JPH05299343A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPH05299343A
JPH05299343A JP12574892A JP12574892A JPH05299343A JP H05299343 A JPH05299343 A JP H05299343A JP 12574892 A JP12574892 A JP 12574892A JP 12574892 A JP12574892 A JP 12574892A JP H05299343 A JPH05299343 A JP H05299343A
Authority
JP
Japan
Prior art keywords
conductivity type
region
semiconductor
type semiconductor
crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP12574892A
Other languages
Japanese (ja)
Other versions
JP3304393B2 (en
Inventor
Masaru Wakatabe
勝 若田部
Mitsugi Tanaka
貢 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shindengen Electric Manufacturing Co Ltd
Original Assignee
Shindengen Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shindengen Electric Manufacturing Co Ltd filed Critical Shindengen Electric Manufacturing Co Ltd
Priority to JP12574892A priority Critical patent/JP3304393B2/en
Publication of JPH05299343A publication Critical patent/JPH05299343A/en
Application granted granted Critical
Publication of JP3304393B2 publication Critical patent/JP3304393B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Electrodes Of Semiconductors (AREA)
  • Recrystallisation Techniques (AREA)

Abstract

PURPOSE:To reduce the area of a semiconductor chip, and obtain a semiconductor device which has small series resistance to a forward direction current and is easily manufactured, by a method wherein the occupied area of semiconductor region of the opposite conductivity type to semiconductor of a conductivity type on the semiconductor chip surface is made small. CONSTITUTION:By deposition growth, on semiconductor 2 of a conductivity type, a crystal mismatch region 6 is formed directly or via an amorphous layer or a polycrystalline layer or a layer wherein the above layers mixedly exists, and a single-crystal semiconductor region 7 is formed so as to be in contact with the region 6. Next the crystal mismatch region 6 is turned into an opposite conductivity type semiconductor region by conductivity type conversion.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、半導体装置に関するも
のである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor device.

【0002】[0002]

【従来の技術】従来から、ショットキバリア整流半導体
装置等の整流機能をもった半導体装(2)置は、順方向
特性、逆方向特性をはじめ、特性面や構造面で種々の改
善がなされている。
2. Description of the Related Art Conventionally, a semiconductor device (2) having a rectifying function, such as a Schottky barrier rectifying semiconductor device, has been improved in various characteristics and structures including forward characteristics and reverse characteristics. There is.

【0003】図1及び図2に従来構造を例示する断面構
造図を示す。1は高濃度一導電型半導体(例えば、N
+)、2は一導電型半導体(例えば、N-)、3は逆導電
型半導体領域(例えば、P+)、4は電極金属、Aはア
ノ−ド、Cはカソ−ドである。
1 and 2 are cross-sectional structural views illustrating a conventional structure. 1 is a high concentration one conductivity type semiconductor (for example, N
+), 2 is a semiconductor of one conductivity type (for example, N-), 3 is a semiconductor region of opposite conductivity type (for example, P +), 4 is an electrode metal, A is an anode, and C is a cathode.

【0004】又、本発明者等により、一対の逆導電型半
導体領域3にはさまれた一導電型半導体2の最近接距離
Wと逆導電型半導体領域の深さD及び接線がなす角度θ
との間の関係について、特願平3−115341、特願
平3−133737、特願平3−133738等を発明
し、それらの条件を満足することにより、逆漏れ電流、
及び順方向電圧降下が小さく、高速、かつ、低損失の半
導体装置を得ることを提示した。
According to the present inventors, the angle θ formed by the closest distance W of the one conductivity type semiconductor 2 sandwiched between the pair of opposite conductivity type semiconductor regions 3, the depth D of the opposite conductivity type semiconductor region and the tangent line.
In relation to the relationship between and, by inventing Japanese Patent Application No. 3-115341, Japanese Patent Application No. 3-133737, Japanese Patent Application No. 3-133738 and the like, and satisfying those conditions, reverse leakage current,
In addition, it was proposed to obtain a semiconductor device having a low forward voltage drop, high speed, and low loss.

【0005】従来構造の形成においては、高濃度一導電
型半導体1上にあらかじめ設けた一導電型半導体2に、
逆導電型不純物の拡散源、例えば、BN、BCl3を用
い、通常の熱拡散により、所定の深さまで逆導電型半導
体領域3を形成する気相拡散法による手段。一導電型半
導体2の所定部分に、B+イオンを注入し、さらに、熱拡
散により、所定の深さまで逆導電型半導体領域3を形成
するイオン注入拡散法による手段。又、図2のように、
あらかじめ、一導電型半導体2の表面に、所定の深さと
幅の凹部を設け、凹部の内壁及び底部に沿って浅い拡散
を行うトレンチ法による手段。等がある。これらは、い
ずれも、単結晶半導体基体である一導電型半導体2の表
面に注入、拡散等の不純物導入手段により逆導電型半導
体領域3を形成した半導体装置の構造である。
In the formation of the conventional structure, the one-conductivity-type semiconductor 2 previously provided on the high-concentration one-conductivity-type semiconductor 1 is
A means by a vapor phase diffusion method for forming a reverse conductivity type semiconductor region 3 to a predetermined depth by ordinary thermal diffusion using a diffusion source of impurities of a reverse conductivity type, for example, BN or BCl 3 . Means by an ion implantation diffusion method for implanting B + ions into a predetermined portion of the one conductivity type semiconductor 2 and further forming a reverse conductivity type semiconductor region 3 to a predetermined depth by thermal diffusion. Moreover, as shown in FIG.
Means by the trench method in which a recess having a predetermined depth and width is provided in advance on the surface of the one-conductivity-type semiconductor 2 and shallow diffusion is performed along the inner wall and the bottom of the recess. Etc. These are all structures of the semiconductor device in which the opposite conductivity type semiconductor region 3 is formed on the surface of the one conductivity type semiconductor 2 which is a single crystal semiconductor substrate by impurity introduction means such as implantation and diffusion.

【0006】前記せる本発明者等の先願発明で述べたよ
うに、逆導電型半導体領域3の構造上の好ましい形成条
件は、接線がなす角度θが約90度で、しかも3では
(3)さまれた一導電型半導体2の最近接距離Wに較べ
て3の深さDを充分深くすることである。
As described in the above-mentioned prior invention of the present inventors, the structurally preferable formation condition of the reverse conductivity type semiconductor region 3 is that the angle θ formed by the tangent line is about 90 degrees, and in the case of 3, (3 ) To make the depth D of 3 sufficiently deeper than the closest distance W of the sandwiched one conductivity type semiconductor 2.

【0007】しかして、一導電型の単結晶半導体基体の
表面に不純物導入手段により逆導電型半導体領域3を形
成する従来構造に、前記の構造上の好ましい形成条件を
適用すると、必然的に逆導電型半導体領域3の幅WPを
増加することになり、それに伴い、半導体チップ面積を
増大して、不経済となる。又、従来構造の逆導電型半導
体領域3のいずれの形成手段も深さD=2μmで、か
つ、WP=2μm以下の好ましい構造を得るためには、
超高精度の微細加工が必要となり、製造上、厄介であ
る。
However, when the above-mentioned preferable structural conditions are applied to the conventional structure in which the opposite conductivity type semiconductor region 3 is formed on the surface of the one conductivity type single crystal semiconductor substrate by the impurity introducing means, the structure is necessarily reversed. The width WP of the conductive type semiconductor region 3 is increased, and accordingly, the area of the semiconductor chip is increased, which is uneconomical. Further, in order to obtain a preferable structure having a depth D = 2 μm and WP = 2 μm or less in any formation means of the reverse conductivity type semiconductor region 3 of the conventional structure,
Ultra-precision microfabrication is required, which is difficult in manufacturing.

【0008】[0008]

【発明が解決しようとする課題】解決しようとする問題
点は、一導電型半導体表面に複数の逆導電型半導体領域
を形成し、一導電型半導体表面と逆導電型半導体領域表
面にまたがって電極金属を設けた半導体装置において、
単結晶半導体基体から成る一導電型半導体表面に不純物
導入手段により逆導電型半導体領域を形成する従来構造
では、半導体チップ面の逆導電型半導体領域の占有面積
が大となり、それに伴い半導体チップ面積が大となる点
である。又、高い精度の微細加工技術を要し、製造上、
厄介である。
A problem to be solved is to form a plurality of opposite conductivity type semiconductor regions on the surface of one conductivity type semiconductor, and to form an electrode across the surface of one conductivity type semiconductor and the opposite conductivity type semiconductor region. In a semiconductor device provided with a metal,
In the conventional structure in which the opposite conductivity type semiconductor region is formed on the surface of one conductivity type semiconductor made of a single crystal semiconductor substrate by the impurity introduction means, the area occupied by the opposite conductivity type semiconductor region on the semiconductor chip surface becomes large, and the semiconductor chip area is accordingly increased. This is a big point. In addition, high precision microfabrication technology is required,
It's troublesome.

【0009】[0009]

【課題を解決するための手段】一導電型半導体上に、堆
積成長層の結晶不整合領域と単結晶半導体領域を隣接し
て配置するごとく、結晶不整合領域は、非晶質、多結晶
質、又はそれらの混在する層を介するか、あるいは、直
接、一導電型半導体上に堆積成長形成し、同時に単結晶
半導体領域は、直接、一導電型半導体上にエピタキシア
ル成長により形成して設け、又、結晶不整合領域を導電
型転換により逆導電型半導体領域としたことを主たる特
徴とし、又、非晶質の誘電体層上に結晶不整合領域を堆
積成長する手段、結晶不整合領域を堆積成長させる一導
電型(4)半導体の部分に凹部を設ける手段、及び凹部
の形状をV字溝とする手段を選択して用いることができ
る。又、前記せる本発明者等の先願発明の併用により、
逆漏れ電流、及び順方向電圧降下が小さく、高速、か
つ、低損失の半導体装置を経済的、かつ、製造容易に実
現する。
As in the case where a crystal mismatched region of a deposited growth layer and a single crystal semiconductor region are arranged adjacent to each other on a semiconductor of one conductivity type, the crystal mismatched region is amorphous or polycrystalline. , Or through a mixed layer thereof, or directly, deposited and grown on one conductivity type semiconductor, and at the same time, the single crystal semiconductor region is directly formed on one conductivity type semiconductor by epitaxial growth and provided. Further, the main feature is that the crystal mismatched region is made into a semiconductor region of opposite conductivity type by converting the conductivity type, and a means for depositing and growing the crystal mismatched region on the amorphous dielectric layer, a crystal mismatched region is provided. It is possible to select and use a means for providing a concave portion in the portion of the one conductivity type (4) semiconductor to be deposited and grown, and a means for forming the concave portion into a V-shaped groove. In addition, by combining the above-mentioned prior inventions of the present inventors,
(EN) A semiconductor device having a small reverse leakage current and a low forward voltage drop, a high speed, and a low loss can be realized economically and easily manufactured.

【0010】[0010]

【実施例】図3は、本発明の実施例を示す断面構造図で
あり、各部の符号は、全図共に、同一符号は同等部分をあ
らわす。又、図4は、本発明構造の製造を例示する製造
工程図である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 3 is a sectional structural view showing an embodiment of the present invention, wherein the reference numerals of the respective parts are the same in all drawings and the same reference numerals represent the same parts. Further, FIG. 4 is a manufacturing process diagram illustrating the manufacturing of the structure of the present invention.

【0011】以下、図4の製造工程図により、本発明構
造を説明する。図4(a)について。高濃度一導電型半
導体1の上に低濃度の一導電型半導体2を設けたシリコ
ン単結晶基体を用意し、2の表面に深さ4000オング
ストロ−ム、幅1μm程度の凹部Hを形成する。しかる
後、凹部H底部のみにシリコン酸化膜を厚さ2000オ
ングストロ−ム程度、形成する。シリコン酸化膜は、非
晶質の誘電体層5を構成する。
The structure of the present invention will be described below with reference to the manufacturing process chart of FIG. Regarding FIG. 4 (a). A silicon single crystal substrate in which a low concentration one conductivity type semiconductor 2 is provided on a high concentration one conductivity type semiconductor 1 is prepared, and a recess H having a depth of 4000 Å and a width of about 1 μm is formed on the surface of 2. Thereafter, a silicon oxide film having a thickness of about 2000 angstrom is formed only on the bottom of the recess H. The silicon oxide film constitutes the amorphous dielectric layer 5.

【0012】図4(b)について。次いで、非晶質の誘
電体層5を形成した凹部H、及び凹部H以外の一導電型
半導体2上にわたり、通常手段により厚さ約2μmの一
導電型不純物を含んだエピタキシアル成長層を形成す
る。この場合、誘電体層5は非晶質であるシリコン酸化
膜のため、その上には単結晶は成長せず、一導電型の多結
晶が成長する。ここで、成長する多結晶は、結晶粒子の
境界が不整合状態で存在する領域の一種であり、結晶不
整合領域6で示す。又、同時に成長する凹部H以外の一
導電型半導体2の表面におけるエピタキシアル成長層
は、一導電型単結晶半導体領域7を形成する。
Regarding FIG. 4B. Then, an epitaxial growth layer containing one conductivity type impurity having a thickness of about 2 μm is formed by a conventional means over the recess H in which the amorphous dielectric layer 5 is formed and the one conductivity type semiconductor 2 other than the recess H. To do. In this case, since the dielectric layer 5 is an amorphous silicon oxide film, a single crystal does not grow on it, but a single conductivity type polycrystal grows. Here, the growing polycrystal is a kind of region in which the boundaries of crystal grains exist in a mismatched state, and is indicated by a crystal mismatching region 6. Further, the epitaxially grown layer on the surface of the one-conductivity type semiconductor 2 other than the recess H that grows at the same time forms the one-conductivity type single crystal semiconductor region 7.

【0013】前記の凹部Hを形成しないで、単に、非晶
質の誘電体層5のパタ−ンを形成して成長させる場合
は、多結晶である結晶不整合領域6は厚さ約2μmの堆
(5)積において、垂直に成長せず、下方で約1μmの
幅に対し、上方では約3〜4μmの幅にひろがり、堆積
上部でパタ−ンくずれの可能性が大きく、又、性能上に
問題を生じる。凹部Hを形成した場合は、凹部H以外の
一導電型半導体2の表面に成長する単結晶半導体領域7
の方が、凹部から成長する結晶不整合領域6より、常
に、先行して成長するため、6の堆積上部の横へのひろ
がりを7により両側面から抑制し、結果として、一導電
型の単結晶半導体領域7に隣接する一導電型の結晶不整
合領域6の境界部を一導電型半導体2の基体表面に対
し、ほぼ垂直に形成し得る。なお、凹部Hを形成しない
場合には、何らかの手段により横へのひろがりを抑制す
ることが必要である。
When the pattern of the amorphous dielectric layer 5 is merely formed and grown without forming the concave portion H, the polycrystalline crystal mismatch region 6 has a thickness of about 2 μm. In the stack (5), it did not grow vertically and spread to a width of about 3 to 4 μm above the width of about 1 μm at the bottom, and there is a high possibility of pattern collapse at the top of the stack, and in terms of performance. Cause problems. When the recess H is formed, the single crystal semiconductor region 7 growing on the surface of the one conductivity type semiconductor 2 other than the recess H is formed.
In this case, since the crystal mismatching region 6 that grows from the recess always grows first, the lateral spread of the deposition upper portion of 6 is suppressed from both side surfaces by 7 and, as a result, the single conductivity type single crystal is grown. The boundary of the one conductivity type crystal mismatch region 6 adjacent to the crystal semiconductor region 7 can be formed substantially perpendicular to the substrate surface of the one conductivity type semiconductor 2. When the recess H is not formed, it is necessary to suppress the lateral spread by some means.

【0014】図4(C)について。堆積成長層の結晶不
整合領域6及び単結晶半導体領域7の表面に酸化膜を形
成し、6の表面のみに窓開けした後、BN又はBCl3
気相拡散法を用いて、950℃、N2ガス雰囲気中でボ
ロン拡散を行う。結晶不整合領域6の多結晶層中へのボ
ロン拡散は単結晶層中への拡散より約10〜30倍拡散
係数が大であり、短時間で多結晶層の上面から底部、即
ち、非晶質の誘電体層5の面まで、ほぼ、同一濃度の高
濃度逆導電型半導体領域(P+)を形成して導電型の転
換をなし得る。又、拡散濃度と時間を選び、隣接する単
結晶半導体領域7との境界部を越えて、ボロン拡散を進
行させることにより、単結晶層内にP+N接合を形成す
ることができる。以上により、約1μm幅で約2μm深
さの逆導電型半導体領域を単結晶半導体領域と隣接して
設けることができる。しかる後、上部の酸化膜を除去
し、Ti、Cr、Mo、Al、Pt等の電極金属4を蒸
着又はスパッタ法で形成する。このとき、逆導電型半導
体領域P+の表面濃度を5×1019原子/cm3以上の高
濃度にすると電極金属4間はオ−ミック接触となり、又、
5×1018原子/cm3よりも低濃度にボロン拡散を制御
すると電極金属との間はショットキ接触となる。又、一
導電型半導体である単結晶半導体領域7と電極金属4間
の接触も一導電型半導体N-の表面濃度の調整により、
ショットキ接触及びオ−ミック接触のいずれにもなし得
る。なお、電極金属4とのショットキ接触、オ(6)−
ミック接触の選択、組合せにより、前記せる先願発明に
も述べるごとく、種々の特徴をもつ半導体装置を構成で
きる。
Regarding FIG. 4C. An oxide film is formed on the surface of the crystal mismatched region 6 and the single crystal semiconductor region 7 of the deposited growth layer, and after opening a window only on the surface of 6, the vapor phase diffusion method of BN or BCl 3 is used to obtain 950 ° C. Boron diffusion is performed in an N2 gas atmosphere. Boron diffusion in the polycrystal layer of the crystal mismatch region 6 has a diffusion coefficient about 10 to 30 times larger than that in the monocrystal layer, and the diffusion coefficient from the top surface to the bottom portion of the polycrystal layer, that is, amorphous A high-concentration reverse-conductivity type semiconductor region (P +) having substantially the same concentration can be formed up to the surface of the high-quality dielectric layer 5 to change the conductivity type. In addition, a P + N junction can be formed in the single crystal layer by selecting the diffusion concentration and time and proceeding the boron diffusion beyond the boundary between the adjacent single crystal semiconductor regions 7. As described above, the opposite conductivity type semiconductor region having a width of about 1 μm and a depth of about 2 μm can be provided adjacent to the single crystal semiconductor region. After that, the oxide film on the upper portion is removed, and the electrode metal 4 such as Ti, Cr, Mo, Al or Pt is formed by vapor deposition or sputtering. At this time, if the surface concentration of the opposite conductivity type semiconductor region P + is set to a high concentration of 5 × 10 19 atoms / cm 3 or more, ohmic contact between the electrode metals 4 occurs, and
When the boron diffusion is controlled to a concentration lower than 5 × 10 18 atoms / cm 3, Schottky contact is made with the electrode metal. Further, the contact between the single crystal semiconductor region 7 which is one conductivity type semiconductor and the electrode metal 4 is also controlled by adjusting the surface concentration of the one conductivity type semiconductor N −.
It can be either Schottky contact or ohmic contact. In addition, Schottky contact with the electrode metal 4, (6)-
As described in the above-mentioned prior invention, a semiconductor device having various characteristics can be constructed by selecting and combining the mic contacts.

【0015】図3の本発明構造を従来構造と対比して以
下に説明する。図1の従来構造において、逆導電型半導
体領域3の底部と高濃度一導電型半導体1との間の最短
距離DNは、ブレ−クダウン電圧時の空乏層幅WBより
大きくすることが半導体装置の機能上、必要である。し
かるに、図3の本発明構造では、SiO2等の非晶質の誘電
体層5が結晶不整合領域7の逆導電型半導体領域の底部
に存在するので、逆電圧印加時には、一導電型半導体2
より誘電率の小さい誘電体層5が大部分の電圧を分担す
るような厚さに形成できる。その結果、誘電体層5を越
えて延びる空乏層幅は、図1のP+N-接合における空乏
層幅よりはるかに小さいか、又は、誘電体層5の厚さ内
に止まる。その分担電圧の程度は、誘電体層5の膜質、
膜厚に依存するものであり、熱酸化膜では、1000オ
ングストロ−ム厚さで約70Voltの電圧を負担す
る。従って、本発明構造では、ブレ−クダウン時の空乏
層幅WBを実質的に減少でき、それにより、最短距離D
Nを小にできる。
The structure of the present invention shown in FIG. 3 will be described below in comparison with the conventional structure. In the conventional structure shown in FIG. 1, the shortest distance DN between the bottom of the opposite conductivity type semiconductor region 3 and the high concentration one conductivity type semiconductor 1 is set to be larger than the depletion layer width WB at the break down voltage. Functionally required. However, in the structure of the present invention shown in FIG. 3, since the amorphous dielectric layer 5 such as SiO2 exists at the bottom of the reverse conductivity type semiconductor region of the crystal mismatch region 7, the one conductivity type semiconductor 2 is applied when a reverse voltage is applied.
The dielectric layer 5 having a smaller dielectric constant can be formed to have a thickness that shares most of the voltage. As a result, the depletion layer width extending beyond the dielectric layer 5 is much smaller than the depletion layer width at the P + N- junction of FIG. 1 or remains within the thickness of the dielectric layer 5. The degree of the shared voltage depends on the film quality of the dielectric layer 5,
It depends on the film thickness, and the thermal oxide film bears a voltage of about 70 Volt at a thickness of 1000 angstroms. Therefore, in the structure of the present invention, the depletion layer width WB at the time of break-down can be substantially reduced, whereby the shortest distance D
N can be small.

【0016】このことは、アノ−ドAからカソ−ドCに
流れる順方向電流において、高抵抗である一導電型半導
体2の厚さが薄い分だけシリ−ズ抵抗を小にできる。従
って、順方向特性の大幅改善をなし得るものである。
This means that, in the forward current flowing from the anode A to the cathode C, the series resistance can be reduced by the thinner the one-conductivity type semiconductor 2 having high resistance. Therefore, the forward characteristic can be greatly improved.

【0017】さらに、非晶質の誘電体層5への電圧分担
分を増加できる低耐圧半導体装置においては、5の直下
の一導電型半導体2の最短距離DNを極めて小にでき、
実質的に零とすることも可能である。図5は、このよう
にして形成した本発明構造の他の実施例を示す断面構造
図である。
Further, in the low breakdown voltage semiconductor device capable of increasing the voltage sharing to the amorphous dielectric layer 5, the shortest distance DN of the one conductivity type semiconductor 2 immediately below 5 can be made extremely small.
It is also possible to make it substantially zero. FIG. 5 is a sectional structural view showing another embodiment of the structure of the present invention thus formed.

【0018】図3の本発明構造の他の実施例として、非
晶質の誘電体層5のかわりに多結晶質、非晶質又はそれ
らの混在する形成層とすることができる。一導電型半
(7)導体2に、例えば、約5000オングストロ−ム
の凹部を設け、その底部に、シリコン原子を1020原子/
cm3以上の高濃度イオン注入、又は50KeV以上の高
エネルギ−でのボロン原子のイオン注入を行うとシリコ
ンの周期性の乱れた多結晶質、非晶質又はそれらの混在
する形成層ができる。その形成層上に、図4(b)と同
様に一導電型不純物を含んだ堆積成長層を形成すると多
結晶からなる一導電型の結晶不整合領域6となる。その
他は、図3及び図4による説明と同様に、本発明構造を
構成する。なお、その形成層を非晶質の誘電体層5のか
わりとした場合は、形成層及び結晶不整合領域6にわた
り導電型を転換して逆導電型半導体領域となすことがで
きる。
As another embodiment of the structure of the present invention shown in FIG. 3, the amorphous dielectric layer 5 may be replaced by a polycrystalline, amorphous, or a mixed formation layer thereof. The one-conductivity-type half (7) conductor 2 is provided with a recess of, for example, about 5000 angstroms, and silicon atoms are provided at the bottom of 10 20 atoms / atom.
When high-concentration ion implantation of cm3 or more or boron ion ion implantation with high energy of 50 KeV or more is carried out, a polycrystalline layer with disordered silicon periodicity, an amorphous layer, or a mixed formation layer thereof is formed. When a deposition growth layer containing one conductivity type impurity is formed on the formation layer as in FIG. 4B, the one conductivity type crystal mismatched region 6 made of polycrystal is formed. Otherwise, the structure of the present invention is configured in the same manner as described with reference to FIGS. 3 and 4. When the formation layer is replaced with the amorphous dielectric layer 5, the conductivity type can be converted over the formation layer and the crystal mismatch region 6 to form an opposite conductivity type semiconductor region.

【0019】次いで、図6に、本発明の他の実施例を示
す断面構造図を製造工程図と共に、示す。即ち、
(a)、(b)は製造工程図であり、(c)は断面構造
図である。図6(a)について。一導電型半導体2をシ
リコン基板の(111)面とし、微細写真加工を施し、
0.7μm幅のホトレジスト窓部を用意する。CCl2
2ガスのみで5mtorrガス圧力、基板温度75℃、
RF出力2KWで20秒間、マグネトロンイオンエッチ
ング(MIE)処理として、鋭いV字溝を形成する。
Next, FIG. 6 shows a sectional structural view showing another embodiment of the present invention together with manufacturing process drawings. That is,
(A), (b) is a manufacturing-process figure, (c) is a cross-section figure. Regarding FIG. 6 (a). The one conductivity type semiconductor 2 is used as the (111) surface of the silicon substrate, and fine photo processing is performed.
Prepare a 0.7 μm wide photoresist window. CCl 2 F
5mtorr gas pressure with only 2 gases, substrate temperature 75 ° C,
A sharp V-shaped groove is formed as a magnetron ion etching (MIE) process at an RF output of 2 KW for 20 seconds.

【0020】図6(b)について。ホトレジストを通常
の方法で除去した後、V字溝を含む一導電型半導体2の
表面に、通常手段で一導電型不純物を含むエピタキシア
ル成長層による結晶シリコンを堆積させる。V字溝内面
の成長シリコン層は、V字溝内面の2面から各結晶相を
反映して成長し、V字溝の中央線近傍で、結晶成長が会
合する。この会合した境界上では、結晶格子定数等の結
晶性は一致せず、大きな差が歪みとなり、結晶不整合領
域6を形成することとなる。この場合の結晶不整合領域
6の幅は、約2μm厚さのエピタキシアル成長層におい
て、約0.1〜0.5μmにできる。
Regarding FIG. 6B. After removing the photoresist by a usual method, crystalline silicon by an epitaxial growth layer containing a one conductivity type impurity is deposited on the surface of the one conductivity type semiconductor 2 including the V-shaped groove by a usual method. The grown silicon layer on the inner surface of the V-shaped groove grows from the two surfaces of the inner surface of the V-shaped groove reflecting each crystal phase, and the crystal growth associates near the center line of the V-shaped groove. The crystallinity such as the crystal lattice constant does not match on this bounded boundary, and a large difference causes distortion, and the crystal mismatched region 6 is formed. In this case, the width of the crystal mismatch region 6 can be about 0.1 to 0.5 μm in the epitaxially grown layer having a thickness of about 2 μm.

【0021】図6(c)について。(b)で形成した結
晶不整合領域6及びその近傍の結(8)晶性シリコン中
に、ボロン拡散による導電型転換を行い、結晶不整合領
域6を中央部とした極めて狭い幅の逆導電型半導体領域
(P+)を形成する。次いで、他の実施例と同様に、電
極金属4により、ショットキ接触又はオ−ミック接触を
形成して本発明構造の半導体装置を得る。
Regarding FIG. 6 (c). In the crystal mismatched region 6 formed in (b) and in the vicinity (8) crystalline silicon, the conductivity type is converted by boron diffusion, and the reverse conductivity is extremely narrow with the crystal mismatched region 6 at the center. A type semiconductor region (P +) is formed. Then, similarly to the other examples, Schottky contact or ohmic contact is formed by the electrode metal 4 to obtain the semiconductor device having the structure of the present invention.

【0022】図6(a)において、V字溝内面に非晶質
の誘電体層5を設けたり、段落0018に述べたごと
く、シリコン原子の高濃度イオン注入や、ボロン原子の
高エネルギ−イオン注入による形成層を設けたり、ある
いは、V字溝形成時のプラズマダメ−ジ層などにより、
図6(b)のシリコン堆積工程を通じて、V字溝内面領
域に一導電型の多結晶領域を形成することができる。こ
の場合は、V字溝の中央線近傍で生じる成長結晶会合部
を含む形成された多結晶領域による結晶不整合領域6が
形成される。これにより、確実に、幅の狭い結晶不整合
領域6を形成でき、半導体チップ面積の減少を達成でき
る。
In FIG. 6A, an amorphous dielectric layer 5 is provided on the inner surface of the V-shaped groove, or as described in paragraph 0018, high-concentration ion implantation of silicon atoms or high-energy ions of boron atoms. By providing a formation layer by implantation, or by a plasma damage layer when forming a V-shaped groove,
Through the silicon deposition step of FIG. 6B, one conductivity type polycrystalline region can be formed in the V-shaped groove inner surface region. In this case, the crystal mismatching region 6 is formed by the formed polycrystalline region including the grown crystal association portion generated near the center line of the V-shaped groove. As a result, the crystal mismatch region 6 having a narrow width can be surely formed, and the semiconductor chip area can be reduced.

【0023】各実施例においては、整流半導体装置のみ
を示したが、一導電型半導体表面に複数の逆導電型半導
体領域を形成し、一導電型半導体表面と逆導電型半導体
領域表面にまたがって、電極金属を設けた、いずれの半
導体装置にも実施できることは明らかである。その他、
本発明の構成要件を満足するならば、いずれの変形、付
加、変換等の変更を行っても本発明の範囲に含まれるも
のである。
Although only the rectifying semiconductor device is shown in each of the embodiments, a plurality of opposite conductivity type semiconductor regions are formed on the one conductivity type semiconductor surface, and the one conductivity type semiconductor surface and the opposite conductivity type semiconductor region surface are spread over. It is obvious that the present invention can be applied to any semiconductor device provided with an electrode metal. Other,
Any modification, addition, conversion or the like change is included in the scope of the present invention as long as the constituent requirements of the present invention are satisfied.

【0024】[0024]

【発明の効果】以上、説明したように、一導電型半導体
表面に必要とする逆導電型半導体領域の占有面積を小さ
く、従って、半導体チップ面積を減少し、又、シリ−ズ
抵抗が小さく順方向特性の優れた半導体装置を製造容易
に得ることができ、電源機器をはじめ、各種機器に利用
して、産業上の効果、極めて大なるものである。
As described above, the area occupied by the opposite conductivity type semiconductor region required on the surface of one conductivity type semiconductor is small, and therefore the area of the semiconductor chip is reduced, and the series resistance is small. It is possible to easily obtain a semiconductor device having excellent directional characteristics, and it is possible to obtain a great industrial effect by using it in various devices such as power supply devices.

【図面の簡単な説明】[Brief description of drawings]

(9) (9)

【図1】従来構造の断面構造図である。FIG. 1 is a sectional structural view of a conventional structure.

【図2】従来構造の断面構造図である。FIG. 2 is a sectional structural view of a conventional structure.

【図3】本発明の実施例を示す断面構造図である。FIG. 3 is a sectional structural view showing an embodiment of the present invention.

【図4】図3の製造例を示す製造工程図である。FIG. 4 is a manufacturing process diagram showing the manufacturing example of FIG. 3;

【図5】本発明の他の実施例を示す断面構造図である。FIG. 5 is a sectional structural view showing another embodiment of the present invention.

【図6】本発明の他の実施例を示す製造工程図及び断面
構造図である。
FIG. 6 is a manufacturing process diagram and a cross-sectional structure diagram showing another embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 高濃度一導電型半導体 2 一導電型半導体 3 逆導電型半導体領域 4 電極金属 5 非晶質の誘電体層 6 結晶不整合領域 7 単結晶半導体領域 A アノ−ド C カソ−ド H 凹部 D 逆導電型半導体領域の深さ DN 3の底部と1との最短距離 W 3にはさまれた2の最近接距離 WP 3の幅 θ 逆導電型半導体領域の接線の角度 1 High-concentration one conductivity type semiconductor 2 One conductivity type semiconductor 3 Reverse conductivity type semiconductor region 4 Electrode metal 5 Amorphous dielectric layer 6 Crystal mismatching region 7 Single crystal semiconductor region A Anode C Case H Recess D Depth of reverse conductivity type semiconductor region Minimum distance between bottom of DN 3 and 1 Closest distance of 2 sandwiched by W 3 Width of WP 3 θ Angle of tangent line of reverse conductivity type semiconductor region

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 一導電型半導体表面に複数の逆導電型半
導体領域を形成し、一導電型半導体表面と逆導電型半導
体領域表面にまたがって、電極金属を設けた半導体装置
において、一導電型半導体上に、堆積成長層の結晶不整
合領域と単結晶半導体領域を隣接して配置するごとく、
結晶不整合領域は、非晶質、多結晶質、又はそれらの混
在する層を介するか、あるいは、直接、一導電型半導体
上に堆積成長形成し、同時に、単結晶半導体領域は、直
接、一導電型半導体上にエピタキシアル成長により形成
して設け、又、結晶不整合領域を導電型転換により逆導
電型半導体領域としたことを特徴とする半導体装置。
1. A semiconductor device in which a plurality of opposite conductivity type semiconductor regions are formed on a surface of one conductivity type semiconductor and an electrode metal is provided over the surface of the one conductivity type semiconductor surface and the surface of the opposite conductivity type semiconductor region. On the semiconductor, as the crystal mismatched region of the deposited growth layer and the single crystal semiconductor region are arranged adjacent to each other,
The crystal-mismatched region is formed by depositing and growing directly on one conductivity type semiconductor through an amorphous layer, a polycrystalline layer, or a mixed layer thereof, and at the same time, the single crystal semiconductor region is directly formed by one layer. A semiconductor device, wherein the semiconductor device is provided by being formed on a conductive type semiconductor by epitaxial growth, and the crystal mismatching region is made into a reverse conductive type semiconductor region by conductivity type conversion.
【請求項2】 一導電型半導体上に、非晶質の誘電体層
を部分的に設け、非晶質の誘電体層上に結晶不整合領域
を、又、非晶質の誘電体層のない部分に単結晶半導体領
域を形成したことを特徴とする請求項1の半導体装置。
2. An amorphous dielectric layer is partially provided on a semiconductor of one conductivity type, a crystal mismatch region is formed on the amorphous dielectric layer, and an amorphous dielectric layer is formed. The semiconductor device according to claim 1, wherein a single crystal semiconductor region is formed in a non-existing portion.
【請求項3】 一導電型半導体に凹部を設け、その凹部
上に結晶不整合領域を、又、凹部以外の部分上に単結晶
半導体領域を形成したことを特徴とする請求項1又は請
求項2の半導体装置。
3. The one-conductivity-type semiconductor is provided with a recess, a crystal mismatch region is formed on the recess, and a single crystal semiconductor region is formed on a portion other than the recess. 2 semiconductor devices.
【請求項4】 一導電型半導体に設けた凹部をV字形溝
とし、V字形溝の中央線上に結晶不整合領域を形成し、
その他の領域に単結晶半導体領域を形成したことを特徴
とする請求項1、請求項2、又は請求項3の半導体装
置。
4. A V-shaped groove is formed as a recess provided in one conductivity type semiconductor, and a crystal mismatch region is formed on a center line of the V-shaped groove.
4. The semiconductor device according to claim 1, wherein a single crystal semiconductor region is formed in the other region.
JP12574892A 1992-04-17 1992-04-17 Semiconductor device Expired - Fee Related JP3304393B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12574892A JP3304393B2 (en) 1992-04-17 1992-04-17 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12574892A JP3304393B2 (en) 1992-04-17 1992-04-17 Semiconductor device

Publications (2)

Publication Number Publication Date
JPH05299343A true JPH05299343A (en) 1993-11-12
JP3304393B2 JP3304393B2 (en) 2002-07-22

Family

ID=14917833

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12574892A Expired - Fee Related JP3304393B2 (en) 1992-04-17 1992-04-17 Semiconductor device

Country Status (1)

Country Link
JP (1) JP3304393B2 (en)

Also Published As

Publication number Publication date
JP3304393B2 (en) 2002-07-22

Similar Documents

Publication Publication Date Title
US10236178B2 (en) Gallium nitride nanowire based electronics
EP2400533B1 (en) Diamond semiconductor element and process for producing the same
US4500388A (en) Method for forming monocrystalline semiconductor film on insulating film
US20090085044A1 (en) Silicon carbide semiconductor substrate and silicon carbide semiconductor device by using thereof
EP1876638B1 (en) Method of manufacturing a semiconductor device with a heterojunction
TW200913274A (en) Semiconductor device having tipless epitaxial source/drain regions
JP4683836B2 (en) Diamond semiconductor device and manufacturing method thereof
WO2019009021A1 (en) Schottky barrier diode
JP2012160485A (en) Semiconductor device and manufacturing method of the same
JP2007103728A (en) Silicon carbide semiconductor device
JP2008311489A (en) Nitride semiconductor element and method of manufacturing nitride semiconductor element
JP2011091125A (en) Silicon carbide semiconductor device and method for manufacturing the same
WO2024050865A1 (en) Vertical gallium oxide transistor and preparation method therefor
TW201330283A (en) Silicon carbide Schottky diode device with mesa termination and manufacturing method thereof
JP3304393B2 (en) Semiconductor device
JP4857698B2 (en) Silicon carbide semiconductor device
WO2017138499A1 (en) Method for manufacturing semiconductor element, and semiconductor substrate
KR102275146B1 (en) Schottky diode and method for fabricating the same
CN116779450B (en) Semiconductor device, optical device and method for manufacturing semiconductor structure
JPH05110061A (en) Rectifying semiconductor device
JP7400128B2 (en) MPS diode device and its manufacturing method
US20240079477A1 (en) Vertical gallium oxide transistor and preparation method thereof
JPS59134819A (en) Manufacture of semiconductor substrate
JPH05326925A (en) Shottky barrier semiconductor device
WO2023079504A1 (en) Self‑aligned top contact for vertical transistor

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080510

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 7

Free format text: PAYMENT UNTIL: 20090510

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100510

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees