.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、良質な半導体基板を形
成する工程を有する半導体装置の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing a semiconductor device having a step of forming a good quality semiconductor substrate.

【0002】[0002]

【従来技術】従来より、CZ(チョクラルスキ−)法等
の成長法を用いて、単結晶のシリコンを形成していた。
2. Description of the Related Art Conventionally, single crystal silicon has been formed by using a growth method such as a CZ (Czochralski) method.

【0003】しかしながら、このような方法によって得
られたシリコンには、1018cm-3程度の酸素が含まれ
ており、この酸素により半導体装置の各種特性が悪影響
を受けるという問題があった。例えば、このようなシリ
コンで構成されたシリコン基板の表面に形成された熱酸
化膜に、106 V/cm程度の高電界を印加すると、一
定の確率で絶縁破壊を起こす。この原因は、シリコン基
板の表面近傍に存在する酸素析出物であることが知られ
ている。
However, the silicon obtained by such a method contains oxygen of about 10 18 cm −3 , and this oxygen has a problem that various characteristics of the semiconductor device are adversely affected. For example, a thermal oxide film formed on the surface of a silicon substrate made of such silicon has a thickness of 10 6 When a high electric field of about V / cm is applied, dielectric breakdown occurs with a certain probability. It is known that this cause is an oxygen precipitate existing near the surface of the silicon substrate.

【0004】そこで、シリコン基板に高温熱処理を施し
て酸素析出物を除去する方法が提案された。この方法
は、熱処理容炉に単結晶のシリコン基板を収容した後、
シリコン表面に酸化膜、窒化膜等の半導体化合物の被膜
が形成されないアルゴン等のガス雰囲気中で、上記シリ
コン基板に1000℃〜1200℃程度の高温熱処理を
数時間ほど施すというものである。この高温熱処理によ
って、基板中の格子間酸素が、外方拡散して基板表面か
ら外部へ離脱したり、還元したりするので、基板表面近
傍の酸素析出物を除去できる。
Therefore, a method has been proposed in which a silicon substrate is subjected to high temperature heat treatment to remove oxygen precipitates. This method, after accommodating a single crystal silicon substrate in a heat treatment furnace,
The silicon substrate is subjected to a high temperature heat treatment at about 1000 ° C. to 1200 ° C. for several hours in a gas atmosphere such as argon in which a film of a semiconductor compound such as an oxide film or a nitride film is not formed on the silicon surface. By this high temperature heat treatment, interstitial oxygen in the substrate diffuses outward and is released from the substrate surface to the outside or is reduced, so that oxygen precipitates near the substrate surface can be removed.

【0005】しかしながら、この方法を用いる際には熱
処理炉内に水分が侵入しないように注意する必要があっ
た。何故なら、高温熱処理の際に、熱処理炉内に水分が
存在すると、Si+H2 O→SiO+H2 という反応に
より、シリコンがエッチングされ、基板表面に高さ0.
1〜1μm程度の起伏が発生し、この起伏により半導体
素子の長期信頼性が低下するからである。このため、熱
処理炉の母材中に含まれる水分や、熱処理炉内に導入す
るガス中の水分を制御して、高温熱処理の際に熱処理炉
内に水分が存在しないようにしていた。
However, when using this method, it was necessary to take care so that water did not enter the heat treatment furnace. This is because, when water is present in the heat treatment furnace during the high temperature heat treatment, silicon is etched by the reaction of Si + H 2 O → SiO + H 2 and the height of the substrate surface becomes 0.
This is because undulations of about 1 to 1 μm occur and the long-term reliability of the semiconductor element deteriorates due to the undulations. Therefore, the water contained in the base material of the heat treatment furnace and the water contained in the gas introduced into the heat treatment furnace are controlled so that the water does not exist in the heat treatment furnace during the high temperature heat treatment.

【0006】しかしながら、高温熱処理の際に熱処理炉
内の水分を除去しても、高温熱処理後に、熱処理炉内か
らシリコン基板を取り出す際に、基板表面が水蒸気を含
んだ外気に晒されるので、起伏の発生を完全に防止する
のは困難であった。この問題は、熱処理炉内の温度を十
分に下げた後に熱処理炉内からシリコン基板を取り出せ
ば、防止できることが分かったが、この場合、降温時間
が長くなるので、作業効率が低下するという問題があっ
た。
However, even if the moisture in the heat treatment furnace is removed during the high temperature heat treatment, the surface of the substrate is exposed to the outside air containing water vapor when the silicon substrate is taken out of the heat treatment furnace after the high temperature heat treatment. It was difficult to completely prevent the occurrence of. It has been found that this problem can be prevented by sufficiently lowering the temperature in the heat treatment furnace and then taking out the silicon substrate from the heat treatment furnace.However, in this case, the temperature lowering time becomes longer, so that the problem that the work efficiency decreases there were.

【0007】[0007]

【発明が解消しようとする課題】上述の如く、従来のシ
リコン基板の酸素析出物の除去方法においては、半導体
素子の長期信頼性の低下を防止するために、熱処理炉内
の温度を十分に下げた後に、シリコン基板の取り出しを
行なっていたので、降温時間が長くなり、作業効率が低
下するという問題があった。
As described above, in the conventional method for removing the oxygen precipitates of the silicon substrate, the temperature in the heat treatment furnace is sufficiently lowered in order to prevent the long-term reliability of the semiconductor device from being deteriorated. After that, since the silicon substrate was taken out, there was a problem that the cooling time was long and the working efficiency was lowered.

【0008】本発明は、上記事情を考慮してなされたも
ので、その目的とするところは、基板表面近傍の酸素析
出物でき、且つ作業効率の低下を招くこと無く基板表面
の起伏発生を防止し得る半導体装置の製造方法を提供す
ることを目的とする。
The present invention has been made in view of the above circumstances, and an object thereof is to prevent the occurrence of undulations on the substrate surface without causing a decrease in work efficiency by forming oxygen precipitates in the vicinity of the substrate surface. An object of the present invention is to provide a method of manufacturing a semiconductor device that can be manufactured.

【0009】[0009]

【課題を解決するための手段】上記の目的を達成するた
めに、本発明の半導体装置の製造方法は、熱処理容器内
の基板表面が露出した半導体基板を熱処理して前記半導
体基板に含まれている酸素を除去する工程と、前記熱処
理容器内から前記半導体基板を取り出す前に、前記熱処
理容器の外気中でエッチングされない被膜を前記半導体
基板の表面に形成する工程とを備えていることを特徴と
する。なお、前記半導体基板がシリコン基板の場合に
は、熱処理は900℃以上で行なうことが望ましい。
In order to achieve the above-mentioned object, a method of manufacturing a semiconductor device according to the present invention includes heat-treating a semiconductor substrate in which a substrate surface is exposed in a heat treatment container and including the semiconductor substrate in the semiconductor substrate. And removing the oxygen contained therein, and before removing the semiconductor substrate from the inside of the heat treatment container, a step of forming a film that is not etched in the outside air of the heat treatment container on the surface of the semiconductor substrate, To do. When the semiconductor substrate is a silicon substrate, the heat treatment is preferably performed at 900 ° C or higher.

【0010】また、半導体基板の表面に形成する被膜と
しては、酸化膜又は窒化膜であることが望ましい。この
場合、酸化膜の成膜は、600〜850℃程度、さらに
好ましくは700〜850℃程度の酸素雰囲気中で行な
うことが望ましい。一方、窒化膜の成膜は、1000℃
以上の窒素雰囲気中で行なうことが望ましい。また、酸
化膜,窒化膜の膜厚は0.3nm以上であることが望ま
しい。
The film formed on the surface of the semiconductor substrate is preferably an oxide film or a nitride film. In this case, it is desirable that the oxide film is formed in an oxygen atmosphere at about 600 to 850 ° C, and more preferably at about 700 to 850 ° C. On the other hand, the nitride film is formed at 1000 ° C.
It is desirable to carry out in the above nitrogen atmosphere. Further, the film thickness of the oxide film and the nitride film is preferably 0.3 nm or more.

【0011】[0011]

【作用】本発明の半導体装置の製造方法では、熱処理容
器内から半導体基板を取り出す前に基板表面に被膜を形
成しているため、外気中に含まれている酸素や水分によ
る基板表面のエッチングを防止できる。したがって、熱
処理容器内から半導体基板を取り出す際に、基板表面に
起伏が生じるという問題はない。しかも、このような被
膜は、基板表面に起伏が発生しない取り出し温度より高
い温度で成膜できるので、この温度での熱処理容器内か
ら半導体基板を取り出すことができ、作業効率が低下す
るという問題も生じない。
In the method of manufacturing a semiconductor device of the present invention, since the film is formed on the surface of the substrate before taking out the semiconductor substrate from the heat treatment container, the substrate surface is not etched by oxygen and moisture contained in the outside air. It can be prevented. Therefore, when the semiconductor substrate is taken out from the heat treatment container, there is no problem that the surface of the substrate is uneven. Moreover, since such a film can be formed at a temperature higher than the take-out temperature at which no undulation occurs on the substrate surface, the semiconductor substrate can be taken out from the heat treatment container at this temperature, and the work efficiency is lowered. Does not happen.

【0012】[0012]

【実施例】以下、図面を参照して実施例を説明する。図
1は、本発明の第1の実施例に係る熱処理装置の概略構
成図である。
Embodiments will be described below with reference to the drawings. FIG. 1 is a schematic configuration diagram of a heat treatment apparatus according to the first embodiment of the present invention.

【0013】熱処理炉1は、単結晶のシリコン基板10
を高温熱処理するための容器で、熱加熱ヒ−タ(不図
示)によって加熱されるようになっている。熱処理炉1
の上部にはガス導入管5が設けられており、一方、下部
にはガス排気管6が設けられている。ガス導入管5は高
純度アルゴンガス源(不図示),高純度酸素ガス源(不
図示)に繋がっており、それぞれのガス源のガスは、バ
ルブ3,4の開閉により選択的に熱処理炉1に導入する
ことができる。次に上記の如きに構成された熱処理装置
を用いたシリコン基板10の熱処理方法を説明する。
The heat treatment furnace 1 comprises a single crystal silicon substrate 10
This is a container for high-temperature heat treatment of, and is heated by a heat heater (not shown). Heat treatment furnace 1
A gas inlet pipe 5 is provided in the upper part of the above, while a gas exhaust pipe 6 is provided in the lower part. The gas introduction pipe 5 is connected to a high-purity argon gas source (not shown) and a high-purity oxygen gas source (not shown), and the gas of each gas source is selectively opened and closed by opening and closing the valves 3 and 4. Can be introduced to. Next, a heat treatment method of the silicon substrate 10 using the heat treatment apparatus configured as described above will be described.

【0014】先ず、バルブ4を閉じた後、バルブ3を開
けて、水分等の不純物含有量が0.1ppm以下、流量
が20リットル/分の高純度アルゴンガスをガス導入管
5を介して熱処理炉1内へ導入する。この高純度アルゴ
ンガスはガス排気管6を介して外部に排気され、これに
より熱処理炉1内の水分などを除去する。なお、熱処理
炉1内の圧力は常圧である。この後、図2に示すように
熱処理炉1内の温度を制御する。即ち、まず、常圧のま
ま熱処理炉1内の温度を700℃に保持した後、熱処理
炉1内の中央部にシリコン基板10を搭載した支持台2
を設置する。
First, after closing the valve 4, the valve 3 is opened and a high-purity argon gas having an impurity content such as water content of 0.1 ppm or less and a flow rate of 20 l / min is heat-treated through the gas introduction pipe 5. It is introduced into the furnace 1. This high-purity argon gas is exhausted to the outside through the gas exhaust pipe 6, and thereby water and the like in the heat treatment furnace 1 is removed. The pressure in the heat treatment furnace 1 is normal pressure. After that, the temperature in the heat treatment furnace 1 is controlled as shown in FIG. That is, first, the temperature in the heat treatment furnace 1 is maintained at 700 ° C. under normal pressure, and then the support base 2 having the silicon substrate 10 mounted in the center portion of the heat treatment furnace 1 is held.
Set up.

【0015】次に上記工程に伴って熱処理炉1内に混入
した酸素ガス,水分などを高純度アルゴンガスと置換す
るために、常圧で30分間ほど700℃のまま放置す
る。こ常圧での後、熱処理炉1内の温度を1200℃ま
で昇温し、この状態を60分間ほど保持し、シリコン基
板10の表面近傍の酸素析出物を除去する。なお、ここ
では、酸素析出物を除去するために、熱処理炉1内の温
度を1200℃に設定したが、900℃上であれば、酸
素析出物の除去は可能である。
Next, in order to replace the oxygen gas, water and the like mixed in the heat treatment furnace 1 with the above steps with high-purity argon gas, the furnace is left at 700 ° C. for about 30 minutes at normal pressure. After this atmospheric pressure, the temperature in the heat treatment furnace 1 is raised to 1200 ° C., and this state is maintained for about 60 minutes to remove oxygen precipitates near the surface of the silicon substrate 10. Here, in order to remove the oxygen precipitates, the temperature in the heat treatment furnace 1 was set to 1200 ° C. However, if the temperature is above 900 ° C., the oxygen precipitates can be removed.

【0016】次に常圧のまま熱処理炉1内の温度を70
0℃まで降温した後、バルブ3を閉じる。次いでバルブ
4を開けて、水分等の不純物含有量が0.1ppm以
下,流量が20リットル/分の高純度酸素ガスを熱処理
炉1内に導入する。このときの熱処理炉1内の圧力も常
圧である。そして、この状態を30分間ほど保持するこ
とにより、酸素析出物が除去されたシリコン基板10の
表面に厚さ0.5nm程度のシリコン酸化膜を形成す
る。最後に、700℃以下の温度で熱処理炉1内から支
持台2及びシリコン基板10を取り出す。
Next, the temperature in the heat treatment furnace 1 is kept at 70 at atmospheric pressure.
After lowering the temperature to 0 ° C., the valve 3 is closed. Next, the valve 4 is opened, and high-purity oxygen gas having an impurity content such as water content of 0.1 ppm or less and a flow rate of 20 l / min is introduced into the heat treatment furnace 1. The pressure in the heat treatment furnace 1 at this time is also normal pressure. By holding this state for about 30 minutes, a silicon oxide film having a thickness of about 0.5 nm is formed on the surface of the silicon substrate 10 from which the oxygen precipitates have been removed. Finally, the support 2 and the silicon substrate 10 are taken out of the heat treatment furnace 1 at a temperature of 700 ° C. or lower.

【0017】以上の方法により得られたシリコン基板1
0を観察したところ、その表面には微小な起伏すらな
く、非常に平坦であった。しかも、酸素析出物も完全に
除去されていた。このような良質な単結晶のシリコン基
板10が得られたのは次のように説明される。
Silicon substrate 1 obtained by the above method
When 0 was observed, the surface was very flat without any fine undulations. Moreover, oxygen precipitates were also completely removed. The reason why such a good quality single crystal silicon substrate 10 is obtained will be explained as follows.

【0018】図3は、高温熱処理が施されたシリコン基
板の取り出し温度とシリコン基板の表面の起伏密度との
関係を示す特性図である。図中、曲線aはシリコン基板
を取り出す直前に熱処理炉内に酸素ガスを導入した場合
の特性曲線を表している。なお、酸素ガスの流量は10
リットル/分で、導入時間は10分である。また、曲線
bは酸素ガスの導入がない場合の特性曲線である。この
図から取り出し温度が850℃以下になると、酸素ガス
を導入した場合の起伏密度は、酸素ガスを導入しない場
合のそれより小さくなることが分かる。また、取り出し
温度が800℃以下になると、酸素ガスを導入した場合
の起伏密度は、酸素ガスを導入しない場合の1/2以下
になることが分かる。起伏密度にこのような違いが生じ
たのは次のように考えられる。
FIG. 3 is a characteristic diagram showing the relationship between the take-out temperature of the silicon substrate which has been subjected to the high temperature heat treatment and the undulation density on the surface of the silicon substrate. In the figure, a curve a represents a characteristic curve when oxygen gas was introduced into the heat treatment furnace immediately before taking out the silicon substrate. The flow rate of oxygen gas is 10
The introduction time is 10 minutes in liters / minute. The curve b is a characteristic curve when oxygen gas is not introduced. It can be seen from this figure that when the extraction temperature is 850 ° C. or lower, the undulation density when oxygen gas is introduced is smaller than that when oxygen gas is not introduced. Further, it is understood that when the take-out temperature is 800 ° C. or lower, the undulation density when oxygen gas is introduced is 1/2 or less as compared with when oxygen gas is not introduced. The difference in the undulation density is considered to be as follows.

【0019】取り出し温度が850℃より高い場合に
は、外気中の酸素又は水蒸気により、2Si+O2 →2
SiO又はSi+H2 O→SiO+H2 という反応によ
り、シリコン基板の表面がエッチングされる。このた
め、取り出し温度が850℃より高い場合には、導入分
の酸素だけ、シリコン基板の表面により多くの酸素が接
触するので、起伏密度が高くなる。
When the take-out temperature is higher than 850 ° C., 2Si + O 2 → 2 due to oxygen or water vapor in the outside air
The surface of the silicon substrate is etched by the reaction of SiO or Si + H 2 O → SiO + H 2 . Therefore, when the extraction temperature is higher than 850 ° C., more oxygen comes into contact with the surface of the silicon substrate by the amount of introduced oxygen, resulting in a higher undulation density.

【0020】一方、取り出し温度が850℃以下の場合
には、シリコンのエッチング速度よりシリコンの酸化速
度のほうが速くなるため、シリコン基板の表面が酸化さ
れ酸化膜が形成される。一旦、酸化膜が形成されると、
エッチング速度が酸化速度より遅いため、シリコンのエ
ッチングは生じない。なお、この酸化膜の膜厚は0.3
nm以上が好ましい。
On the other hand, when the take-out temperature is 850 ° C. or lower, the oxidation rate of silicon becomes faster than the etching rate of silicon, so that the surface of the silicon substrate is oxidized and an oxide film is formed. Once the oxide film is formed,
No etching of silicon occurs because the etching rate is slower than the oxidation rate. The thickness of this oxide film is 0.3.
nm or more is preferable.

