JPH05299104A - Manufacture of thin film for solid electrolyte fuel battery - Google Patents

Manufacture of thin film for solid electrolyte fuel battery

Info

Publication number
JPH05299104A
JPH05299104A JP4099721A JP9972192A JPH05299104A JP H05299104 A JPH05299104 A JP H05299104A JP 4099721 A JP4099721 A JP 4099721A JP 9972192 A JP9972192 A JP 9972192A JP H05299104 A JPH05299104 A JP H05299104A
Authority
JP
Japan
Prior art keywords
thin film
masking
substrate
film
solid electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4099721A
Other languages
Japanese (ja)
Other versions
JP2775081B2 (en
Inventor
Hiroichi Sasaki
博一 佐々木
Masaji Otoshi
正司 大歳
Minoru Suzuki
稔 鈴木
Masamichi Ipponmatsu
正道 一本松
Atsuko Kajimura
敦子 梶村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP4099721A priority Critical patent/JP2775081B2/en
Publication of JPH05299104A publication Critical patent/JPH05299104A/en
Application granted granted Critical
Publication of JP2775081B2 publication Critical patent/JP2775081B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical Vapour Deposition (AREA)
  • Fuel Cell (AREA)

Abstract

PURPOSE:To facilitate the manufacture of a thin film for a solid electrolyte fuel battery by using a CVD method and an EVD method capable of realizing the masking adhered closely to a substrate and facilitating the process of masking and demasking. CONSTITUTION:When a thin film for a solid electrolyte fuel battery, such as an interconnector thin film 12, an electrolyte thin film 14 and the like is manufactured by using a CVD method and an EVD method, a lanthanum maganate powder slurry is coated in advance on a substrate (For example, base tube 10 or interconnector thin film 12) and sintered at the temperature of 900 to 1050 deg.C to form a masking film 16 and then to made a thin films with the EVD method and the like. Thereby, since the masking material is chemically stable, the masking material does not react to a substrate, any adverse effect is not given to the substrate.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、固体電解質燃料電池用
薄膜を製造する方法に関する。
TECHNICAL FIELD The present invention relates to a method for producing a thin film for a solid oxide fuel cell.

【0002】[0002]

【従来の技術と発明が解決しようとする課題】従来よ
り、CVD法(化学的蒸着法)やEVD法(電気化学的
蒸着法)を用いて、固体電解質燃料電池用の電解質薄膜
やインターコネクター薄膜などを作る方法が知られてい
る。特に、EVD法については多くの研究が行なわれ、
現在もっとも進歩していると言われる固体電解質燃料電
池の製造においては、薄膜の主要な製造方法としてEV
D法が採用されている。
2. Description of the Related Art Conventionally, an electrolyte thin film or interconnector thin film for a solid electrolyte fuel cell has been prepared by using a CVD method (chemical vapor deposition method) or an EVD method (electrochemical vapor deposition method). It is known how to make such. Especially, much research has been conducted on the EVD method,
In the production of solid oxide fuel cells, which is said to be the most advanced at present, EV is the main production method for thin films.
D method is adopted.

【0003】ところで、このような方法で薄膜を作る場
合には、基板上の不要な部分に膜が形成されるのを防ぐ
ために、マスキングを行なう必要がある。しかしなが
ら、約1,000℃の成膜温度において、基板に密着
し、安定でかつ基板に悪影響を与えないようにマスキン
グを行なうことは容易ではない。従来、優れたマスキン
グ法として開示された先行技術はなかった。
By the way, when a thin film is formed by such a method, it is necessary to carry out masking in order to prevent the film from being formed on an unnecessary portion on the substrate. However, at a film forming temperature of about 1,000 ° C., it is not easy to carry out masking so that the film is in close contact with the substrate, is stable, and does not adversely affect the substrate. Heretofore, there has been no prior art disclosed as an excellent masking method.

【0004】本発明の課題は、1,000℃付近の成膜
温度において、次のような特徴を有するマスキングを行
なうことのできる薄膜の製造方法を提供する処にある。 1.基板に密着したマスキングが可能である。 2.容易にマスキングやデマスキングができる。 3.成膜条件において、マスキング材そのものが化学的
に安定である。 4.成膜条件において、マスキング材が基板と反応せ
ず、基板に悪影響を与えない。
An object of the present invention is to provide a method for producing a thin film capable of performing masking having the following characteristics at a film forming temperature near 1,000 ° C. 1. Masking that adheres to the substrate is possible. 2. Masking and demasking can be done easily. 3. The masking material itself is chemically stable under the film forming conditions. 4. Under the film forming conditions, the masking material does not react with the substrate and does not adversely affect the substrate.

【0005】[0005]

【課題を解決するための手段】本発明の方法は、CVD
法またはEVD法を用いて固体電解質燃料電池用薄膜を
製造するに際し、ランタンマンガネート粉末スラリーを
マスキング材として用いることを特徴とする。
The method of the present invention is a CVD method.
The method is characterized in that the lanthanum manganate powder slurry is used as a masking material when a thin film for a solid oxide fuel cell is manufactured by using the PVD method or the EVD method.

【0006】すなわち、CVD法またはEVD法を用い
て、インターコネクター薄膜や電解質薄膜などの固体電
解質燃料電池用薄膜を製造するに際し、予め、基板[例
えば、カソードであるランタンマンガネート(LaMn
)基体管やインターコネクターであるランタンクロ
ムオキサイド(LaCrO)薄膜]上にランタンマン
ガネート粉末スラリーを塗布し、これを900〜1,0
50℃で焼結させてマスキングした後に、EVD法など
により薄膜を成膜する。
That is, when a thin film for a solid electrolyte fuel cell such as an interconnector thin film and an electrolyte thin film is manufactured by using the CVD method or the EVD method, a substrate [for example, lanthanum manganate as a cathode (LaMn) is prepared in advance.
Lanthanum manganate powder slurry was applied on a lanthanum chromium oxide (LaCrO x ) thin film which is an O x ) substrate tube or an interconnector, and 900 to 1.0
After sintering at 50 ° C. and masking, a thin film is formed by the EVD method or the like.

【0007】ここで用いるランタンマンガネート粉末ス
ラリーは、バインダーであるポリビニルアルコールや界
面活性剤を加えた溶媒である水中にランタンマンガネー
ト粉末を懸濁させることにより得られる。しかしなが
ら、バインダーや溶媒はポリビニルアルコールや水に限
定されるものではない。
The lanthanum manganate powder slurry used here is obtained by suspending the lanthanum manganate powder in water, which is a solvent containing polyvinyl alcohol as a binder and a surfactant. However, the binder and the solvent are not limited to polyvinyl alcohol and water.

【0008】[0008]

【作 用】ランタンマンガネート粉末スラリーを基板上
に塗付した後に、900〜1,050℃に昇温すると、
粉体粒子間に極めて弱い焼結が起こり、基板上にランタ
ンマンガネート多孔質膜が形成されてマスキングが完成
する。この膜は焼結が弱く、基板との焼結も弱いため、
CVD法やEVD法による成膜が終了した後に、基板か
ら剥すこと(デマスキング)が容易である。
[Operation] After applying the lanthanum manganate powder slurry on the substrate, the temperature is raised to 900 to 1,050 ° C.
Extremely weak sintering occurs between the powder particles, and a lanthanum manganate porous film is formed on the substrate to complete masking. Since this film is weakly sintered and weakly sintered with the substrate,
After the film formation by the CVD method or the EVD method is completed, it is easy to remove (demasking) from the substrate.

【0009】なお、基板の材質は、通常、ランタンマン
ガネート焼結体、ランタンクロムオキサイド、イットリ
ア安定化ジルコニアなどであるが、本発明においてマス
キング材として用いるランタンマンガネートは、従来よ
り固体電解質燃料電池のカソード材料として用いられて
いるものであり、薄膜製造条件下で基板と反応して基板
表面に悪影響を与えることはなく、また、充分な耐熱性
も有する。
The material of the substrate is usually a lanthanum manganate sintered body, lanthanum chromium oxide, yttria-stabilized zirconia or the like. It is used as a cathode material of (1), does not react with the substrate under the conditions of thin film production and does not adversely affect the surface of the substrate, and has sufficient heat resistance.

【0010】[0010]

【実施例】本発明の一実施例を図1に基づいて説明す
る。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described with reference to FIG.

【0011】実施例1 ランタンマンガネートを焼結して形成した円筒状基体管
10の上に、La0. 96Sr0.03CrO3±δ
膜からなるインターコネクター薄膜12を縦縞型に成膜
し(a)、これを基板として用いて、EVD法により、
1,000℃で、イットリア安定化ジルコニア(YS
Z)薄膜からなる電解質薄膜14を成膜した(c)。こ
の成膜を行なう前に、La0.81Sr0.09MnO
3±δ粉末100重量部、ポリビニルアルコール1重量
部および水70重量部からなる水性スラリーを、予めイ
ンターコネクター薄膜12上に塗付しておいたため、E
VD法による成膜の際の昇温により、スラリーが乾燥・
焼結して多孔質のマスキング膜16が形成された
(b)。
Example 1 On a cylindrical substrate tube 10 formed by sintering lanthanum manganate, La 0. An interconnector thin film 12 made of 96 Sr 0.03 CrO 3 ± δ thin film is formed in a vertical stripe pattern (a), and this is used as a substrate by the EVD method.
Yttria-stabilized zirconia (YS
Z) An electrolyte thin film 14 composed of a thin film was formed (c). Before this film formation, La 0.81 Sr 0.09 MnO
Since an aqueous slurry consisting of 100 parts by weight of 3 ± δ powder, 1 part by weight of polyvinyl alcohol and 70 parts by weight of water was previously applied on the interconnector thin film 12, E
The slurry is dried by the temperature rise during film formation by the VD method.
The porous masking film 16 was formed by sintering (b).

【0012】EVD法により電解質薄膜14を成膜した
後に、マスキング膜16を、その上に形成された電解質
薄膜14とともに、容易に剥離することができた
(d)。すなわち、スラリーを塗布しておいた部分に形
成された電解質薄膜14は容易に剥すことができ、マス
キングの目的をはたすことができた。
After the electrolyte thin film 14 was formed by the EVD method, the masking film 16 could be easily peeled off together with the electrolyte thin film 14 formed thereon (d). That is, the electrolyte thin film 14 formed on the portion to which the slurry had been applied could be easily peeled off, and the purpose of masking could be fulfilled.

【0013】マスキング膜16を剥した後のインターコ
ネクター薄膜12の表面をX線マイクロアナライザーで
分析したが、インターコネクターの機能に障害を与える
ようなマスキング材の残留、マスキング材とインターコ
ネクターとの反応、インターコネクターの剥離などはい
ずれも見い出せなかった。
After the masking film 16 was peeled off, the surface of the interconnector thin film 12 was analyzed by an X-ray microanalyzer, and the masking material remained that could impair the function of the interconnector and the reaction between the masking material and the interconnector. No peeling of the interconnector was found.

【0014】なお、本実施例においては、電解質薄膜を
成膜する際に、ランタンマンガネート粉末スラリーを用
いてマスキングしたが、インターコネクター薄膜を成膜
する際に、これを適用することも可能である。その際に
は、基体管10の上にマスキング膜を形成した後に、イ
ンターコネクター薄膜を成膜すればよい。
In this embodiment, the lanthanum manganate powder slurry was used for masking when forming the electrolyte thin film, but this can be applied when forming the interconnector thin film. is there. In that case, after forming a masking film on the substrate tube 10, an interconnector thin film may be formed.

【0015】また、成膜法としては、CVD法も実施で
きる。
Further, as a film forming method, a CVD method can also be carried out.

【0016】[0016]

【発明の効果】本発明の製造方法によれば、基板に密着
したマスキングが可能なだけでなく、容易にマスキング
やデマスキングができるため、CVD法またはEVD法
を用いて固体電解質燃料電池用薄膜を製造するのが容易
になる。また、成膜条件において、本発明で用いるマス
キング材そのものが化学的に安定であるため、マスキン
グ材が基板と反応せず、基板に悪影響を与えない。
According to the manufacturing method of the present invention, not only the masking which is in close contact with the substrate but also the masking and the demasking can be easily carried out. Therefore, the thin film for a solid electrolyte fuel cell using the CVD method or the EVD method. Makes it easier to manufacture. Further, since the masking material itself used in the present invention is chemically stable under the film forming conditions, the masking material does not react with the substrate and does not adversely affect the substrate.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例を略示する工程図である。FIG. 1 is a process diagram schematically showing an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

10 基体管 12 インターコネクター薄膜 14 電解質薄膜 16 マスキング膜 10 Base tube 12 Interconnector thin film 14 Electrolyte thin film 16 Masking film

───────────────────────────────────────────────────── フロントページの続き (72)発明者 一本松 正道 大阪市中央区平野町四丁目1番2号 大阪 瓦斯株式会社内 (72)発明者 梶村 敦子 摂津市香露園22−10−202 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Masamichi Ichimatsu Matsumoto, 4-1-2, Hirano-cho, Chuo-ku, Osaka City, Osaka Gas Co., Ltd. (72) Inventor, Atsuko Kajimura 22-10-202, Kotsuen

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 CVD法またはEVD法を用いて固体電
解質燃料電池用薄膜を製造する方法であって、ランタン
マンガネート粉末スラリーをマスキング材として用いる
ことを特徴とする方法。
1. A method for producing a thin film for a solid electrolyte fuel cell by using a CVD method or an EVD method, wherein a lanthanum manganate powder slurry is used as a masking material.
【請求項2】 CVD法またはEVD法を用いて固体電
解質燃料電池用薄膜を製造する方法であって、予め、基
板上にランタンマンガネート粉末スラリーを塗布し、こ
れを900〜1,050℃で焼結させてマスキングした
後に、前記薄膜を成膜する方法。
2. A method for producing a thin film for a solid oxide fuel cell using a CVD method or an EVD method, which comprises coating a lanthanum manganate powder slurry on a substrate in advance at 900 to 1,050 ° C. A method of forming the thin film after sintering and masking.
JP4099721A 1992-04-20 1992-04-20 Method for producing thin film for solid oxide fuel cell Expired - Lifetime JP2775081B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4099721A JP2775081B2 (en) 1992-04-20 1992-04-20 Method for producing thin film for solid oxide fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4099721A JP2775081B2 (en) 1992-04-20 1992-04-20 Method for producing thin film for solid oxide fuel cell

Publications (2)

Publication Number Publication Date
JPH05299104A true JPH05299104A (en) 1993-11-12
JP2775081B2 JP2775081B2 (en) 1998-07-09

Family

ID=14254942

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4099721A Expired - Lifetime JP2775081B2 (en) 1992-04-20 1992-04-20 Method for producing thin film for solid oxide fuel cell

Country Status (1)

Country Link
JP (1) JP2775081B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005158529A (en) * 2003-11-26 2005-06-16 Kyocera Corp Fuel battery cell, cell stack, and fuel battery
JP2005346991A (en) * 2004-05-31 2005-12-15 Kyocera Corp Solid electrolyte fuel cell cell stack, bundle, fuel cell, and manufacturing method of fuel cell cell stack
JP2010016000A (en) * 2009-09-14 2010-01-21 Kyocera Corp Solid electrolyte fuel battery cell stack, bundle, fuel cell, and manufacturing method of fuel cell stack

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005158529A (en) * 2003-11-26 2005-06-16 Kyocera Corp Fuel battery cell, cell stack, and fuel battery
JP2005346991A (en) * 2004-05-31 2005-12-15 Kyocera Corp Solid electrolyte fuel cell cell stack, bundle, fuel cell, and manufacturing method of fuel cell cell stack
JP2010016000A (en) * 2009-09-14 2010-01-21 Kyocera Corp Solid electrolyte fuel battery cell stack, bundle, fuel cell, and manufacturing method of fuel cell stack

Also Published As

Publication number Publication date
JP2775081B2 (en) 1998-07-09

Similar Documents

Publication Publication Date Title
Mizusaki et al. Preparation of Nickel Pattern Electrodes on YSZ and Their Electrochemical Properties in H 2‐H 2 O Atmospheres
Will et al. Fabrication of thin electrolytes for second-generation solid oxide fuel cells
US6383556B2 (en) Method for forming a membrane electrode diffusion assembly for use in an ion exchange membrane fuel cell
CA2045770A1 (en) Solid oxide electrochemical cell fabrication process
JPH06103990A (en) Solid electrolytic type fuel cell and manufacture thereof
JPH04332474A (en) Method of forming electronic conductive composite layer onto base material of device containing solid electrolyte
JP2706197B2 (en) Method of forming ceramic thin film
KR910019277A (en) Method of bonding the connection layer on the electrode of the battery
JPH04237958A (en) Method of joining conductive interconnecting layer to electrode for electrochemical type battery
JP2775081B2 (en) Method for producing thin film for solid oxide fuel cell
JP3064087B2 (en) Manufacturing method of solid electrolyte cell
JPH04324251A (en) Manufacture of interconnector for solid electrolyte fuel cell
JP2011165652A (en) Method of manufacturing interconnector for fuel cell, and interconnector for fuel cell
Bai et al. The process, structure and performance of pen cells for the intermediate temperature SOFCs
JPH09266000A (en) Solid electrolyte type fuel cell and its manufacture
JP3310867B2 (en) Manufacturing method of cylindrical horizontal stripe type solid electrolyte fuel cell
JP3220314B2 (en) Method for producing YSZ film integrated with porous substrate
JPH07320757A (en) Solid electrolytic fuel cell interconnector, and its manufacture
JP3131077B2 (en) Manufacturing method of metal oxide film
JP2004511072A (en) Electrochemical cell and method of manufacturing the same
JPH1040933A (en) Anode film forming method in fuel cell
JPH07316819A (en) Production of metal oxide film
JPH06176772A (en) Formation of component film of solid electrolytic fuel cell, jig used therefor and solid electrolytic fuel cell
CA2070907A1 (en) Method for preparing anode for solid oxide fuel cells
JPH05174832A (en) Fuel electrode for high temperature solid electrolyte type fuel cell