JPH05297350A - Temperature compensating device for liquid crystal optical element - Google Patents

Temperature compensating device for liquid crystal optical element

Info

Publication number
JPH05297350A
JPH05297350A JP12136992A JP12136992A JPH05297350A JP H05297350 A JPH05297350 A JP H05297350A JP 12136992 A JP12136992 A JP 12136992A JP 12136992 A JP12136992 A JP 12136992A JP H05297350 A JPH05297350 A JP H05297350A
Authority
JP
Japan
Prior art keywords
liquid crystal
temperature
optical element
crystal optical
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12136992A
Other languages
Japanese (ja)
Inventor
Koyo Yuasa
公洋 湯浅
Hiroshi Kondo
浩史 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Idemitsu Kosan Co Ltd
Original Assignee
Idemitsu Kosan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Kosan Co Ltd filed Critical Idemitsu Kosan Co Ltd
Priority to JP12136992A priority Critical patent/JPH05297350A/en
Publication of JPH05297350A publication Critical patent/JPH05297350A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To facilitate the use in practical environment by improving the large temperature dependency of the liquid crystal element using a ferroelectric macromolecular liquid crystal material which facilitates an increase in the area of a screen. CONSTITUTION:The temperature of the display part of a liquid crystal panel 12 is detected by a temperature sensor 22. A temperature compensation control circuit 40 in a temperature detection part 20 controls a clock signal generation part 36 or driving reference voltage source 38 according to the detected temperature to supply a driving signal which has pulse width and/or a voltage for holding variation in the display contrast ratio of the liquid crystal panel 12 within 20% to the liquid crystal panel 12 through a signal electrode driver 14 and a scanning electrode driver 16.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、電子機器表示装置など
に利用する液晶表示素子の、表示画像コントラスト比に
おける温度補償を行う液晶光学素子用温度補償装置に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a temperature compensating device for a liquid crystal optical element for compensating the temperature of a display image contrast ratio of a liquid crystal display element used in an electronic device display device or the like.

【0002】[0002]

【従来の技術】近年、強誘電性低分子液晶材料を使用し
た液晶素子はメモリー機能を有し、電界応答がきわめて
高速であることから、この特性を活用する多用途の研究
が行われている。このような機能を備える液晶素子は、
きわめて薄いセルを形成する必要があり、さらに、配向
制御に困難を伴うことから、大面積の液晶素子を作製し
難い。これに対し、強誘電性高分子液晶材料は製膜性、
配向性に優れ、特にプラスチック基板などの可撓性の基
板と組合せることにより、大面積の液晶素子を容易に作
製できる利点がある。
2. Description of the Related Art In recent years, a liquid crystal element using a ferroelectric low molecular weight liquid crystal material has a memory function and has an extremely high electric field response, so that versatile research utilizing this characteristic has been conducted. .. The liquid crystal element having such a function is
Since it is necessary to form an extremely thin cell and it is difficult to control the alignment, it is difficult to manufacture a large-area liquid crystal element. On the other hand, the ferroelectric polymer liquid crystal material has a film-forming property,
There is an advantage that a liquid crystal element having a large area can be easily produced by combining it with a flexible substrate such as a plastic substrate which has excellent orientation.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、強誘電
性高分子液晶材料は、応答時間などの諸特性の温度依存
性が大きく、単一の駆動条件では実用的環境下での使用
が困難であり、この改善が課題となっている。
However, the ferroelectric polymer liquid crystal material has a large temperature dependence of various characteristics such as response time, and it is difficult to use it in a practical environment under a single driving condition. , This improvement is a challenge.

【0004】この課題を改善する例として特開昭63ー
306426号公報に開示された「液晶装置」を挙げる
ことが出来る。この特開昭63ー306426号公報の
「液晶装置」は、ドットマトリクス型強誘電性液晶素子
において、画素部に印加される交流電圧に直流電圧を重
畳して駆動している。そして、この直流電圧値を温度変
化に対応して変化させて、その温度補償を行っている。
ところで、この特開昭63ー306426号における
「液晶装置」では、その温度補償を施す際に、特に温度
依存性が大きな液晶素子を用いた場合、直流電圧成分を
大きく増減しなければならない。このため、長期間の使
用していると液晶材料が劣化したり分解したりすること
がある。
As an example of improving this problem, there is a "liquid crystal device" disclosed in JP-A-63-306426. In the "liquid crystal device" of Japanese Patent Laid-Open No. 63-306426, a dot matrix type ferroelectric liquid crystal element is driven by superimposing a DC voltage on an AC voltage applied to a pixel portion. Then, the DC voltage value is changed in accordance with the temperature change, and the temperature is compensated.
By the way, in the "liquid crystal device" in Japanese Patent Laid-Open No. 63-306426, the DC voltage component must be greatly increased / decreased when the temperature compensation is performed, especially when a liquid crystal element having a large temperature dependency is used. Therefore, the liquid crystal material may be deteriorated or decomposed when it is used for a long time.

【0005】本発明は、上記問題点にかんがみてなされ
たものであり、画面の大面積化が容易な強誘電性高分子
液晶材料を用いた液晶素子における、大きな温度依存性
を改善し、その実用的環境下での使用を容易に行なえる
ようにした液晶光学素子用温度補償装置の提供を目的と
する。
The present invention has been made in view of the above problems, and improves a large temperature dependency in a liquid crystal element using a ferroelectric polymer liquid crystal material which can easily increase the area of a screen. An object of the present invention is to provide a temperature compensating device for a liquid crystal optical element, which can be easily used in a practical environment.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するため
に、本発明の液晶光学素子用温度補償装置は、強誘電性
高分子液晶材料を含有し、電気的、光学的応答時間が1
0℃の温度変化に対して2倍以上変化する液晶組成物を
電極付き基板で挟持した液晶光学素子の温度補償を行う
液晶光学素子用温度補償装置において、液晶光学素子の
表示部の温度を検出する温度検出手段と、検出温度に応
じて液晶光学素子での表示画像コントラスト比の変化を
20%以内に保つパルス幅及び/又は電圧からなる駆動
信号を液晶光学素子に供給する駆動信号生成手段とを備
えた構成としてある。
In order to achieve the above object, a temperature compensating device for a liquid crystal optical element of the present invention contains a ferroelectric polymer liquid crystal material, and has an electrical and optical response time of 1 or less.
In a temperature compensating device for a liquid crystal optical element, the temperature of a display section of the liquid crystal optical element is detected in a temperature compensating device for a liquid crystal optical element in which a liquid crystal composition that is sandwiched between substrates with electrodes has a liquid crystal composition that changes more than twice with respect to a temperature change of 0 ° C. Temperature detecting means, and drive signal generating means for supplying to the liquid crystal optical element a drive signal having a pulse width and / or a voltage for keeping the change of the display image contrast ratio in the liquid crystal optical element within 20% according to the detected temperature. Is provided.

【0007】以下、本発明の液晶光学素子用温度補償装
置の好ましい一態様を図面を参照して説明する。液晶素
子は、配向性、製膜性に優れた強誘電性高分子液晶材料
を含有する液晶組成物を電極付き基板間に挟持して構成
する。特に、可撓性を有するプラスチック基板などと組
合せると製膜、ラミネート、曲げによる配向等の一連の
連続製造法を用いることができ生産性が著しく向上し、
かつ、メートル(m)単位のきわめて大面積の表示液晶
素子を容易に作製することが出来る。強誘電性高分子液
晶材料は、応答時間などの諸特性の温度依存性が大きく
単一の駆動条件では、通常の環境下でも一定以上の表示
品位が得られないことがある。通常、強誘電性高分子液
晶材料を含有する液晶組成物は、電気的、光学的応答時
間が10℃の温度変化に対して2倍〜10倍程度変化
し、従来の低分子液晶に対して行なっている程度の温度
補償では所望の表示品位を得にくい。
A preferred embodiment of the temperature compensating device for a liquid crystal optical element of the present invention will be described below with reference to the drawings. The liquid crystal element is configured by sandwiching a liquid crystal composition containing a ferroelectric polymer liquid crystal material having excellent orientation and film-forming properties between substrates with electrodes. In particular, when combined with a flexible plastic substrate or the like, a series of continuous manufacturing methods such as film forming, laminating and orientation by bending can be used, and productivity is remarkably improved.
In addition, it is possible to easily manufacture a display liquid crystal element having an extremely large area in meters (m). Ferroelectric polymer liquid crystal materials have large temperature dependence of various characteristics such as response time, and under a single driving condition, display quality beyond a certain level may not be obtained even under a normal environment. In general, a liquid crystal composition containing a ferroelectric polymer liquid crystal material has an electrical and optical response time which changes about 2 to 10 times with respect to a temperature change of 10 ° C. It is difficult to obtain the desired display quality with temperature compensation to the extent that it is performed.

【0008】次に、このような温度補償を効果的に行う
ための液晶光学素子用温度補償装置について説明する。
図1は、液晶光学素子用温度補償装置の構成例を示して
いる。図1において、この例は液晶パネルを有する表示
部10と、この表示部10内の液晶パネルの温度を検知
する温度検知部20と、所定の駆動波形を生成して送出
する駆動信号生成部30とで概略構成されている。表示
部10は、液晶パネル12と、周知の信号電極ドライバ
14と走査電極ドライバ16とで構成されている。温度
検知部20は、表示部10の液晶パネル12に接し、あ
るいは近傍に配置されて、この液晶パネル12の温度を
検出する温度センサ22と、液晶パネル12の表示画像
のコントラス比を検出するためのコントラストモニタ2
4とを有している。
Next, a liquid crystal optical element temperature compensating device for effectively performing such temperature compensation will be described.
FIG. 1 shows a configuration example of a temperature compensating device for a liquid crystal optical element. In FIG. 1, this example is a display unit 10 having a liquid crystal panel, a temperature detection unit 20 for detecting the temperature of the liquid crystal panel in the display unit 10, and a drive signal generation unit 30 for generating and transmitting a predetermined drive waveform. It is roughly composed of and. The display unit 10 includes a liquid crystal panel 12, a well-known signal electrode driver 14 and a scan electrode driver 16. The temperature detection unit 20 is arranged in contact with or in the vicinity of the liquid crystal panel 12 of the display unit 10 to detect the temperature sensor 22 for detecting the temperature of the liquid crystal panel 12 and the contrast ratio of the display image on the liquid crystal panel 12. Contrast monitor 2
4 and.

【0009】温度センサ22は、慣用的な温度検知素子
を用いることができ、例えば、サーミスタ、熱電対等を
用いる。このような直接的な温度測定素子の他に、表示
部又は非画像表示部の画素部分の応答時間を電気的又は
光学的に測定する装置、あるいは液晶材料の誘電特性の
温度変化を電気的に検知する装置を用いても良い。駆動
信号生成部30は、表示画像のデータを格納する表示デ
ータ格納部32と、出力パルス幅を決定し、また表示デ
ータ格納部32からの格納データに基づいて表示画像の
内容決定を行う駆動用コントローラ34とを有してい
る。さらに、駆動信号生成部30は、制御により周波
数、すなわち、パルス幅を変更し、そのクロック信号を
出力するクロック信号生成部36と、液晶パネル12の
信号電極ドライバ14と走査電極ドライバ16とに供給
する駆動信号である電圧を出力する駆動用基準電圧源3
8と、温度検知部20からの検出信号に基づいた制御信
号をクロック信号生成部36及び駆動用基準電圧源38
に出力する温度補償制御回路40とが設けられている。
この温度補償制御回路40は、予め温度ごとにコントラ
スト比の変化が20%以内のパルス幅及び/又は電圧を
図示しないメモリーに記憶し、この記憶データを読み出
す、いわゆる、ルックアップテーブル(変換テーブル)
が格納されている。
The temperature sensor 22 can use a conventional temperature detecting element, for example, a thermistor, a thermocouple or the like. In addition to such a direct temperature measuring element, a device that electrically or optically measures the response time of the pixel portion of the display unit or the non-image display unit, or the temperature change of the dielectric property of the liquid crystal material is electrically performed. A detection device may be used. The drive signal generation unit 30 determines a display data storage unit 32 for storing display image data, an output pulse width, and a drive signal determination unit based on the stored data from the display data storage unit 32. And a controller 34. Further, the drive signal generation unit 30 supplies the clock signal generation unit 36 that changes the frequency, that is, the pulse width by control, and outputs the clock signal, the signal electrode driver 14 of the liquid crystal panel 12, and the scan electrode driver 16. Drive reference voltage source 3 for outputting a voltage which is a drive signal for
8 and a control signal based on the detection signal from the temperature detection unit 20 and a clock signal generation unit 36 and a driving reference voltage source 38.
And a temperature compensation control circuit 40 for outputting
The temperature compensation control circuit 40 stores in advance a pulse width and / or voltage in which the change of the contrast ratio is within 20% for each temperature in a memory (not shown) and reads the stored data, that is, a so-called lookup table (conversion table).
Is stored.

【0010】次に、この装置の動作、機能について説明
する。液晶パネル12の信号電極及び走査電極は、信号
電極ドライバ14と走査電極ドライバ16から駆動信号
が、それぞれ供給される。この駆動信号は駆動用コント
ローラ34からのコントロール信号に応じて変化する。
駆動用コントローラ34は、クロック信号生成部36か
らのクロック信号によってパルス幅を決定し、また表示
データ格納部32からの格納データに基づいて表示画像
の内容決定を行う。信号電極ドライバ14及び走査電極
ドライバ16は、駆動用基準電圧源38から液晶パネル
12の駆動電圧が供給される。温度センサ22は、液晶
パネル12の温度を検出し、その温度情報である検出信
号を温度補償制御回路40に送出する。温度補償制御回
路40は、検出信号の値に基づいた補償情報である制御
信号をクロック信号生成部36、駆動用基準電圧源38
に出力する。この場合、温度補償制御回路40は、予め
温度ごとにコントラスト比の変化が20%以内のパルス
幅及び/又は電圧をルックアップテーブルを通じて読み
出して出力する。
Next, the operation and function of this device will be described. Drive signals are supplied to the signal electrodes and the scanning electrodes of the liquid crystal panel 12 from the signal electrode driver 14 and the scanning electrode driver 16, respectively. This drive signal changes according to the control signal from the drive controller 34.
The drive controller 34 determines the pulse width according to the clock signal from the clock signal generator 36, and also determines the content of the display image based on the stored data from the display data storage 32. The drive voltage of the liquid crystal panel 12 is supplied from the drive reference voltage source 38 to the signal electrode driver 14 and the scan electrode driver 16. The temperature sensor 22 detects the temperature of the liquid crystal panel 12 and sends a detection signal, which is the temperature information, to the temperature compensation control circuit 40. The temperature compensation control circuit 40 outputs a control signal, which is compensation information based on the value of the detection signal, to the clock signal generation unit 36 and the driving reference voltage source 38.
Output to. In this case, the temperature compensation control circuit 40 reads out a pulse width and / or a voltage in which the change of the contrast ratio is 20% or less for each temperature in advance through the look-up table and outputs it.

【0011】この温度センサ22での温度検出に代え、
液晶パネル12のコントラスト比の変化を検出し、この
変化結果によっても、駆動信号におけるパルス幅及び/
又は電圧を所定の値に制御出来る。すなわち、フォトセ
ンサなどのコントラストモニタ24で、液晶パネル12
のコントラスト比を測定しながら、そのコントラスト比
の変化が20%以内になる駆動信号であるパルス幅及び
/又は電圧を駆動用コントローラ34、駆動用基準電圧
源38から信号電極ドライバ14及び走査電極ドライバ
16にそれぞれ供給するように温度補償制御回路40を
通じてクロック信号生成部36、駆動用基準電圧源38
の制御を行う。
Instead of the temperature detection by the temperature sensor 22,
The change in the contrast ratio of the liquid crystal panel 12 is detected, and the pulse width and /
Alternatively, the voltage can be controlled to a predetermined value. That is, with the contrast monitor 24 such as a photo sensor,
The pulse width and / or the voltage, which is a drive signal for which the change in the contrast ratio is within 20%, is measured from the drive controller 34 and the drive reference voltage source 38 to the signal electrode driver 14 and the scan electrode driver. 16, a clock signal generator 36 and a driving reference voltage source 38 through a temperature compensation control circuit 40.
Control.

【0012】このように、通常、液晶パネル12の強誘
電性高分子液晶材料における第1の安定状態と第2の安
定状態の間のスイッチングは、例えば、矩形パルスの場
合にはパルスの時間幅(パルス幅)と、その電圧によっ
て定まる閾値以上のパルスが印加された場合に発生す
る。したがって、マトリクス型パネルの場合は、走査電
極と信号電極の支点に位置する画素中の選択画素には閾
値以上、その他の画素には閾値以下のパルスが印加され
るように走査電極と信号電極それぞれに適性なパルスを
印加することによりマルチプレクシング駆動が可能とな
る。
As described above, the switching between the first stable state and the second stable state in the ferroelectric polymer liquid crystal material of the liquid crystal panel 12 is usually performed by, for example, a rectangular pulse in the time width of the pulse. This occurs when a pulse having a (pulse width) and a threshold value determined by the voltage is applied. Therefore, in the case of the matrix type panel, the scan electrode and the signal electrode are respectively applied so that a pulse of a threshold value or more is applied to the selected pixel among the pixels located at the fulcrum of the scan electrode and the signal electrode and a threshold value is applied to the other pixels. Multiplexing drive can be performed by applying a pulse suitable for.

【0013】この走査電極と信号電極それぞれに印加す
る適性なパルスとして、パルス幅もしくは電圧のいずれ
か一方、又は両方を変化させる。すなわち、温度検知部
20で液晶パネル12の温度を検知し、その温度に応じ
て、表示コントラスト比の変化を20%以内に保つよう
に駆動信号生成部30で制御した駆動信号を、液晶パネ
ル12に信号電極ドライバ14と走査電極ドライバ16
を通じて供給する。この場合、強誘電性高分子液晶材料
は、強誘電性低分子液晶材料に比較して温度依存性が大
きいので、好ましくは双方を同時に変化させて温度補償
の範囲を拡大する。実際の表示コントラスト比の変化を
20%以内とすることで実用上差しつかえのない温度補
償が出来る。温度によって20%以上のコントラスト比
変化があるときには目視において大きな変化であると認
識され好ましくない。
As a suitable pulse to be applied to each of the scan electrode and the signal electrode, either the pulse width or the voltage, or both are changed. That is, the temperature detection unit 20 detects the temperature of the liquid crystal panel 12, and according to the temperature, the drive signal generated by the drive signal generation unit 30 is controlled so as to keep the change in the display contrast ratio within 20%. Signal electrode driver 14 and scan electrode driver 16
Supply through. In this case, the ferroelectric polymer liquid crystal material has a greater temperature dependency than the ferroelectric low-molecular liquid crystal material, and therefore both are preferably changed simultaneously to expand the temperature compensation range. By setting the change of the actual display contrast ratio within 20%, it is possible to perform temperature compensation which is practically acceptable. When the contrast ratio changes by 20% or more depending on the temperature, it is not preferable because it is visually recognized as a large change.

【0014】[0014]

【作用】上記構成からなる液晶光学素子用温度補償装置
によれば、検出温度に応じて、液晶光学素子における表
示画像コントラスト比の変化を20%以内に保つパルス
幅及び/又は電圧の駆動信号が液晶光学素子に供給され
る。
According to the temperature compensating device for a liquid crystal optical element having the above-mentioned structure, a drive signal of a pulse width and / or a voltage for keeping the change of the display image contrast ratio in the liquid crystal optical element within 20% according to the detected temperature is generated. It is supplied to the liquid crystal optical element.

【0015】[0015]

【実施例】以下、本発明液晶光学素子用温度補償装置を
実施例によってさらに詳細に説明するが、本発明は、こ
れに限定されるものではない。 実施例1
EXAMPLES The temperature compensating apparatus for liquid crystal optical elements of the present invention will be described in more detail below with reference to examples, but the present invention is not limited thereto. Example 1

【0016】[0016]

【化1】 [Chemical 1]

【0017】上記液晶材料を、25重量%のジクロルメ
タン溶液としてストライプ状にパターニングされたIT
O電極付きポリエーテルスルホン(PES)基板の電極
面にマイクログラビアコーターを用いて塗布製膜し、溶
媒蒸発後何も塗布していない同種の基板とラミネートし
てドットマトリクス型液晶素子を作製した。液晶素子は
5.08mmピッチ(電極幅4.88mm、ギャップ
0.20mm)のドットマトリクス型であり走査線数2
4本、信号電板数72本とした。液晶素子の大きさは約
150mm×400mmである。本液晶素子の測定温度
(℃)に対する応答時間t10-90 を測定したところ下記
表1に示す結果が得られた。 〔表1〕 ────────────────────────────────── 測定温度(℃) 10 20 30 40 ────────────────────────────────── 応答時間 t10-90 12ms 3.1ms 700μs 280μs ────────────────────────────────── この表1の結果に示すように、その温度依存性は大きな
ものである。なお、応答時間t10-90 は液晶素子をクロ
スニコル下に配置し、駆動電圧の±10Vを印加したと
きに、光透過率の変化量が10%から90%へ変化する
までに要した時間として定義した。配向処理は液晶素子
に直流電圧40Vを印加しながら全体に曲げ変形による
剪断を印加し、また室温で行った。
IT in which the above liquid crystal material is patterned in a stripe shape as a 25% by weight dichloromethane solution
A dot-matrix liquid crystal device was produced by coating a film on the electrode surface of a polyether sulfone (PES) substrate with an O electrode using a microgravure coater, and laminating it with a substrate of the same type to which nothing was coated after solvent evaporation. The liquid crystal element is a dot matrix type with a 5.08 mm pitch (electrode width 4.88 mm, gap 0.20 mm), and the number of scanning lines is 2.
The number was 4, and the number of signal boards was 72. The size of the liquid crystal element is about 150 mm × 400 mm. When the response time t 10-90 with respect to the measurement temperature (° C.) of the present liquid crystal element was measured, the results shown in Table 1 below were obtained. [Table 1] ────────────────────────────────── Measurement temperature (℃) 10 20 30 40 40 ─── ─────────────────────────────── Response time t 10-90 12ms 3.1ms 700μs 280μs ─────── ─────────────────────────── As shown in the results in Table 1, the temperature dependence is large. The response time t 10-90 is the time required for the amount of change in light transmittance to change from 10% to 90% when the liquid crystal element is arranged under crossed Nicols and a driving voltage of ± 10 V is applied. Defined as The alignment treatment was performed at room temperature by applying shearing due to bending deformation to the entire liquid crystal element while applying a DC voltage of 40V.

【0018】初めに室温20℃で周知の2パルス、1/
3バイアス法で駆動を行った。図2は、この2パルス、
1/3バイアス法の駆動における信号電極、走査電極へ
の印加電圧波形を示し、図3は、画素部に印加される電
圧の波形例を示している。なお、この装置として図1に
示す液晶光学素子用温度補償装置を用いた。駆動信号に
おける印加電圧を10Vとしたところパルス幅tp=4
msで良好な品位の表示画像が得られ、そのコントラス
ト比は11であった。次に、液晶素子(図1中、液晶パ
ネル12に対応する)を室温10℃から40℃の範囲で
温度を変化させて、液晶素子温度(℃)に対する印加電
圧V、パルス幅tp(ms)、コントラスト比の駆動条
件を求めたところ下記表2に示す結果が得られた。 〔表2〕 ────────────────────────────────── 液晶素子温度(℃) 10 20 30 40 ────────────────────────────────── 印加電圧V (V) 20 10 6 4 ────────────────────────────────── パルス幅tp(ms) 7 4 1.5 0.6 ────────────────────────────────── コントラスト比 9 11 10 10 ──────────────────────────────────
First, well-known 2 pulses at room temperature of 20 ° C., 1 /
It was driven by the 3-bias method. Figure 2 shows these two pulses,
Waveforms of voltage applied to the signal electrodes and scan electrodes in the 1/3 bias method driving are shown, and FIG. 3 shows an example of the waveform of the voltage applied to the pixel portion. The temperature compensating device for liquid crystal optical element shown in FIG. 1 was used as this device. When the applied voltage in the drive signal is 10 V, pulse width tp = 4
A good-quality display image was obtained in ms, and the contrast ratio was 11. Next, the temperature of the liquid crystal element (corresponding to the liquid crystal panel 12 in FIG. 1) is changed in the range of room temperature from 10 ° C. to 40 ° C., and the applied voltage V and the pulse width tp (ms) with respect to the liquid crystal element temperature (° C.). When the driving conditions for the contrast ratio were determined, the results shown in Table 2 below were obtained. [Table 2] ────────────────────────────────── Liquid crystal element temperature (℃) 10 20 30 40 ── ──────────────────────────────── Applied voltage V (V) 20 10 6 4 ───────── ────────────────────────── Pulse width tp (ms) 7 4 1.5 0.6 ─────────── ──────────────────────── Contrast ratio 9 11 10 10 10 ──────────────────── ──────────────

【0019】この表2に示す結果のように、きわめて大
きな温度依存性を示す液晶素子において、印加電圧Vを
変化させることで表示コントラスト比の変化を小さくす
ることができた。次に、液晶素子の背面に熱電対(図1
中、温度センサ22に対応する)を配置し、温度に応じ
た電圧出力をアナログデジタル変換し、予め表2に示す
駆動条件データを格納したメモリ(図1中、表示データ
格納部32に対応する)からこのデジタル出力に応じた
駆動条件を読み出して液晶素子を駆動した。その結果、
液晶素子温度10℃から40℃の範囲ではコントラスト
比は9〜11の範囲でありほぼ一定の良好な品位の表示
画像が得られた。
As can be seen from the results shown in Table 2, in the liquid crystal element exhibiting extremely large temperature dependence, it was possible to reduce the change in the display contrast ratio by changing the applied voltage V. Next, a thermocouple (Fig. 1
(Corresponding to the display data storage unit 32 in FIG. 1) in which the driving condition data shown in Table 2 is stored in advance by arranging the temperature sensor 22) and converting the voltage output according to the temperature into analog-digital. The driving conditions corresponding to the digital output were read out from (1) to drive the liquid crystal element. as a result,
When the liquid crystal element temperature was in the range of 10 ° C. to 40 ° C., the contrast ratio was in the range of 9 to 11, and a substantially constant and good quality display image was obtained.

【0020】[0020]

【発明の効果】以上のように、本発明の液晶光学素子用
温度補償装置によれば、画面の大面積化が容易な強誘電
性高分子液晶材料を用いた液晶素子の、大きな温度依存
性を改善し、実用化を容易に実現できる。
As described above, according to the temperature compensating device for a liquid crystal optical element of the present invention, the large temperature dependence of the liquid crystal element using the ferroelectric polymer liquid crystal material which facilitates the enlargement of the screen area is improved. And can be easily put into practical use.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の液晶光学素子用温度補償装置における
一装置例の構成を示すブロック図である。
FIG. 1 is a block diagram showing a configuration of one example of a temperature compensating device for a liquid crystal optical element of the present invention.

【図2】2パルス、1/3バイアス法の駆動における信
号電極、走査電極に印加する電圧波形図である。
FIG. 2 is a voltage waveform diagram applied to a signal electrode and a scan electrode in the 2-pulse, 1/3 bias method driving.

【図3】液晶素子の画素部に印加される電圧波形図であ
る。
FIG. 3 is a voltage waveform diagram applied to a pixel portion of a liquid crystal element.

【符号の説明】[Explanation of symbols]

10…表示部 12…液晶パネル 14…信号電極ドライバ 16…走査電極ドライバ 20…温度検知部 22…温度センサ 24…コントラストモニタ 30…駆動信号生成部 32…表示データ格納部 34…駆動用コントローラ 36…クロック信号生成部 38…駆動用基準電圧源 40…温度補償制御回路 DESCRIPTION OF SYMBOLS 10 ... Display part 12 ... Liquid crystal panel 14 ... Signal electrode driver 16 ... Scan electrode driver 20 ... Temperature detection part 22 ... Temperature sensor 24 ... Contrast monitor 30 ... Drive signal generation part 32 ... Display data storage part 34 ... Drive controller 36 ... Clock signal generator 38 ... Driving reference voltage source 40 ... Temperature compensation control circuit

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 強誘電性高分子液晶材料を含有し、電気
的、光学的応答時間が10℃の温度変化に対して2倍以
上変化する液晶組成物を電極付き基板で挟持する液晶光
学素子の温度補償を行う液晶光学素子用温度補償装置に
おいて、 前記液晶光学素子の表示部の温度を検出する温度検出手
段と、 前記検出手段で検出した温度に応じて、前記液晶光学素
子における表示画像コントラスト比の変化を20%以内
に保つパルス幅及び/又は電圧の駆動信号を前記液晶光
学素子に供給する駆動信号生成手段と、 を備えることを特徴とした液晶光学素子用温度補償装
置。
1. A liquid crystal optical element comprising a ferroelectric polymer liquid crystal material, and a liquid crystal composition having electrical and optical response times which change by a factor of 2 or more with respect to a temperature change of 10 ° C. is sandwiched between substrates with electrodes. In a temperature compensating device for a liquid crystal optical element for performing temperature compensation, a temperature detecting means for detecting a temperature of a display portion of the liquid crystal optical element, and a display image contrast in the liquid crystal optical element according to the temperature detected by the detecting means. A temperature compensating device for a liquid crystal optical element, comprising: a drive signal generating means for supplying a drive signal having a pulse width and / or a voltage for keeping the change of the ratio within 20% to the liquid crystal optical element.
JP12136992A 1992-04-15 1992-04-15 Temperature compensating device for liquid crystal optical element Pending JPH05297350A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12136992A JPH05297350A (en) 1992-04-15 1992-04-15 Temperature compensating device for liquid crystal optical element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12136992A JPH05297350A (en) 1992-04-15 1992-04-15 Temperature compensating device for liquid crystal optical element

Publications (1)

Publication Number Publication Date
JPH05297350A true JPH05297350A (en) 1993-11-12

Family

ID=14809536

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12136992A Pending JPH05297350A (en) 1992-04-15 1992-04-15 Temperature compensating device for liquid crystal optical element

Country Status (1)

Country Link
JP (1) JPH05297350A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999030206A1 (en) * 1997-12-05 1999-06-17 Citizen Watch Co., Ltd. Liquid crystal device and method for driving the same
US6163360A (en) * 1996-06-24 2000-12-19 Casio Computer Co., Ltd. Liquid crystal display apparatus
KR100359400B1 (en) * 1999-11-05 2002-10-31 세이코 엡슨 가부시키가이샤 Driver IC, electro-optical device and electronic equipment
KR100734311B1 (en) * 2006-02-07 2007-07-02 삼성전자주식회사 Apparatus and method for driving a display panel by compensating temperature
US7345668B2 (en) 2003-07-31 2008-03-18 Seiko Epson Corporation Method of driving liquid crystal panel, liquid crystal device, and electronic apparatus
JP2009069254A (en) * 2007-09-11 2009-04-02 Fujitsu Ltd Liquid crystal display element, its driving method, and electronic paper using it
KR101243797B1 (en) * 2006-06-28 2013-03-18 엘지디스플레이 주식회사 Driving circuit for liquid crystal display device and method for driving the same

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6163360A (en) * 1996-06-24 2000-12-19 Casio Computer Co., Ltd. Liquid crystal display apparatus
WO1999030206A1 (en) * 1997-12-05 1999-06-17 Citizen Watch Co., Ltd. Liquid crystal device and method for driving the same
US6496176B1 (en) 1997-12-05 2002-12-17 Citizen Watch Co., Ltd. Liquid crystal device and method for driving the same
KR100359400B1 (en) * 1999-11-05 2002-10-31 세이코 엡슨 가부시키가이샤 Driver IC, electro-optical device and electronic equipment
US7345668B2 (en) 2003-07-31 2008-03-18 Seiko Epson Corporation Method of driving liquid crystal panel, liquid crystal device, and electronic apparatus
KR100734311B1 (en) * 2006-02-07 2007-07-02 삼성전자주식회사 Apparatus and method for driving a display panel by compensating temperature
KR101243797B1 (en) * 2006-06-28 2013-03-18 엘지디스플레이 주식회사 Driving circuit for liquid crystal display device and method for driving the same
JP2009069254A (en) * 2007-09-11 2009-04-02 Fujitsu Ltd Liquid crystal display element, its driving method, and electronic paper using it
US8279157B2 (en) 2007-09-11 2012-10-02 Fujitsu Limited Liquid crystal display element, method of driving the same, and electronic paper using the same

Similar Documents

Publication Publication Date Title
KR100505924B1 (en) Liquid crystal display and driving method thereof
EP0523796B1 (en) Active matrix display device and its method of operation
US5111319A (en) Drive circuit for providing at least one of the output waveforms having at least four different voltage levels
US4818078A (en) Ferroelectric liquid crystal optical modulation device and driving method therefor for gray scale display
US6930667B1 (en) Liquid crystal panel driving method, liquid crystal device, and electronic apparatus
KR100242478B1 (en) Matrix display device and its operation method
EP0228557A2 (en) Optical modulation device and driving method therefor
JP2000089198A (en) Compensation method for liquid crystal applying voltage of liquid crystal display device, liquid crystal display device and voltage detecting method of electronic device and liquid crystal layer
EP0691639B1 (en) Apparatus and method for driving a ferroelectric liquid crystal panel
US4815823A (en) Electro-optical device with plural low resistive portions on each high resistive electrode
EP0554066B1 (en) A liquid crystal display device and driving circuit for it
JPH05297350A (en) Temperature compensating device for liquid crystal optical element
US6339416B1 (en) Antiferroelectric liquid crystal display and method of driving
EP0614168A1 (en) Electro-optical addressing structure having reduced sensitivity to cross talk
US6072453A (en) Liquid crystal display apparatus
KR100506958B1 (en) LCD display device
US6215533B1 (en) Ferroelectric liquid crystal driving using square wave and non-square wave signals
JP2566149B2 (en) Optical modulator
JP2614220B2 (en) Display device
US6046715A (en) Liquid crystal array device
JPH1184339A (en) Display device
JPH08248394A (en) Liquid crystal display device
JPH0448366B2 (en)
JPH07244268A (en) Plasma address liquid crystal display device
JPH0799415B2 (en) Liquid crystal device