【0021】なお、図3から酸素ガスを導入しない場合
でも、取り出し温度を600程度の低温にすれば、基板
表面のエッチングを防止できることが分かるが、この場
合、高温熱処理時間が実効的に長くなり、作業効率が低
下するという問題が生じる。例えば、自然冷却で600
℃まで下げる場合には、1.6〜2.0℃/分の割合で
温度が下がるので、50〜63分程度の時間を要し、本
実施例より20〜33分ほど余計に時間がかかる。ま
た、本実施例では、酸素ガス雰囲気中に30分間シリコ
ン基板を保持したが、それよりも短い10〜15分程度
の時間でも同様な効果が期待できる。
It can be seen from FIG. 3 that etching of the substrate surface can be prevented by lowering the take-out temperature to about 600 even when oxygen gas is not introduced. In this case, however, the high temperature heat treatment time is effectively lengthened. However, there arises a problem that work efficiency is reduced. For example, 600 by natural cooling
When the temperature is lowered to 0 ° C, the temperature is lowered at a rate of 1.6 to 2.0 ° C / minute, so that it takes about 50 to 63 minutes, which is about 20 to 33 minutes longer than that of this example. .. Further, in the present embodiment, the silicon substrate was held in the oxygen gas atmosphere for 30 minutes, but a similar effect can be expected even for a shorter time of about 10 to 15 minutes.

【0022】また、基板表面の起伏発生を防止するため
に、高温熱処理の前に基板表面に酸化膜を形成する方法
も考えられるが、この方法では、高温熱処理の目的であ
る基板表面の酸素析出物の除去が妨げられる。図4はそ
のことを表している基板表面からの深さと酸素析出物密
度との関係を示す特性図である。基板温度は1200℃
である。
In order to prevent the occurrence of undulations on the substrate surface, a method of forming an oxide film on the substrate surface before the high temperature heat treatment can be considered. In this method, oxygen precipitation on the substrate surface, which is the purpose of the high temperature heat treatment, is considered. Removal of objects is hindered. FIG. 4 is a characteristic diagram showing the relationship between the depth from the surface of the substrate and the density of oxygen precipitates. Substrate temperature is 1200 ° C
Is.

【0023】この図からO2 を用いた高温熱処理(図中
の○印を結んだ2点鎖線)は、Arを用いた高温熱処理
(図中の●印を結んだ線)や、H2 を用いた高温熱処理
(図中の×印を結んだ線)に比べて、基板表面の近傍に
おける酸素析出密度が大きいことが分かる。即ち、基板
表面の近傍では元々酸素析出物の除去効果が小さいのに
加えて、基板表面に酸素膜が形成されると、ますます酸
素析出物の除去効果が小さくなる。
From this figure, the high temperature heat treatment using O 2 (the two-dot chain line connecting the circles in the figure) is the high temperature heat treatment using Ar (the line connecting the ● in the figure) and H 2 It can be seen that the oxygen precipitation density in the vicinity of the substrate surface is higher than that of the high temperature heat treatment used (the line connecting the X marks in the figure). That is, the effect of removing oxygen precipitates is originally small in the vicinity of the substrate surface, and when an oxygen film is formed on the substrate surface, the effect of removing oxygen precipitates becomes even smaller.

【0024】かくして本実施例によれば、基板表面近傍
の酸素析出物を除去でき、且つ取り出し温度を下げない
で基板表面に起伏が無いシリコン基板が得られ、もっ
て、長期信頼性の半導体装置の実現に寄与できる良質な
シリコン基板を作業効率の低下を招くこと無く得ること
ができる。
Thus, according to this embodiment, an oxygen precipitate in the vicinity of the surface of the substrate can be removed, and a silicon substrate having no undulations on the surface of the substrate can be obtained without lowering the extraction temperature. A high-quality silicon substrate that can contribute to realization can be obtained without lowering work efficiency.

【0025】図5は、本発明の第2の実施例に係る熱処
理装置の概略構成図である。なお、図1の熱処理装置と
対応する部分には図1と同一符号を付してあり、詳細な
説明は省略する。
FIG. 5 is a schematic configuration diagram of a heat treatment apparatus according to the second embodiment of the present invention. The parts corresponding to those of the heat treatment apparatus of FIG. 1 are designated by the same reference numerals as those of FIG. 1, and detailed description thereof will be omitted.

【0026】本実施例の熱処理装置が図1のそれと異な
る点は、熱処理炉1の下部に真空排気装置20に繋がっ
たガス排気管22を付加すると共に、ガス排気管6にバ
ルブ23を設けたことにある。即ち、この熱処理装置
は、先の熱処理装置よりガス排気能力が高くなるような
構成になっている。次に上記の如きに構成された熱処理
装置の熱処理方法を説明する。基本的には先の実施例の
場合と変わらない。
The heat treatment apparatus of this embodiment differs from that of FIG. 1 in that a gas exhaust pipe 22 connected to a vacuum exhaust device 20 is added to the lower portion of the heat treatment furnace 1, and a valve 23 is provided in the gas exhaust pipe 6. Especially. That is, this heat treatment apparatus is configured to have a higher gas exhaust capacity than the previous heat treatment apparatus. Next, a heat treatment method of the heat treatment apparatus configured as described above will be described. Basically, it is the same as the case of the previous embodiment.

【0027】まず、バルブ21を閉じ、バルブ23を開
いた状態で、先の実施例と同様に高純度アルゴンガスを
熱処理炉1内に導入した後、シリコン基板10に高温熱
処理を施し、基板表面近傍の酸素析出物を除去する。
First, with the valve 21 closed and the valve 23 open, high-purity argon gas was introduced into the heat treatment furnace 1 in the same manner as in the previous embodiment, and then the silicon substrate 10 was subjected to high temperature heat treatment to obtain the substrate surface. Oxygen precipitates in the vicinity are removed.

【0028】次に熱処理炉1内の温度を800℃以下に
降温し、しかる後、バルブ23を閉じ、バルブ21を開
けて、真空排気装置20により熱処理炉1内のアルゴン
ガスを排気し、熱処理炉1内の圧力を100Torr以
下に減圧する。
Next, the temperature in the heat treatment furnace 1 is lowered to 800 ° C. or lower, after which the valve 23 is closed and the valve 21 is opened, and the argon gas in the heat treatment furnace 1 is exhausted by the vacuum exhaust device 20 to perform the heat treatment. The pressure in the furnace 1 is reduced to 100 Torr or less.

【0029】最後に、バルブ23を閉じたままバルブ2
1を閉じ、バルブ4を開け、熱処理炉1内に高純度酸素
ガスを1リットル/分の流量で導入し、基板表面に酸化
膜を形成した後、800℃以下の温度で熱処理炉1内か
らシリコン基板10を取り出す。なお、高純度酸素ガス
の導入流量は上述した値に限らず、所望の膜厚の酸化膜
が形成される量であれば良い。
Finally, with the valve 23 closed, the valve 2
1 is closed, the valve 4 is opened, high-purity oxygen gas is introduced into the heat treatment furnace 1 at a flow rate of 1 liter / min, and an oxide film is formed on the substrate surface. The silicon substrate 10 is taken out. The introduction flow rate of the high-purity oxygen gas is not limited to the value described above, and may be any amount as long as an oxide film having a desired film thickness is formed.

【0030】本実施例では、真空排気装置20を用いて
熱処理炉1内のアルゴンガスと高純度酸素ガスとの交換
を行なっているので、確実にアルゴンガスを排気できる
と共に、熱処理炉1内の高純度酸素ガスの分布を均一に
できる。このため、熱処理炉1内の高純度酸素ガスの不
均一分布によって、高純度酸素ガス圧力の低い領域が発
生し、これによってシリコン基板10がエッチングされ
ることはない。
In this embodiment, since the argon gas in the heat treatment furnace 1 and the high-purity oxygen gas are exchanged by using the vacuum exhaust device 20, the argon gas can be surely exhausted and the inside of the heat treatment furnace 1 can be surely discharged. The distribution of high-purity oxygen gas can be made uniform. Therefore, due to the non-uniform distribution of the high-purity oxygen gas in the heat treatment furnace 1, a region where the high-purity oxygen gas pressure is low is generated and the silicon substrate 10 is not etched.

【0031】したがって、高純度酸素ガスの圧力が低い
領域が発生しても、シリコン基板10がエッチングされ
ないように、高純度酸素ガスの導入の際に熱処理炉1内
の温度を低めに設定する必要がなくなるので、熱処理時
間の短縮化が図れる。
Therefore, it is necessary to set the temperature in the heat treatment furnace 1 to be low at the time of introducing the high-purity oxygen gas so that the silicon substrate 10 is not etched even if a region where the pressure of the high-purity oxygen gas is low is generated. Is eliminated, the heat treatment time can be shortened.

【0032】かくして本実施例でも、先の実施例と同様
な効果が得られるのは勿論のこと、先の実施例に比べ高
い温度で高純度酸素ガスを熱処理炉1内に導入すること
ができるので、よりいっそう作業効率が向上するという
利点もある。なお、アルゴンガスの代わりに水素ガスを
用いて良い。要は、酸素析出物の除去の際に、酸素析出
物の除去を妨げるような被膜が基板表面に形成されなけ
れば良い。図6は、本発明の第3の実施例に係る熱処理
装置の概略構成図である。本実施例の熱処理装置が図1
のそれと異なる点は、高純度酸素ガスを熱処理炉1内に
導入するためのガス導入管30を別途に設けたことにあ
る。
Thus, in this embodiment as well, the same effects as in the previous embodiment can be obtained, and high-purity oxygen gas can be introduced into the heat treatment furnace 1 at a higher temperature than in the previous embodiment. Therefore, there is also an advantage that the work efficiency is further improved. Note that hydrogen gas may be used instead of argon gas. The point is that, when removing the oxygen precipitates, it is sufficient that a film that hinders the removal of the oxygen precipitates is not formed on the substrate surface. FIG. 6 is a schematic configuration diagram of a heat treatment apparatus according to the third embodiment of the present invention. The heat treatment apparatus of this embodiment is shown in FIG.
The difference from that is that a gas introduction pipe 30 for introducing the high-purity oxygen gas into the heat treatment furnace 1 is separately provided.

【0033】即ち、高純度酸素ガスは、熱処理炉1内ま
で延在したガス導入管30を介して熱処理炉1内に導入
される。また、熱処理炉1内のガス導入管30には多数
の穴が設けられている。このため、本実施例の熱処理装
置を用いれば、高温熱処理後にバルブ4を開けて熱処理
炉1内にガス導入管30を介して導入される高純度酸素
ガスは、ガス導入管30の穴から分散し、瞬時に熱処理
炉1内全体に行き渡る。したがって、この場合も、熱処
理炉1内の高純度酸素ガスの分布をより均一にできるの
で、先の実施例より優れた効果が得られる。次に本発明
の第4の実施例に係る熱処理方法について説明する。
That is, the high-purity oxygen gas is introduced into the heat treatment furnace 1 through the gas introduction pipe 30 extending into the heat treatment furnace 1. Further, the gas introducing pipe 30 in the heat treatment furnace 1 is provided with a large number of holes. Therefore, when the heat treatment apparatus of this embodiment is used, the high-purity oxygen gas introduced into the heat treatment furnace 1 through the gas introduction pipe 30 by opening the valve 4 after the high temperature heat treatment is dispersed from the holes of the gas introduction pipe 30. Then, the entire heat treatment furnace 1 is instantly spread. Therefore, also in this case, the distribution of the high-purity oxygen gas in the heat treatment furnace 1 can be made more uniform, so that an effect superior to that of the previous embodiment can be obtained. Next, a heat treatment method according to the fourth embodiment of the present invention will be described.

【0034】上記実施例では、シリコン基板の表面に酸
化膜を形成する場合について説明したが、本発明者等は
シリコン基板の表面に窒化膜を形成しても同様な効果が
得られることを確認した。
In the above embodiment, the case where the oxide film is formed on the surface of the silicon substrate has been described, but the present inventors have confirmed that the same effect can be obtained by forming the nitride film on the surface of the silicon substrate. did.

【0035】図7は、そのことを表している窒素ガス導
入温度とシリコン基板表面の起伏密度との関係を示す特
性図である。これは窒素ガスの流量が10リットル/
分、導入時間が30分間で、取り出し温度が800℃の
条件で得られたものである。なお、比較のため、窒素を
導入しない場合の起伏密度を点線で示してある。
FIG. 7 is a characteristic diagram showing the relationship between the nitrogen gas introduction temperature and the undulation density on the surface of the silicon substrate. The flow rate of nitrogen gas is 10 liters /
Min, introduction time is 30 minutes, and take-out temperature is 800 ° C. For comparison, the undulation density when nitrogen is not introduced is shown by a dotted line.

【0036】この図から1000℃以上の窒素ガスを用
いれば、基板表面に窒化膜が形成されることが分かる。
また、起伏抑制効果が現れる窒化膜の膜厚の下限は0.
3nmであることを確認した。また、図4から酸化膜の
場合と同様に、窒化膜も基板表面の近傍における酸素析
出密度が大きいので、高温熱処理の前にシリコン基板表
面に窒化膜を形成すると、酸素析出物の除去効果が小さ
くなる。
From this figure, it can be seen that a nitride film is formed on the surface of the substrate by using nitrogen gas at 1000 ° C. or higher.
Further, the lower limit of the film thickness of the nitride film, which shows the effect of suppressing the undulation, is 0.
It was confirmed to be 3 nm. Further, as in the case of the oxide film, as shown in FIG. 4, the nitride film also has a high oxygen precipitation density in the vicinity of the substrate surface. Get smaller.

【0037】次に図1の熱処理装置を用いた場合の窒素
ガスによる熱処理方法について具体的に説明する。図8
は、本実施例における熱処理炉1内の温度と熱処理時間
との関係を示す図である。
Next, the heat treatment method using nitrogen gas when the heat treatment apparatus of FIG. 1 is used will be specifically described. Figure 8
FIG. 4 is a diagram showing the relationship between the temperature in the heat treatment furnace 1 and the heat treatment time in this example.

【0038】まず、バルブ4を閉じ、バルブ3を開け
て、水分等の不純物含有量が0.1ppm以下、流量が
20リットル/分の高純度アルゴンガスを常圧で熱処理
炉1内に送り込んだ後、熱処理炉1内の温度を700℃
に設定する。次いで熱処理炉1内にシリコン基板10を
搭載した支持台2を炉内の中央部に置き、この状態を3
0分間保持する。
First, the valve 4 was closed and the valve 3 was opened, and high-purity argon gas having an impurity content of 0.1 ppm or less and a flow rate of 20 l / min was fed into the heat treatment furnace 1 at atmospheric pressure. After that, the temperature in the heat treatment furnace 1 is set to 700 ° C.
Set to. Next, the support base 2 on which the silicon substrate 10 is mounted is placed in the heat treatment furnace 1 at the center of the furnace, and this state is set to 3
Hold for 0 minutes.

【0039】次に常圧で熱処理炉1内の温度を1200
℃まで昇温し、この状態を60分間程度保持した後、熱
処理炉1内の温度を5℃/分の割合で降温する。即ち、
1000℃以上の高温処理を40分間とする。このと
き、バルブ3を閉じ、バルブ4を開けて水分等の不純物
含有量が0.1ppm以下の高純度窒素ガスを常圧で熱
処理炉1内へ20リットル/分の流量で送り込む。これ
により、シリコン基板10の表面には厚さ約0.5nm
のシリコン窒化膜が形成される。そして、熱処理炉1内
の温度が700℃まで降温したら、シリコン基板10及
びその支持台2を熱処理炉1から取り出す。
Next, the temperature in the heat treatment furnace 1 is set to 1200 at normal pressure.
After raising the temperature to 0 ° C. and maintaining this state for about 60 minutes, the temperature in the heat treatment furnace 1 is lowered at a rate of 5 ° C./min. That is,
The high temperature treatment at 1000 ° C. or higher is for 40 minutes. At this time, the valve 3 is closed, the valve 4 is opened, and high-purity nitrogen gas having an impurity content of 0.1 ppm or less such as water is sent into the heat treatment furnace 1 at normal pressure at a flow rate of 20 liters / minute. As a result, the surface of the silicon substrate 10 has a thickness of about 0.5 nm.
A silicon nitride film is formed. Then, when the temperature inside the heat treatment furnace 1 is lowered to 700 ° C., the silicon substrate 10 and its supporting base 2 are taken out from the heat treatment furnace 1.

【0040】本実施例によれば、シリコン基板10の表
面が窒化膜により保護されているので、熱処理炉内1か
らシリコン基板10を取り出すために、シリコン基板1
0が外界の雰囲気と接触しても、シリコン表面に起伏は
生じない。また、窒化膜は高温熱処理中には形成されな
いので、酸素析出物も完全に除去できる。また、窒素ガ
スを用いた本実施例の方が、火炎発生防止の点で、酸素
ガスを用いた先の実施例より優れている。なお、先の実
施例と同様にアルゴンガスの代わりに水素ガス等のガス
を用いても良い。また、本実施例では、図1の熱処理装
置を用いた場合について説明したが、図5の熱処理装
置,図6の熱処理装置を用いても同様な効果が得られ
る。
According to this embodiment, since the surface of the silicon substrate 10 is protected by the nitride film, the silicon substrate 1 is taken out from the heat treatment furnace 1 in order to take it out.
Even if 0 comes into contact with the outside atmosphere, no undulation occurs on the silicon surface. Further, since the nitride film is not formed during the high temperature heat treatment, oxygen precipitates can be completely removed. Further, the present embodiment using nitrogen gas is superior to the previous embodiment using oxygen gas in terms of preventing flame generation. Note that a gas such as hydrogen gas may be used instead of the argon gas as in the previous embodiment. Further, in the present embodiment, the case where the heat treatment apparatus of FIG. 1 is used has been described, but the same effect can be obtained by using the heat treatment apparatus of FIG. 5 and the heat treatment apparatus of FIG.

【0041】なお、本発明は上述した実施例に限定され
るものではない。例えば、上実施例では、シリコン基板
の場合について説明したが、本発明は他の半導体基板に
も適用できる。
The present invention is not limited to the above embodiment. For example, in the above embodiment, the case of the silicon substrate has been described, but the present invention can be applied to other semiconductor substrates.

【0042】また、酸素ガス,窒素ガス以外のガスを高
温熱処理後に熱処理炉に導入しても同様な効果が期待で
きる。要は外気中でエッチングされない被膜を基板表面
に形成すれば良い。
Similar effects can be expected by introducing a gas other than oxygen gas and nitrogen gas into the heat treatment furnace after the high temperature heat treatment. The point is to form a film on the substrate surface that is not etched in the open air.

【0043】更に、熱処理装置も上述したものに限定さ
れるわけでなく、例えば、図5の熱処理装置と図6の熱
処理装置とを組み合わせたもの、即ち、真空排気装置2
0とガス導入管30とを備えた熱処理装置を用いても良
い。
Further, the heat treatment apparatus is not limited to the one described above, and for example, a combination of the heat treatment apparatus of FIG. 5 and the heat treatment apparatus of FIG. 6, that is, the vacuum exhaust device 2
It is also possible to use a heat treatment apparatus provided with 0 and the gas introduction pipe 30.

【0044】更にまた、上記実施例では、ガス雰囲気中
でシリコン基板を熱処理して酸素析出物を除去したが、
他の熱処理方法、例えば、真空加熱による熱処理で酸素
析出物の除去を行なっても良い。その他、本発明の要旨
を逸脱しない範囲で、種々変形して実施できる。
Furthermore, in the above embodiment, the silicon substrate was heat-treated in a gas atmosphere to remove oxygen precipitates.
The oxygen precipitates may be removed by another heat treatment method, for example, heat treatment by vacuum heating. In addition, various modifications can be made without departing from the scope of the present invention.

【0045】[0045]

【発明の効果】以上詳述したように本発明によれば、長
期信頼性の半導体装置の実現に寄与できる良質な半導体
基板を作業効率の低下を招くこと無く得ることができ
る。
As described above in detail, according to the present invention, it is possible to obtain a high-quality semiconductor substrate that can contribute to the realization of a semiconductor device having long-term reliability without lowering work efficiency.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施例に係る熱処理装置の概略
構成図。
FIG. 1 is a schematic configuration diagram of a heat treatment apparatus according to a first embodiment of the present invention.

【図2】熱処理時間と熱処理炉内温度との関係を示す
図。
FIG. 2 is a diagram showing a relationship between heat treatment time and heat treatment furnace temperature.

【図3】取り出し温度とシリコン基板の表面の起伏密度
との関係を示す特性図。
FIG. 3 is a characteristic diagram showing the relationship between the take-out temperature and the undulation density on the surface of the silicon substrate.

【図4】基板表面からの深さと酸素析出物密度との関係
を示す特性図。
FIG. 4 is a characteristic diagram showing the relationship between the depth from the substrate surface and the density of oxygen precipitates.

【図5】本発明の第2の実施例に係る熱処理装置の概略
構成図。
FIG. 5 is a schematic configuration diagram of a heat treatment apparatus according to a second embodiment of the present invention.

【図6】本発明の第3の実施例に係る熱処理装置の概略
構成図。
FIG. 6 is a schematic configuration diagram of a heat treatment apparatus according to a third embodiment of the present invention.

【図7】窒素ガス導入温度とシリコン基板表面の起伏密
度との関係を示す特性図。
FIG. 7 is a characteristic diagram showing a relationship between a nitrogen gas introduction temperature and an undulation density on the surface of a silicon substrate.

【図8】熱処理炉内の温度と熱処理時間との関係を示す
図。
FIG. 8 is a diagram showing the relationship between the temperature in the heat treatment furnace and the heat treatment time.

【符号の説明】[Explanation of symbols]

1…熱処理炉 2…支持台 3,4,21,23…バルブ 5,30…ガス導入管 6…ガス排気管 10…シリコン基板 20…真空排気装置 DESCRIPTION OF SYMBOLS 1 ... Heat treatment furnace 2 ... Support stand 3,4,21,23 ... Valve 5,30 ... Gas introduction pipe 6 ... Gas exhaust pipe 10 ... Silicon substrate 20 ... Vacuum exhaust device

フロントページの続き (72)発明者 小林 英行 神奈川県川崎市幸区小向東芝町1番地 株 式会社東芝総合研究所内 (72)発明者 寺坂 国博 神奈川県川崎市幸区小向東芝町1番地 株 式会社東芝総合研究所内 (72)発明者 山本 明人 神奈川県川崎市幸区小向東芝町1番地 株 式会社東芝総合研究所内Front page continuation (72) Inventor Hideyuki Kobayashi 1 Komukai Toshiba-cho, Sachi-ku, Kawasaki-shi, Kanagawa Inside Toshiba Research Institute Co., Ltd. Incorporated company Toshiba Research Institute (72) Inventor Akito Yamamoto 1 Komukai Toshiba-cho, Kouki-ku, Kawasaki-shi, Kanagawa Incorporated Toshiba Research Institute

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】熱処理容器内の基板表面が露出した半導体
基板を熱処理して、前記半導体基板に含まれている酸素
を除去する工程と、 前記熱処理容器内から前記半導体基板を取り出す前に、
前記熱処理容器の外気中でエッチングされない被膜を前
記半導体基板の表面に形成する工程とを有することを特
徴とする半導体装置の製造方法。
1. A step of heat-treating a semiconductor substrate in which a substrate surface is exposed in a heat treatment container to remove oxygen contained in the semiconductor substrate; and a step of removing the semiconductor substrate from the heat treatment container,
And a step of forming a coating on the surface of the semiconductor substrate that is not etched in the outside air of the heat treatment container.
【請求項2】熱処理容器内の基板表面が露出したシリコ
ン基板をシリコン化合物が形成されないガス雰囲気中で
熱処理をする工程と、 前記熱処理容器内から前記シリコン基板を取り出す前
に、前記シリコン基板を酸素雰囲気中又は窒素雰囲気中
に晒し、前記シリコン基板の表面に酸化膜又は窒化膜を
形成する工程とを有することを特徴とする半導体装置の
製造方法。
2. A step of heat-treating a silicon substrate in which a surface of the substrate is exposed in a heat treatment container in a gas atmosphere in which a silicon compound is not formed, and before the silicon substrate is taken out from the heat treatment container, the silicon substrate is treated with oxygen. Exposing to an atmosphere or a nitrogen atmosphere to form an oxide film or a nitride film on the surface of the silicon substrate.
JP04103080A 1992-04-22 1992-04-22 Method for manufacturing semiconductor device Expired - Fee Related JP3095519B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04103080A JP3095519B2 (en) 1992-04-22 1992-04-22 Method for manufacturing semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04103080A JP3095519B2 (en) 1992-04-22 1992-04-22 Method for manufacturing semiconductor device

Publications (2)

Publication Number Publication Date
JPH05299413A true JPH05299413A (en) 1993-11-12
JP3095519B2 JP3095519B2 (en) 2000-10-03

Family

ID=14344665

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04103080A Expired - Fee Related JP3095519B2 (en) 1992-04-22 1992-04-22 Method for manufacturing semiconductor device

Country Status (1)

Country Link
JP (1) JP3095519B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11135511A (en) * 1997-10-29 1999-05-21 Nippon Steel Corp Silicon semiconductor substrate and manufacture thereof
WO2001017024A1 (en) * 1999-08-27 2001-03-08 Shin-Etsu Handotai Co., Ltd. Fabrication method for pasted soi wafer and pasted soi wafer
JP2001297995A (en) * 2000-04-13 2001-10-26 Nec Corp Manufacturing method of circuit and manufacturing device of circuit
WO2002007206A1 (en) * 2000-07-13 2002-01-24 Shin-Etsu Handotai Co., Ltd. Method for manufacturing silicon wafer
JP2010050230A (en) * 2008-08-20 2010-03-04 Shin Etsu Handotai Co Ltd Method of manufacturing silicon wafer, and silicon wafer
JP2013058784A (en) * 2004-05-07 2013-03-28 Memc Electron Materials Inc Method for reducing metallic contamination in silicon wafer

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11135511A (en) * 1997-10-29 1999-05-21 Nippon Steel Corp Silicon semiconductor substrate and manufacture thereof
WO2001017024A1 (en) * 1999-08-27 2001-03-08 Shin-Etsu Handotai Co., Ltd. Fabrication method for pasted soi wafer and pasted soi wafer
US6492682B1 (en) 1999-08-27 2002-12-10 Shin-Etsu Handotal Co., Ltd. Method of producing a bonded wafer and the bonded wafer
US6680260B2 (en) 1999-08-27 2004-01-20 Shin-Etsu Handotai Co., Ltd. Method of producing a bonded wafer and the bonded wafer
KR100733111B1 (en) * 1999-08-27 2007-06-27 신에쯔 한도타이 가부시키가이샤 Fabrication method for pasted soi wafer and pasted soi wafer
JP2001297995A (en) * 2000-04-13 2001-10-26 Nec Corp Manufacturing method of circuit and manufacturing device of circuit
WO2002007206A1 (en) * 2000-07-13 2002-01-24 Shin-Etsu Handotai Co., Ltd. Method for manufacturing silicon wafer
US6878645B2 (en) 2000-07-13 2005-04-12 Shin-Etsu Handotai Co., Ltd. Method for manufacturing silicon wafer
KR100764327B1 (en) * 2000-07-13 2007-10-05 신에쯔 한도타이 가부시키가이샤 Method for manufacturing silicon wafer
JP2013058784A (en) * 2004-05-07 2013-03-28 Memc Electron Materials Inc Method for reducing metallic contamination in silicon wafer
JP2010050230A (en) * 2008-08-20 2010-03-04 Shin Etsu Handotai Co Ltd Method of manufacturing silicon wafer, and silicon wafer

Also Published As

Publication number Publication date
JP3095519B2 (en) 2000-10-03

Similar Documents

Publication Publication Date Title
US6596095B2 (en) Epitaxial silicon wafer free from autodoping and backside halo and a method and apparatus for the preparation thereof
KR20010082183A (en) Process for preparing an ideal oxygen precipitating silicon wafer
US5672539A (en) Method for forming an improved field isolation structure using ozone enhanced oxidation and tapering
US6436846B1 (en) Combined preanneal/oxidation step using rapid thermal processing
JP3491050B2 (en) Method for forming thermal oxide film on silicon carbide semiconductor device
JP2004503086A (en) Method and apparatus for manufacturing a silicon wafer having a denuded area
JP3095519B2 (en) Method for manufacturing semiconductor device
JP2874618B2 (en) Silicon semiconductor substrate and method of manufacturing the same
JPH08148552A (en) Semiconductor thermal treatment jig and its surface treatment method
JP2000091577A (en) Method of forming game oxide film
JP3578396B2 (en) Semiconductor disk having crystal lattice defects and method of manufacturing the same
JPH10144698A (en) Silicon wafer and its manufacture
JP2518406B2 (en) Method of forming capacitive insulating film
JP3032565B2 (en) Method for manufacturing semiconductor device
JPH06295913A (en) Manufacture of silicon wafer and silicon wafer
JP3194062B2 (en) Method of forming thermal oxide film
JPH0969526A (en) Production of semiconductor device
JP2855978B2 (en) Method for manufacturing silicon nitride film
JPH0669195A (en) Method of forming insulating film
JPH07221034A (en) Manufacture of semiconductor device
JPH02237025A (en) Manufacture of semiconductor device
KR970003836B1 (en) Formation method of gate oxide of semiconductor device
JPH06333822A (en) Semiconductor device
JPH0897221A (en) Manufacture of silicon wafer, and silicon wafer
KR100309132B1 (en) Method for forming gettering region of silicon wafer

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 7

Free format text: PAYMENT UNTIL: 20070804

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080804

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090804

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees