JPH052974A - Electrostatic relay - Google Patents

Electrostatic relay

Info

Publication number
JPH052974A
JPH052974A JP15192091A JP15192091A JPH052974A JP H052974 A JPH052974 A JP H052974A JP 15192091 A JP15192091 A JP 15192091A JP 15192091 A JP15192091 A JP 15192091A JP H052974 A JPH052974 A JP H052974A
Authority
JP
Japan
Prior art keywords
movable
fixed
movable plate
drive electrode
contact
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP15192091A
Other languages
Japanese (ja)
Other versions
JP2892525B2 (en
Inventor
Atsushi Sakai
淳 阪井
Koichi Aizawa
浩一 相澤
Keiji Kakinote
啓治 柿手
Hiromi Nishimura
広海 西村
Fumihiro Kasano
文宏 笠野
Takayoshi Awai
崇善 粟井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP3151920A priority Critical patent/JP2892525B2/en
Priority to CA002072199A priority patent/CA2072199C/en
Priority to US07/903,077 priority patent/US5278368A/en
Priority to DE69212726T priority patent/DE69212726T2/en
Priority to EP92110639A priority patent/EP0520407B1/en
Publication of JPH052974A publication Critical patent/JPH052974A/en
Application granted granted Critical
Publication of JP2892525B2 publication Critical patent/JP2892525B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H59/00Electrostatic relays; Electro-adhesion relays
    • H01H2059/009Electrostatic relays; Electro-adhesion relays using permanently polarised dielectric layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H59/00Electrostatic relays; Electro-adhesion relays
    • H01H59/0009Electrostatic relays; Electro-adhesion relays making use of micromechanics

Landscapes

  • Micromachines (AREA)

Abstract

PURPOSE:To accomplish an electrostatic relay with higher possibility of practical application, which presents a good large electrostatic power when a driving voltage is impressed and with which it is easy to take a variety of modes. CONSTITUTION:An electrostatic relay concerned is equipped with a stationary side base 2a. which has a stationary contact 21 and a stationary side driving electrode 11, and a movable plate 13 having a movable contact 22 and a movable side driving electrode, wherein cantilever supporting is made so that displacement in the direction of approaching and separating is possible in the condition that the movable plate 13 confronts the stationary side base 2a. The stationary contact 21 is positioned facing the movable contact 22, and the stationary side driving electrode 11 positioned facing the movable side driving electrode, and electrets 8, 9 having different polarities are installed ahead of both sides of the movable plate 13, which is thus displaced with impression of a voltage on the driving electrodes.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、静電力(クーロン
力)を利用して接点の接離を行う静電リレーに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electrostatic relay that uses electrostatic force (Coulomb force) to contact and separate contacts.

【0002】[0002]

【従来の技術】図8および図9は、それぞれ、従来の静
電リレーをあらわす。これら従来の静電リレーには、駆
動電圧印加時の静電力が十分でないという問題がある。
図8の静電リレー150は、固定側駆動電極を兼ねる固
定側基体151,151と可動側駆動電極でもある可動
板152とを備え、可動板152が固定側基体151に
対面した状態で接点が接離する変位が可能なように片端
で支持(片持支持)されている。そして、固定側基体1
51の表面には固定接点153が設けられ、可動板15
2には固定接点153に対面する位置に可動接点154
が設けられていて、固定側基体151と可動板152の
間への駆動電圧印加により生ずる静電力で可動接点15
4と固定接点153が接離するようになっている。
2. Description of the Related Art FIGS. 8 and 9 each show a conventional electrostatic relay. These conventional electrostatic relays have a problem that the electrostatic force when a drive voltage is applied is not sufficient.
The electrostatic relay 150 shown in FIG. 8 includes fixed-side bases 151 and 151 that also serve as fixed-side drive electrodes and a movable plate 152 that is also a movable-side drive electrode. When the movable plate 152 faces the fixed-side base 151, the contacts are It is supported at one end (cantilevered support) so that it can be displaced toward and away from it. Then, the fixed side substrate 1
A fixed contact 153 is provided on the surface of the movable plate 15
2 has a movable contact 154 at a position facing the fixed contact 153.
Is provided, and the movable contact 15 is moved by an electrostatic force generated by applying a driving voltage between the fixed-side base body 151 and the movable plate 152.
4 and the fixed contact 153 come into contact with and separate from each other.

【0003】この静電リレー150では可動板152に
エレクトレットを用い静電力を確保しようとしているの
であるが、片持支持式可動板152に適切な変位を生起
させるだけの必要かつ十分な静電力がなかなか得られ
ず、実用性は今ひとつである。図9の静電リレー160
は、固定接点171および固定側駆動電極172を有す
る固定側絶縁基体161と、可動接点173および可動
側駆動電極機能を有する可動板162とを備え、この可
動板162が固定側絶縁基体161に対し対面した状態
でシーソー運動可能に枠部163に支持され、可動接点
173は固定接点171と対面するとともに、シーソー
運動の支点165の両側において固定側駆動電極172
と可動側駆動電極である可動板162とが対面してお
り、両駆動電極への電圧印加により可動板162のシー
ソー運動が生起し接点171,173の接離がなされる
ようになっている。
In this electrostatic relay 150, an electret is used for the movable plate 152 in order to secure an electrostatic force, but an electrostatic force necessary and sufficient to cause an appropriate displacement in the cantilever support type movable plate 152. It is difficult to obtain, and its practicality is not good enough. The electrostatic relay 160 of FIG.
Comprises a fixed-side insulating base 161 having a fixed contact 171 and a fixed-side drive electrode 172, and a movable plate 162 having a movable contact 173 and a movable-side drive electrode function. The movable contact 173 faces the fixed contact 171 while being supported by the frame portion 163 so that the seesaw can move in a face-to-face state, and the fixed-side drive electrodes 172 are provided on both sides of the fulcrum 165 of the seesaw movement.
The movable plate 162, which is the movable side drive electrode, faces each other, and the seesaw motion of the movable plate 162 is generated by the voltage application to both drive electrodes, so that the contacts 171 and 173 are brought into contact with and separated from each other.

【0004】しかしながら、適切な変位を生起させるだ
けの必要かつ十分な静電力がなかなか確保できない。駆
動電圧を上げれば静電力が強まるが、接点間の距離が余
り大きくとれないため駆動電圧を上げるには限度がある
し使い難もなり、実用性が失われる。接点間の距離を縮
めても静電力が強まるが、接点間の耐圧が低下するた
め、やはり実用性が失われる。
However, it is difficult to secure a necessary and sufficient electrostatic force for causing an appropriate displacement. If the drive voltage is increased, the electrostatic force will be strengthened, but since the distance between the contacts cannot be made too large, there is a limit to increase the drive voltage and it becomes difficult to use, and the practicality is lost. Even if the distance between the contacts is shortened, the electrostatic force is strengthened, but the withstand voltage between the contacts is reduced, so that the practicality is lost.

【0005】また、リレーの場合、いわゆるシングルモ
ード(詳しくは後述)やダブルモード(詳しくは後述)
などの形態が取れると利用性が高まる。しかし、図8の
静電リレーではシングルモードが取り難く、図9の静電
リレーはシングルモードもダブルモードも取り難い。
In the case of relays, so-called single mode (details will be described later) and double mode (details will be described later).
If you take such forms, the usability will increase. However, the electrostatic relay of FIG. 8 is difficult to take the single mode, and the electrostatic relay of FIG. 9 is difficult to take the single mode and the double mode.

【0006】[0006]

【発明が解決しようとする課題】この発明は、前記事情
に鑑み、駆動電圧印加時の静電力が十分強くて多種のモ
ードが取り易い実用性の高い静電リレーを提供すること
を課題とする。
SUMMARY OF THE INVENTION In view of the above circumstances, it is an object of the present invention to provide a highly practical electrostatic relay which has a sufficiently strong electrostatic force when a driving voltage is applied and can easily take various modes. .

【0007】[0007]

【課題を解決するための手段】前記課題を解決するた
め、請求項1〜6記載の発明にかかる静電リレーは、固
定接点および固定側駆動電極を有する固定側基体と、可
動接点および可動側駆動電極を有する可動板を備え、こ
の可動板が前記固定側基体に対面した状態で接近離反方
向の変位が可能なように片端で支持され、前記固定接点
が可動接点と対面するとともに固定側駆動電極が可動側
駆動電極と対面しており、かつ、前記可動板の両側前方
には異なる極性のエレクトレットがそれぞれ対向配置さ
れていて、前記駆動電極への電圧印加により前記可動板
の変位が生起するという構成をとっている。
In order to solve the above-mentioned problems, an electrostatic relay according to the present invention has a fixed base body having a fixed contact and a fixed side drive electrode, a movable contact and a movable side. A movable plate having a drive electrode is provided, and the movable plate is supported at one end so that it can be displaced in the approaching and separating direction while facing the fixed-side base body, and the fixed contact faces the movable contact and drives the fixed side. Electrodes face the movable-side drive electrode, and electrets of different polarities are arranged opposite to each other on the front side of the movable plate, and displacement of the movable plate occurs due to voltage application to the drive electrode. It takes the structure.

【0008】以下、この発明を具体的に説明する。普
通、固定側駆動電極は、請求項2のように、可動板の両
側にそれぞれ配置されており、この場合、各エレクトレ
ットは各固定側駆動電極の上にそれぞれ設けられてい
る。可動側においては、可動板が導電性材料で出来てい
れば、請求項3のように、可動板に可動側駆動電極を兼
ねさせることができるが、この場合は、可動板の表面に
絶縁膜を設けて、この絶縁膜の上に可動接点を形成する
ようにする。勿論、可動側駆動電極は可動接点と同様に
絶縁膜の上に別に形成するようにしてもよい。この場合
は可動板は絶縁材料で出来ていてもよい。
The present invention will be specifically described below. Usually, the fixed side drive electrodes are arranged on both sides of the movable plate, respectively, and in this case, each electret is provided on each fixed side drive electrode. On the movable side, if the movable plate is made of a conductive material, the movable plate can also serve as the movable side drive electrode as in claim 3, but in this case, an insulating film is formed on the surface of the movable plate. To form a movable contact on the insulating film. Of course, the movable side drive electrode may be separately formed on the insulating film similarly to the movable contact. In this case, the movable plate may be made of an insulating material.

【0009】固定側においては、請求項4のように、固
定側基体の表面には絶縁膜を設け、この絶縁膜の上に固
定側駆動電極と固定接点を形成するか、あるいは、固定
側基体が導電性材料で出来ていれば、基体の一部または
全部を使って固定側基体自体に固定側駆動電極を形成す
るとともに固定側基体の表面には絶縁膜を設け、この絶
縁膜の上に固定接点を形成するようにしてもよい。
On the fixed side, as in claim 4, an insulating film is provided on the surface of the fixed side substrate, and the fixed side drive electrode and the fixed contact are formed on the insulating film, or the fixed side substrate is formed. If is made of a conductive material, a fixed side drive electrode is formed on the fixed side base itself using part or all of the base, and an insulating film is provided on the surface of the fixed side base. You may make it form a fixed contact.

【0010】静電リレーの場合は、駆動電圧の印加によ
り駆動電極間に電荷が蓄積されるが、可動板を別の状態
に素早く移行させるには前記印加電圧を除いた時に電荷
を直ちに放電させる必要があり、この場合には放電回路
が必要になる。また、通常の電子回路では制御用の信号
電圧は数V〜十数Vであるのに対し、静電リレーの駆動
電圧は数十V程度であるため、数V〜十数Vの信号電圧
を使おうとすると数十V程度に昇圧する昇圧回路がリレ
ーの前段に必要となる。
In the case of an electrostatic relay, electric charges are accumulated between the driving electrodes by applying a driving voltage, but in order to quickly shift the movable plate to another state, the electric charges are immediately discharged when the applied voltage is removed. It is necessary, and in this case a discharge circuit is required. In addition, while the signal voltage for control is several V to several tens of V in a normal electronic circuit, the drive voltage of the electrostatic relay is about several tens of V, so a signal voltage of several V to several tens V is applied. If it is going to be used, a booster circuit for boosting the voltage to about several tens of V is required in the front stage of the relay.

【0011】そのため、請求項5のように、例えば、固
定側基体に駆動用回路部を設けておくことは非常に有用
である。駆動用回路部は放電回路と昇圧回路の両方を全
て備えている必要はなく、いずれか一方の回路の全部ま
たは一部を備えるだけであってもよい。また、駆動用回
路部は固定側に限らず可動側、あるいは、可動側と固定
側の両方にまたがって設けられていてもよい。
Therefore, it is very useful, for example, to provide a driving circuit portion on the fixed side base as in claim 5. The driving circuit section does not have to include both the discharging circuit and the boosting circuit, and may include all or part of either one of the circuits. The driving circuit unit may be provided not only on the fixed side but also on the movable side, or on both the movable side and the fixed side.

【0012】また、静電リレーの場合、様々なモードが
ある。例えば、可動板の両側前方に固定接点があって、
駆動電圧を印加しない状態では両側の両接点とも接触し
ておらず駆動電圧印加時だけいずれかの固定接点に可動
接点が接触するという形態の他、請求項6のように、駆
動電圧非印加(安定状態)時は可動板が一方の側のエレ
クトレットに引きつけられていて、駆動電圧印加中だけ
可動板が他方のエレクトレットに引きつけられている形
態(単安定のシングルモード)や、さらには、定常状態
では一方の側の可動接点と固定接点が接触したラッチ状
態にあり、駆動電極への電圧印加により他方の側の可動
接点と固定接点が接触したラッチ状態に切り替わる形態
(双安定のダブルモード)などがある。
Further, in the case of the electrostatic relay, there are various modes. For example, there are fixed contacts on both sides of the movable plate,
In the state where the drive voltage is not applied, neither contact on both sides is in contact with the movable contact but only one of the fixed contacts is applied when the drive voltage is applied. In the stable state, the movable plate is attracted to one of the electrets, and the movable plate is attracted to the other electret only while the drive voltage is applied (monostable single mode), or even in the steady state. In the latched state where the movable contact and the fixed contact on one side are in contact with each other, and the state is switched to the latched state where the movable contact and the fixed contact on the other side are contacted by the voltage application to the drive electrode (bistable double mode), etc. There is.

【0013】この発明において用いられる異なる極性の
エレクトレットとしては、互いに逆方向に永久的に分極
しているもの、あるいは、互いに逆極性の電荷を実質的
に永久に有しているもの等が挙げられる。固定側基体や
可動板用基体には、シリコン単結晶基板等の半導体基板
を用いることができる。
Examples of electrets of different polarities used in the present invention include ones that are permanently polarized in opposite directions, ones that have substantially permanent charges of opposite polarities, and the like. . A semiconductor substrate such as a silicon single crystal substrate can be used for the fixed-side substrate and the movable plate substrate.

【0014】可動側については、シリコン単結晶基板の
表裏両面に所定のパターンのマスクを設け、異方性エッ
チングを施すことにより、可動側電極を兼ねた可動板を
有する可動側基体を作ることができる。固定側について
は、シリコン単結晶基板の表面に絶縁膜を形成し、その
上に固定接点や固定側駆動電極(さらにはエレクトレッ
ト)を設けたりするが、シリコン単結晶基板であれば駆
動用回路部を構成するトランジスタ、ダイオード等の半
導体素子や抵抗、コンデンサ等のインピーダス素子が容
易に作り込めるし、高濃度ドーピング層(普通は基板と
逆導電型の不純物高濃度領域)を形成し、これを固定側
駆動電極として利用することもできる。
On the movable side, masks having a predetermined pattern are provided on both front and back surfaces of the silicon single crystal substrate, and anisotropic etching is performed to form a movable side substrate having a movable plate also serving as a movable side electrode. it can. On the fixed side, an insulating film is formed on the surface of the silicon single crystal substrate, and fixed contacts and fixed side drive electrodes (further electrets) are provided on it. Semiconductor elements such as transistors, diodes, etc., and impedance elements such as resistors, capacitors, etc. that compose the above can be easily created, and a high-concentration doping layer (usually an impurity high-concentration region of the opposite conductivity type to the substrate) is formed and It can also be used as a fixed side drive electrode.

【0015】また、可動側基体や固定側基体の複数個分
の面積をもつシリコン単結晶ウエハ(半導体ウエハ)を
利用して、同時に複数個分の加工を行い、分断して複数
個の可動側基体や固定側基体を同時に得るようにするこ
ともできる。さらには、複数個分の可動側基体を形成し
たシリコン単結晶ウエハの上下に、複数個分の固定側基
体を形成したシリコン単結晶ウエハを接合してから、個
別に分断するようにすれば非常に効率よく製造できるこ
ととなる。
Further, a silicon single crystal wafer (semiconductor wafer) having an area for a plurality of movable bases and fixed bases is used to simultaneously process a plurality of wafers and divide them into a plurality of movable wafers. It is also possible to obtain the substrate and the fixed-side substrate at the same time. Furthermore, it is very effective to bond the silicon single crystal wafers having a plurality of fixed-side substrates formed thereon to the upper and lower sides of the silicon single crystal wafer having the plurality of movable-side substrates formed, and then separate the wafers individually. It can be manufactured efficiently.

【0016】上記のシリコン単結晶ウエハの加工には通
常の半導体装置製造で使われている微細加工技術やフォ
トリソグラフィ技術が応用できるため、非常に小型のも
のが大量かつ容易に作れるため、安価なものが量産でき
ることになる。
The above-described silicon single crystal wafer can be processed by applying the microfabrication technology and photolithography technology used in ordinary semiconductor device manufacturing. Therefore, very small ones can be mass-produced easily and inexpensively. Things can be mass-produced.

【0017】[0017]

【作用】この発明の静電リレーは、可動側駆動電極の両
側にエレクトレットが配されているため、駆動電圧印加
時、必要かつ十分な静電力を確保することができる。極
性の異なるエレクトレットが協同して可動板を移動させ
る静電力を生じるからである。つまり、極性の異なるエ
レクトレットの一方が反発力を与え、他方が吸引力を与
え、同じ方向に可動板を変位させるように働くのであ
る。
In the electrostatic relay according to the present invention, since the electrets are arranged on both sides of the movable side driving electrode, a necessary and sufficient electrostatic force can be secured when the driving voltage is applied. This is because electrets having different polarities cooperatively generate an electrostatic force that moves the movable plate. That is, one of the electrets having different polarities exerts a repulsive force and the other one exerts a suction force, so that the movable plate is displaced in the same direction.

【0018】エレクトレットの場合、小さくて十分に強
力なものがあるため、駆動電圧を高くしたり、あるい
は、接点間のギャップを小さくせずとも、極性の異なる
ものを使うだけで強力な静電力を発生させられるため
に、現実的であって非常に実用性が高くなる。また、こ
の発明の静電リレーは可動板が片端で支持(片持支持)
された構造であり、図9の従来例の如き可動板が中央支
持でシーソ運動する構造に比べて、構成が簡潔で小型化
が図り易いとい利点もある。
Since some electrets are small and sufficiently strong, a strong electrostatic force can be obtained by simply using different polarities without increasing the driving voltage or reducing the gap between the contacts. Since it is generated, it is realistic and highly practical. Further, in the electrostatic relay of the present invention, the movable plate is supported at one end (cantilever support).
This structure is advantageous in that the structure is simple and the size can be easily reduced, as compared with the structure in which the movable plate performs the seesaw motion with the central support as in the conventional example of FIG.

【0019】続いて、様々なモードが容易にとれる点に
ついて説明する。図6は、可動側駆動電極の両側に配さ
れた固定側駆動電極の上の極性の異なるエレクトレット
の一方(+エレクトレット)は可動側駆動電極に面して
いる表面がプラス、他方(−エレクトレット)は可動側
駆動電極に面している表面がマイナスに永久分極してい
て両者のみかけ上の電荷量が同じであるとして、両駆動
電極間の距離(トラベル)と静電力(可動側駆動電極に
かかるトルク)およびバネ負荷の関係をあらわしたもの
である。但し、静電力とバネ負荷によるトルクは逆向き
に作用するが、図6では便宜上同じ向きで図示してあ
る。
Next, the point that various modes can be easily taken will be described. In FIG. 6, one of the electrets (+ electret) having different polarities on the fixed side drive electrodes arranged on both sides of the movable side drive electrode has a positive surface facing the movable side drive electrode, and the other surface (− electret). Assuming that the surface facing the movable side drive electrode is negatively and permanently polarized and the apparent charge amount of both is the same, the distance (travel) between both drive electrodes and the electrostatic force (in the movable side drive electrode This represents the relationship between the torque) and the spring load. However, although the electrostatic force and the torque due to the spring load act in opposite directions, they are illustrated in the same direction for convenience in FIG.

【0020】両駆動電極の電位が等しければ、両駆動電
極が互いに平行の場合、両エレクトレットによる静電力
は0であって可動板は移動せず中立位置を保持してい
る。もし、可動側駆動電極が+エレクトレットの側(上
側)に傾けば、+エレクトレットの静電力が−エレクト
レットの静電力に勝つので可動電極には+エレクトレッ
ト側に傾こうとするトルクが働く。逆に、可動電極が−
エレクトレットの側(下側)に傾けば、−エレクトレッ
トの静電力が+エレクトレットの静電力に勝つので可動
電極には−エレクトレットの側に傾こうとするトルクが
働く。
If the potentials of both drive electrodes are equal, when both drive electrodes are parallel to each other, the electrostatic force by both electrets is 0, and the movable plate does not move and maintains the neutral position. If the movable drive electrode is tilted to the + electret side (upper side), the electrostatic force of the + electret overcomes the electrostatic force of the − electret, and a torque that tends to lean toward the + electret side acts on the movable electrode. On the contrary, the movable electrode
When tilted to the side of the electret (downward), the electrostatic force of the electret overcomes the electrostatic force of the + electret, so that torque acts on the movable electrode to tilt toward the side of the electret.

【0021】可動側駆動電極にプラス電圧がかかれば、
+エレクトレットと可動側駆動電極の間には反発力が、
−エレクトレットと可動側駆動電極の間には吸引力が生
じ、可動板を−エレクトレットの側に傾ける反発力と吸
引力を合わせた強いトルクが可動板にかかることにな
る。可動側駆動電極にマイナス電圧がかかれば、−エレ
クトレットと可動側駆動電極の間には反発力が、+エレ
クトレットと可動側駆動電極の間には吸引力が生じ、可
動板を+エレクトレットの側に傾ける反発力と吸引力を
合わせた強いトルクが可動板にかかることになる。
If a positive voltage is applied to the movable side drive electrode,
+ Repulsive force between the electret and the movable side drive electrode,
-A suction force is generated between the electret and the movable-side drive electrode, and a strong torque that combines the repulsive force that tilts the movable plate toward the electret side and the suction force is applied to the movable plate. If a negative voltage is applied to the movable side drive electrode, a repulsive force is generated between the − electret and the movable side drive electrode, and a suction force is generated between the + electret and the movable side drive electrode, so that the movable plate is moved to the + electret side. A strong torque that combines the repulsive force to tilt and the attractive force is applied to the movable plate.

【0022】一方、可動板を支えているバネ力は平行状
態の中立位置では0、いずれかの側が傾いている場合
は、中立位置へ戻ろうとするトルクが働く。即ち、静電
力とバネ力は互いに逆向きにかかることになる。図6か
らすると、両駆動電極の電位が等しい状態で可動板がい
ずれかのエレクトレットの側に傾いている時、静電力の
方がバネ力より大きくなるように設定しておけば、可動
板はその位置を保持し中立位置へは戻らないことにな
る。例えば、最初、+エレクトレットの(上)側に傾い
た状態から可動側駆動電極にプラス電圧を印加すると+
エレクトレットの側から−エレクトレットの(下)側へ
傾く変位が起こり、プラス電圧を除去しても、この状態
が維持される。可動側駆動電極にマイナス電圧を印加す
ると逆の動作をする。つまり、ダブルモードが可能とな
るのである。
On the other hand, the spring force supporting the movable plate is 0 at the neutral position in the parallel state, and when either side is inclined, a torque acts to return to the neutral position. That is, the electrostatic force and the spring force are applied in opposite directions. From FIG. 6, when the movable plate is tilted toward one of the electrets with the electric potentials of both drive electrodes being equal, if the electrostatic force is set to be larger than the spring force, the movable plate will be It will keep that position and will not return to the neutral position. For example, first, when a positive voltage is applied to the movable side drive electrode from a state where the + electret is tilted to the (up) side, +
Displacement tilting from the side of the electret to the (lower) side of the electret occurs, and this state is maintained even if the positive voltage is removed. The reverse operation occurs when a negative voltage is applied to the movable side drive electrode. In other words, the double mode is possible.

【0023】図7は、異なる極性のエレクトレットにお
いて帯電量の絶対値が異なる(+エレクトレットが大)
場合の両駆動電極間の距離(トラベル)と静電力(可動
側駆動電極にかかるトルク)およびバネ負荷の関係をあ
らわしたものである。但し、静電力とバネ負荷によるト
ルクは逆向きに作用するが、図7でも便宜上同じ向きで
図示してある。
FIG. 7 shows that the electrets having different polarities have different absolute values of the charge amount (+ the electret is large).
In this case, the relationship between the distance (travel) between both drive electrodes, the electrostatic force (torque applied to the movable side drive electrode), and the spring load is shown. However, although the electrostatic force and the torque due to the spring load act in opposite directions, they are shown in the same direction in FIG. 7 for convenience.

【0024】両駆動電極の電位が等しければ、+エレク
トレットによる静電力が大きくなるため、可動側駆動電
極が+エレクトレット側に傾むいた状態で安定してい
る。+エレクトレットの側(上側)に傾いた状態で可動
側駆動電極にプラス電圧を印加すると+エレクトレット
の側から−エレクトレットの側(下側)へ傾く変位が起
こる。そして、印加電圧を除くと、図7に示すようにバ
ネの復元力が大きいため、中立位置を経て再び+エレク
トレット側に傾むいた状態に戻る。つまり、シングルモ
ードが可能となるのである。
If the electric potentials of both drive electrodes are equal, the electrostatic force by the + electret becomes large, so that the movable side drive electrode is stable in a state of being inclined to the + electret side. When a positive voltage is applied to the movable side drive electrode in a state of being tilted to the + electret side (upper side), a displacement that tilts from the + electret side to the − electret side (lower side) occurs. Then, when the applied voltage is removed, the restoring force of the spring is large as shown in FIG. 7, so that the spring returns to the + electret side state after passing through the neutral position. In other words, the single mode is possible.

【0025】[0025]

【実施例】以下、この発明の静電リレーの実施例を説明
する。この発明は、下記の実施例に限らない。図1は実
施例の静電リレーの要部構成をあらわす。図2は、実施
例の静電リレーの下固定側基体をあらわし、図3は、実
施例の静電リレーの可動側基体をあらわす。
Embodiments of the electrostatic relay according to the present invention will be described below. The present invention is not limited to the embodiments described below. FIG. 1 shows a main configuration of an electrostatic relay according to an embodiment. FIG. 2 shows a lower fixed side base body of the electrostatic relay of the embodiment, and FIG. 3 shows a movable side base body of the electrostatic relay of the embodiment.

【0026】静電リレー1は、下固定側基体2aおよび
上固定側基体2bと可動側基体3を備える。上下の固定
側基体2a,2bで可動側基体3を挟むように組付けら
れている。各基体は、いずれもシリコン単結晶基板を用
いている。固定側基体と可動側基体が同一材料である場
合には熱膨張係数が同一であるため、バイメタルのよう
なことはなく温度変化に対し安定である。固定側基体2
と可動側基体3は、金ないし金合金の金属層25、26
で接合され機械的・電気的に結合されている。金属層2
5、26が合わさるように重ね適当な圧力をかけながら
加熱すると金なしい金合金が共晶化して接合されるので
ある。
The electrostatic relay 1 comprises a lower fixed side base body 2a, an upper fixed side base body 2b and a movable side base body 3. The movable base body 3 is assembled so as to be sandwiched between the upper and lower fixed base bodies 2a and 2b. Each base uses a silicon single crystal substrate. When the fixed-side base body and the movable-side base body are made of the same material, they have the same thermal expansion coefficient, so that they are stable against temperature changes without being like bimetal. Fixed side base 2
And the movable side substrate 3 are made of metal layers 25, 26 of gold or gold alloy.
Are mechanically and electrically coupled. Metal layer 2
When 5 and 26 are overlapped and heated while applying an appropriate pressure, the gold alloy is eutectic and joined.

【0027】下固定側基体2aは固定接点21および固
定側駆動電極11を有している。固定接点21と固定側
駆動電極11は固定側基体2aの表面の絶縁膜10の上
に形成されている。上固定側基体2bは固定側駆動電極
11を有するだけで固定接点は有していない。固定側駆
動電極11も上固定側基体2bの表面の絶縁膜10の上
に形成されている。
The lower fixed side base body 2a has a fixed contact 21 and a fixed side drive electrode 11. The fixed contact 21 and the fixed side drive electrode 11 are formed on the insulating film 10 on the surface of the fixed side base body 2a. The upper fixed-side base body 2b has only the fixed-side drive electrode 11 and does not have a fixed contact. The fixed side drive electrode 11 is also formed on the insulating film 10 on the surface of the upper fixed side base body 2b.

【0028】一方、可動側基体3は可動側駆動電極を兼
ねる可動板13と支持部(枠部)12とを有し、可動板
13は片端で上下に変位可能となるように支持部12に
支持されている。可動側基体3は、シリコン単結晶基板
に対し周辺部より異方性エッチング等を施し、溝16を
形成したり、可動板13の固定側基体2に臨む領域を接
点ギャップを確保するために窪ませたりすることで作ら
れている。
On the other hand, the movable base 3 has a movable plate 13 which also serves as a movable drive electrode and a support portion (frame portion) 12, and the movable plate 13 is attached to the support portion 12 so as to be vertically displaceable at one end. It is supported. The movable-side substrate 3 is formed by subjecting the silicon single crystal substrate to anisotropic etching or the like from the periphery to form a groove 16 or a recess in the region of the movable plate 13 facing the fixed-side substrate 2 to secure a contact gap. It is made by doing things.

【0029】この可動板13の下側端部には可動接点2
2が絶縁膜14を介して固定接点21と対面する位置に
形成されている。つまり、この静電リレー1では固定接
点21と可動接点22が1組あるだけである。勿論、可
動板13の上側端部に可動接点が、上固定側基体2bに
は固定接点が設けられていて、固定接点と可動接点が2
組あるようであってもよい。
A movable contact 2 is provided at the lower end of the movable plate 13.
2 is formed at a position facing the fixed contact 21 via the insulating film 14. That is, the electrostatic relay 1 has only one set of the fixed contact 21 and the movable contact 22. Of course, a movable contact is provided on the upper end of the movable plate 13, and a fixed contact is provided on the upper fixed side base body 2b.
There may be pairs.

【0030】可動板13自体が兼ねている可動側駆動電
極と固定側駆動電極11も丁度対面するように設けられ
ていて、下の固定側駆動電極11上には−エレクトレッ
ト8が設けられ、上の固定側駆動電極11上には左側に
+エレクトレット9が設けられている。必要な外部との
電気的接続は、可動側基体3が固定側基体2bの一部が
部分的に切り欠かれていて、例えば固定側駆動電極用の
端子11aや可動側駆動電極用の端子29とつながるの
端子28が端にはみ出しているので、ここにワイヤボン
ディグするなどして実現するようにする。上に重ねる基
体の周辺の寸法を小さくして端子を露出させる方法もあ
るが、各基体を先に切り出してから1個づつ接合するこ
とになる。これに対し、実施例の場合、固定側基体が多
数個形成されたウエハと可動側基体が多数個形成された
ウエハを接合分断する形態が取れるため、製造効率が良
い。
The movable side drive electrode and the fixed side drive electrode 11 which are also served by the movable plate 13 are provided so as to face each other, and the electret 8 is provided on the lower fixed side drive electrode 11 and the upper side. A + electret 9 is provided on the left side on the fixed side drive electrode 11. For necessary electrical connection to the outside, the movable side base body 3 is partially cut away in the fixed side base body 2b, and for example, the fixed side drive electrode terminal 11a or the movable side drive electrode terminal 29 is provided. Since the terminal 28 for connecting with is protruding at the end, it is realized by wire bonding here. There is also a method of exposing the terminals by reducing the size of the periphery of the substrate to be overlaid, but each substrate is first cut out and then bonded one by one. On the other hand, in the case of the embodiment, since the wafer in which a large number of fixed-side bases are formed and the wafer in which a large number of movable-side bases are formed are joined and separated, the manufacturing efficiency is good.

【0031】なお、図4は、下固定側基体2aに可動側
基体3を接合した状態を可動側基体3側からみた状態を
あらわし、図5は、さらに、上固定側基体2bを可動側
基体3に接合した状態を上固定側基体2b側からみた状
態をあらわす。また、下固定側基体や上固定側基体がシ
リコン単結晶基板であるから、放電回路と昇圧回路の両
方、あるいは、いずれか一方の回路の全部または一部を
固定側基体に形成することも容易である。例えば、昇圧
回路を内蔵していれば、低い信号電圧で駆動させられ
る。
4 shows a state in which the movable side base body 3 is joined to the lower fixed side base body 2a as viewed from the movable side base body 3 side, and FIG. 5 further shows the upper fixed side base body 2b as a movable side base body. 3 shows a state of being joined to No. 3 as viewed from the upper fixed side base body 2b side. Further, since the lower fixed side base body and the upper fixed side base body are silicon single crystal substrates, it is easy to form both or both of the discharge circuit and the booster circuit on the fixed side base body. Is. For example, if it has a built-in booster circuit, it can be driven with a low signal voltage.

【0032】また、駆動用回路部を作り込む場合、不純
物ドーピング工程があるので、ついでに固定側駆動極用
のドーピング領域36を基体用のシリコン単結晶基板の
表面部分に作り込んでおけば、固定側駆動電極を後で形
成する手間が省ける。
In addition, since the impurity doping step is carried out when the driving circuit portion is formed, if the doping region 36 for the fixed side driving electrode is then formed in the surface portion of the silicon single crystal substrate for the base, the fixed portion is fixed. It is possible to save the trouble of forming the side drive electrode later.

【0033】[0033]

【発明の効果】以上に述べたように、この発明の静電リ
レーは、極性の異なるエレクトレットが配されていて、
駆動電圧印加時、両エレクトレットによる静電力が合わ
さって可動板を移動させるとともに、エレクトレットの
場合は小さくて十分に強力なものがあって、駆動電圧を
高くしたり、あるいは、接点間のギャップを小さくせず
とも、必要かつ十分な静電力を確保することが容易にで
き、さらに、様々なモードを容易にとることができる
し、可動板が中央支持でシーソ運動する構造に比べて、
構成が簡潔で小型化が図り易くもあるから、現実的であ
って非常に実用性が高い。
As described above, in the electrostatic relay of the present invention, electrets having different polarities are arranged,
When a drive voltage is applied, the electrostatic force of both electrets moves to move the movable plate.In the case of an electret, there is a small and sufficiently powerful one that raises the drive voltage or reduces the gap between contacts. Even without doing so, it is possible to easily secure the necessary and sufficient electrostatic force, and it is possible to easily take various modes, and compared with the structure in which the movable plate performs a seesaw motion with central support,
Since the structure is simple and the size can be easily reduced, it is realistic and highly practical.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例の静電リレーの要部構成をあらわす断面
図である。
FIG. 1 is a cross-sectional view showing a configuration of a main part of an electrostatic relay according to an embodiment.

【図2】実施例の静電リレーの下固定側基体を接点形成
面をあらわす平面図である。
FIG. 2 is a plan view showing a contact forming surface of a lower fixed side base body of the electrostatic relay of the embodiment.

【図3】実施例の静電リレーの可動側基体を接点形成面
をあらわす平面図である。
FIG. 3 is a plan view showing a contact forming surface of the movable side base of the electrostatic relay of the embodiment.

【図4】実施例の静電リレーの下固定側基体に可動側基
体を接合した状態を可動側基体側からみた状態をあらわ
す平面図である。
FIG. 4 is a plan view showing a state in which a movable base body is joined to a lower fixed base body of the electrostatic relay according to the embodiment as viewed from the movable base body side.

【図5】実施例の静電リレーの下固定側基体、可動側基
体および上固定側基体を接合した状態を上固定側基体側
からみた状態をあらわす平面図である。
FIG. 5 is a plan view showing a state in which a lower fixed side base body, a movable side base body, and an upper fixed side base body of the electrostatic relay of the embodiment are joined, as viewed from the upper fixed side base body side.

【図6】可動・固定の両駆動電極間の距離と静電力およ
びバネ負荷の関係をあらわすグラフである。
FIG. 6 is a graph showing the relationship between the distance between both movable and fixed drive electrodes and electrostatic force and spring load.

【図7】シングルモード構成における可動・固定の両駆
動電極間の距離と静電力およびバネ負荷の関係をあらわ
すグラフである。
FIG. 7 is a graph showing a relationship between a distance between both movable and fixed drive electrodes and electrostatic force and spring load in a single mode configuration.

【図8】従来の静電リレーの要部構成をあらわす一部破
断斜視図である。
FIG. 8 is a partially cutaway perspective view showing a main part configuration of a conventional electrostatic relay.

【図9】従来の他の静電リレーの要部構成をあらわす分
解斜視図である。
FIG. 9 is an exploded perspective view showing a main part configuration of another conventional electrostatic relay.

【符号の説明】[Explanation of symbols]

1 静電リレー 2a 下固定側基体 2b 上固定側基体 3 可動側基体 8 エレクトレット 9 エレクトレット 11 固定側駆動電極 13 可動板 21 固定接点 22 可動接点 1 electrostatic relay 2a Lower fixed side substrate 2b Upper fixed side substrate 3 Movable side substrate 8 electrets 9 electret 11 Fixed side drive electrode 13 movable plate 21 Fixed contact 22 Moving contact

───────────────────────────────────────────────────── フロントページの続き (72)発明者 西村 広海 大阪府門真市大字門真1048番地松下電工株 式会社内 (72)発明者 笠野 文宏 大阪府門真市大字門真1048番地松下電工株 式会社内 (72)発明者 粟井 崇善 大阪府門真市大字門真1048番地松下電工株 式会社内   ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Hiromi Nishimura             1048, Kadoma, Kadoma-shi, Osaka Matsushita Electric Works Co., Ltd.             Inside the company (72) Inventor Fumihiro Kasano             1048, Kadoma, Kadoma-shi, Osaka Matsushita Electric Works Co., Ltd.             Inside the company (72) Inventor Takayoshi Awai             1048, Kadoma, Kadoma-shi, Osaka Matsushita Electric Works Co., Ltd.             Inside the company

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 固定接点および固定側駆動電極を有する
固定側基体と、可動接点および可動側駆動電極を有する
可動板を備え、この可動板が前記固定側基体に対面した
状態で接近離反方向の変位が可能なように片端で支持さ
れ、前記固定接点が可動接点と対面するとともに固定側
駆動電極が可動側駆動電極と対面しており、かつ、前記
可動板の両側前方には異なる極性のエレクトレットがそ
れぞれ対向配置されていて、前記駆動電極への電圧印加
により前記可動板の変位が生起するようになっている静
電リレー。
1. A fixed-side base having a fixed contact and a fixed-side drive electrode, and a movable plate having a movable contact and a movable-side drive electrode, wherein the movable plate faces the fixed-side base in the approaching and separating directions. The fixed contact is supported at one end so as to be displaceable, the fixed contact faces the movable contact, the fixed side drive electrode faces the movable side drive electrode, and both sides of the movable plate have different polarities on the front side. Are arranged so as to face each other, and the displacement of the movable plate is caused by the voltage application to the drive electrode.
【請求項2】 固定側駆動電極が可動板の両側に配置さ
れていて、各エレクトレットが各固定側駆動電極の上に
それぞれ設けられている請求項1記載の静電リレー。
2. The electrostatic relay according to claim 1, wherein fixed side drive electrodes are arranged on both sides of the movable plate, and each electret is provided on each fixed side drive electrode.
【請求項3】 可動板自体が可動側駆動電極を兼ねてお
り、可動板の表面には絶縁膜が設けられていて、この絶
縁膜の上に可動接点が形成されている請求項1または2
記載の静電リレー。
3. The movable plate itself also serves as a movable side drive electrode, an insulating film is provided on the surface of the movable plate, and a movable contact is formed on the insulating film.
The described electrostatic relay.
【請求項4】 固定側基体の表面には絶縁膜が設けられ
ていて、この絶縁膜の上に固定側駆動電極と固定接点が
形成されている請求項1から3までのいずれかに記載の
静電リレー。
4. The fixed-side substrate is provided with an insulating film on the surface thereof, and the fixed-side drive electrode and the fixed contact are formed on the insulating film. Electrostatic relay.
【請求項5】 固定側基体に駆動用回路部が設けられて
いる請求項1から4までのいずれかに記載の静電リレ
ー。
5. The electrostatic relay according to claim 1, wherein a drive circuit portion is provided on the fixed side base body.
【請求項6】 駆動電圧非印加時は可動板が一方の側の
エレクトレットに引きつけられていて、駆動電圧印加中
だけ前記可動板が他方のエレクトレットに引きつけられ
る請求項1から5までのいずれかに記載の静電リレー。
6. The method according to claim 1, wherein the movable plate is attracted to the electret on one side when the drive voltage is not applied, and the movable plate is attracted to the other electret only while the drive voltage is applied. The described electrostatic relay.
JP3151920A 1991-06-24 1991-06-24 Electrostatic relay Expired - Fee Related JP2892525B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP3151920A JP2892525B2 (en) 1991-06-24 1991-06-24 Electrostatic relay
CA002072199A CA2072199C (en) 1991-06-24 1992-06-23 Electrostatic relay
US07/903,077 US5278368A (en) 1991-06-24 1992-06-23 Electrostatic relay
DE69212726T DE69212726T2 (en) 1991-06-24 1992-06-24 Electrostatic relay
EP92110639A EP0520407B1 (en) 1991-06-24 1992-06-24 Electrostatic relay

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3151920A JP2892525B2 (en) 1991-06-24 1991-06-24 Electrostatic relay

Publications (2)

Publication Number Publication Date
JPH052974A true JPH052974A (en) 1993-01-08
JP2892525B2 JP2892525B2 (en) 1999-05-17

Family

ID=15529092

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3151920A Expired - Fee Related JP2892525B2 (en) 1991-06-24 1991-06-24 Electrostatic relay

Country Status (1)

Country Link
JP (1) JP2892525B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009536015A (en) * 2007-06-22 2009-10-01 コリア アドバンスト インスティテュート オブ サイエンス アンド テクノロジー Electrostatic actuator
JP2014056244A (en) * 2013-10-02 2014-03-27 Seiko Epson Corp Electro-optic device and electronic equipment

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58165838U (en) * 1982-04-28 1983-11-04 オムロン株式会社 electrostatic relay
JPS58165839U (en) * 1982-04-28 1983-11-04 オムロン株式会社 electrostatic relay
JPH02100244A (en) * 1988-10-07 1990-04-12 Matsushita Electric Ind Co Ltd Electron beam generating device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58165838U (en) * 1982-04-28 1983-11-04 オムロン株式会社 electrostatic relay
JPS58165839U (en) * 1982-04-28 1983-11-04 オムロン株式会社 electrostatic relay
JPH02100244A (en) * 1988-10-07 1990-04-12 Matsushita Electric Ind Co Ltd Electron beam generating device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009536015A (en) * 2007-06-22 2009-10-01 コリア アドバンスト インスティテュート オブ サイエンス アンド テクノロジー Electrostatic actuator
JP4864141B2 (en) * 2007-06-22 2012-02-01 コリア アドバンスト インスティテュート オブ サイエンス アンド テクノロジー Electrostatic actuator
US8120451B2 (en) 2007-06-22 2012-02-21 Korea Advanced Institute Of Science And Technology Electrostatic actuator
JP2014056244A (en) * 2013-10-02 2014-03-27 Seiko Epson Corp Electro-optic device and electronic equipment

Also Published As

Publication number Publication date
JP2892525B2 (en) 1999-05-17

Similar Documents

Publication Publication Date Title
JPH06223698A (en) Electrostatic driving relay
US5278368A (en) Electrostatic relay
JP2001266727A (en) Micromachine switch
US6828888B2 (en) Micro relay of which movable contact remains separated from ground contact in non-operating state
US6396372B1 (en) Electrostatic micro relay
JP2892525B2 (en) Electrostatic relay
JPH052978A (en) Electrostatic relay
JP3393678B2 (en) Electrostatic relay
JP2892527B2 (en) Electrostatic relay
JP2761123B2 (en) Electrostatic relay
JP4144717B2 (en) Electrostatic relay
WO2011152192A1 (en) Variable capacitance element
JP4804546B2 (en) Micro relay
JP5812096B2 (en) MEMS switch
JPH11176307A (en) Electrostatic microrelay
JP3368304B2 (en) Electrostatic micro relay
JPH04269416A (en) Electrostatic relay and manufacture thereof
JPH11204013A (en) Electrostatic moving contact element and logical operation device
JP3402626B2 (en) Electrostatic drive type relay
JPH04370622A (en) Electrostatic relay
JPH0458429A (en) Electrostatic relay
JPH08287809A (en) Micro relay
JP2864707B2 (en) Switching element
JPH05274953A (en) Electrostatically driven toggle switch
KR100493532B1 (en) Electrostatic bi-directional microelectromechanical actuator

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees