JPH05297209A - Manufacture of unequally spaced diffraction grating - Google Patents

Manufacture of unequally spaced diffraction grating

Info

Publication number
JPH05297209A
JPH05297209A JP10473892A JP10473892A JPH05297209A JP H05297209 A JPH05297209 A JP H05297209A JP 10473892 A JP10473892 A JP 10473892A JP 10473892 A JP10473892 A JP 10473892A JP H05297209 A JPH05297209 A JP H05297209A
Authority
JP
Japan
Prior art keywords
diffraction grating
diffracted light
diffraction
region
grating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP10473892A
Other languages
Japanese (ja)
Inventor
Tetsuya Ishii
哲也 石井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Optical Co Ltd filed Critical Olympus Optical Co Ltd
Priority to JP10473892A priority Critical patent/JPH05297209A/en
Publication of JPH05297209A publication Critical patent/JPH05297209A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Diffracting Gratings Or Hologram Optical Elements (AREA)

Abstract

PURPOSE:To provide an unequal space diffraction grating that has been optimized in the desired diffraction orders respectively in the different regions inside the diffraction grating surface, and whose sectional shape has been formed in sawteeth. CONSTITUTION:In the first process, an unequally spaced diffraction grating (L') having a sawtooth-shaped sectional shape and in which the diffraction efficiency has been optimized with regard to higher order diffracted light is formed. In the second process, the sectional structure is divided by etching while keeping the sawtooth shape in an arbitrary region inside the diffraction grating surface to form a region where the diffraction efficiency of the lower order diffracted light has been optimized and also the desired diffraction angle has been achieved by the diffracted light, so that an unequal space diffraction grating (L) can be obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、鋸歯状の断面形状を有
する不等間隔回折格子の製造方法にかかり、特に回折格
子面内の異なる領域で所望の次数の回折光の回折効率を
最適化した不等間隔回折格子の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing a non-equidistant diffraction grating having a saw-toothed cross-sectional shape, and particularly optimizes the diffraction efficiency of diffracted light of a desired order in different regions in the diffraction grating plane. The present invention relates to a method for manufacturing a non-uniformly spaced diffraction grating.

【0002】[0002]

【従来の技術】回折格子の断面形状を鋸歯状化すること
により回折効率が向上され得ることは従来より知られて
いる。図4は断面形状を鋸歯状に形成し且つレンズ作用
を持つように間隔を調整して回折格子を加工した回折型
レンズの正面図、図5はその略断面図であるが、このよ
うに、レンズの断面形状が完全に鋸歯状の場合、ブレー
ズ条件を満足する波長において100パーセントに近い
回折効率を達成することができる。又、回折型レンズに
レンズ作用を与える場合、同心円の外周付近における回
折角を内周付近の回折角より大きくする必要があるが、
この場合、図5に示す如く、外周付近の領域IIにおける
格子間隔P2が内周付近の領域Iにおける格子間隔P1
より小さくなることが一般的である。
2. Description of the Related Art It is conventionally known that diffraction efficiency can be improved by forming a diffraction grating into a sawtooth cross-sectional shape. FIG. 4 is a front view of a diffractive lens in which the cross-sectional shape is formed in a sawtooth shape and the distance is adjusted so as to have a lens action to process a diffraction grating, and FIG. 5 is a schematic cross-sectional view thereof. When the cross-sectional shape of the lens is completely serrated, a diffraction efficiency close to 100% can be achieved at a wavelength satisfying the blaze condition. Further, when giving a lens effect to the diffractive lens, it is necessary to make the diffraction angle near the outer circumference of the concentric circle larger than the diffraction angle near the inner circumference.
In this case, as shown in FIG. 5, the lattice spacing P2 in the region II near the outer periphery is equal to the lattice spacing P1 in the region I near the inner periphery.
It is generally smaller.

【0003】しかし、実際にこのような回折型レンズを
製造する場合、領域IIにおける格子間隔P2は加工装置
の加工寸法精度に依存するため、この加工精度上の限界
からレンズ設計上の制限が生じていた。この制限は、よ
り高性能な回折型レンズを製造する際の妨げとなってい
た。
However, in the case of actually manufacturing such a diffractive lens, the grating interval P2 in the region II depends on the processing size accuracy of the processing apparatus, and therefore, there is a limit in lens design due to the processing accuracy limit. Was there. This limitation has been an obstacle to manufacturing a higher performance diffractive lens.

【0004】[0004]

【発明が解決しようとする課題】ところで、回折格子の
回折角と格子間隔の関係は、回折格子への入射光線角を
θ,射出光線角をθ′,格子間隔をP,入射光線波長を
λとしたとき、次式(1)で与えられる。 sinθ′−sinθ=mλ/P (1) 但し、mは回折次数(0,±1,±2,・・・)であ
る。この式(1)から、より高次の回折光を利用すれ
ば、低次の回折光を利用した場合の入射光線角θと射出
光線角をθ′の関係と同じ関係が、より広い格子間隔で
得られることがわかる。即ち、より高次の回折光で最適
化された回折格子ほど、回折格子全域に渡って格子間隔
を広くすることができ、上述した設計上の制限が緩和さ
れることを示している。
By the way, the relationship between the diffraction angle of the diffraction grating and the grating spacing is as follows: incident light angle to the diffraction grating is θ, exiting light ray angle is θ ′, grating spacing is P, incident light wavelength is λ. Is given by the following equation (1). sin θ′−sin θ = mλ / P (1) where m is the diffraction order (0, ± 1, ± 2, ...). From this equation (1), if higher order diffracted light is used, the same relationship between the incident ray angle θ and the exit ray angle θ ′ when lower order diffracted light is used has a wider lattice spacing. You can see that it can be obtained with. That is, it is shown that the diffraction grating optimized with higher-order diffracted light can have a wider grating interval over the entire area of the diffraction grating, and the above-mentioned design limitation can be relaxed.

【0005】一方、回折格子の厚さに関しては、例えば
図5に示した如き鋸歯状の断面形状を有する回折格子に
おいて、その格子厚即ち回折格子の表面レリーフ構造の
深さを極めて薄く(浅く)すれば、一定の次数の範囲内
で、回折光の回折効率を次数に関わらず100パーセン
トにすることができる。従って、この次数の範囲内で
は、回折格子を最も高次の回折光で最適化すれば、格子
間隔の広がりにより加工精度上の制限が緩和され、且つ
低次の回折光に対しても最適化され得ることとなり、設
計においてより有利となる。しかし、実際には、高次の
回折光で最適化された回折格子は、格子厚が厚くならざ
るを得ず、従って回折効率は低下する。
On the other hand, regarding the thickness of the diffraction grating, in the diffraction grating having a sawtooth cross-sectional shape as shown in FIG. 5, for example, the thickness of the diffraction grating, that is, the depth of the surface relief structure of the diffraction grating is extremely thin (shallow). Then, the diffraction efficiency of the diffracted light can be set to 100% regardless of the order within a certain order range. Therefore, if the diffraction grating is optimized with the highest order diffracted light within this range of orders, the restriction on processing accuracy will be relaxed due to the spread of the grating spacing, and optimization will also be performed for lower order diffracted light. Can be done, which is more advantageous in design. However, in reality, the diffraction grating optimized for high-order diffracted light has to have a large grating thickness, so that the diffraction efficiency decreases.

【0006】このように、高次の回折光を利用した回折
型レンズには、格子間隔を広くできる長所と格子厚が厚
くなる短所が共存するが、かかる長所を有効に利用し
て、回折型レンズの集光効率を高め且つ設計上の制限を
緩和する方法としては、格子間隔が十分広く加工が用意
な領域においては低次の回折光を利用し、格子間隔が狭
く加工が困難な領域においては高次の回折光を利用する
方法がある。図5を用いてこれを説明すれば、例えば格
子間隔が広いレンズ中心付近の領域Iにおいて1次の回
折光を利用し、格子間隔が狭い外周付近の領域IIにおい
て2次の回折光を利用するようにすれば、領域IIにおけ
る格子間隔は、この領域で1次回折光を利用して最適化
された場合と比較して2倍の間隔で加工され得るので、
製造上の余裕度を向上させることができる。又、領域I
においては1次回折光を利用しているので、この回折型
レンズ全体を2次の回折光で構成した場合よりも、集光
効率を高くすることができる。
As described above, the diffractive lens utilizing the high-order diffracted light has both the advantage that the grating spacing can be widened and the disadvantage that the grating thickness becomes thick. As a method of improving the light-collecting efficiency of the lens and relaxing the design limitation, low-order diffracted light is used in a region where the lattice spacing is sufficiently wide and processing is ready, and in a region where the lattice spacing is narrow and processing is difficult. There is a method of using high-order diffracted light. This will be described with reference to FIG. 5. For example, the first-order diffracted light is used in a region I near the lens center where the grating spacing is wide, and the second-order diffracted light is used in a region II near the outer periphery where the grating spacing is narrow. By doing so, the lattice spacing in the region II can be processed at twice the spacing as compared with the case where it is optimized by using the first-order diffracted light in this region.
It is possible to improve the manufacturing margin. Also, region I
Since the first-order diffracted light is used in (1), the light-collecting efficiency can be made higher than in the case where the entire diffractive lens is configured with the second-order diffracted light.

【0007】このように不等間隔回折格子の一部の領域
で高次の回折光を利用し得るようにすることが有意義で
あるにも関わらず、かかる不等間隔回折格子を実際に製
造する方法は従来なかった。
Although it is significant to make it possible to utilize higher-order diffracted light in a partial region of the non-equidistant diffraction grating as described above, such non-equidistant diffraction grating is actually manufactured. There has never been a method.

【0008】本発明は、従来の技術の有するこのような
問題点に鑑みてなされたものであり、その目的とすると
ころは、回折格子面内の異なる領域において夫々所望の
回折次数で最適化された、断面形状が鋸歯に加工された
不等間隔回折格子を提供することにある。
The present invention has been made in view of the above problems of the prior art, and an object of the present invention is to optimize the desired diffraction orders in different regions in the diffraction grating plane. Another object of the present invention is to provide a non-uniformly spaced diffraction grating having a sawtooth cross section.

【0009】[0009]

【課題を解決するための手段】本発明による不等間隔回
折格子の製造方法は、任意の次数の回折光について、あ
る所定の回折効率を満足するような鋸歯状の断面形状を
有する不等間隔回折格子を形成する第1の工程と、第1
の工程で形成された不等間隔回折格子の任意の領域にお
いて、鋸歯形状を保ったまま断面構造を分割し又は結合
することによって、より低次又は高次の回折光の回折効
率が最適化され、且つ、所望の回折角が該低次又は高次
の回折光で達成された領域を形成する第2の工程とから
成ることを特徴としている。
According to the method of manufacturing an unequal-spaced diffraction grating according to the present invention, unequal-spaced diffraction gratings having a sawtooth-shaped cross section satisfying a predetermined diffraction efficiency for diffracted light of an arbitrary order. A first step of forming a diffraction grating, and a first step
By dividing or combining the cross-sectional structure while maintaining the saw-tooth shape in any region of the non-equidistant diffraction grating formed in the step of d, the diffraction efficiency of lower-order or higher-order diffracted light is optimized. And a second step of forming a region where the desired diffraction angle is achieved by the diffracted light of the low order or the high order.

【0010】又、上記回折格子の断面構造を分割し又は
結合する第2の工程は、回折格子の一部の領域の厚さ
を、エッチングにより減少させ、又は適当な物質を堆積
させて増加させるフォトリソグラフィープロセスである
ことを特徴としている。
The second step of dividing or joining the sectional structure of the diffraction grating is to reduce the thickness of a partial region of the diffraction grating by etching or to increase it by depositing a suitable substance. It is characterized by a photolithography process.

【0011】[0011]

【作用】高次の回折光で回折効率が最適化された不等間
隔回折格子において、格子間隔Pが十分広い領域におけ
る回折効率を向上させるため、この領域で最適化する場
合、光線が回折格子に垂直に入射したときのm次回折光
の回折角θは、前記式(1)より、次式(2)で与えら
れる。 sinθ=mλ/P (2) 又、鋸歯状の断面形状をもった回折格子がm次の回折光
で最適化されているとすると、そのときの格子厚Dは、
次式(3)で与えられる。 D=mλ/(n−1) (3) 但し、nはこの回折格子が形成されている基板の屈折率
である。従って、回折角θを変化させないで1次の回折
光で最適化された領域を形成するためには、式(2),
(3)より、かかる領域の格子間隔Pと格子厚Dを1/
m倍にすればよい。
In order to improve the diffraction efficiency in a region where the grating interval P is sufficiently wide, in a non-equidistant diffraction grating in which the diffraction efficiency is optimized with higher-order diffracted light, when optimizing in this region, the light beam The diffracted angle θ of the m-th order diffracted light when it is incident perpendicularly on is given by the following equation (2) from the above equation (1). sin θ = mλ / P (2) If the diffraction grating having a sawtooth cross-sectional shape is optimized for the m-th order diffracted light, the grating thickness D at that time is
It is given by the following equation (3). D = mλ / (n−1) (3) where n is the refractive index of the substrate on which this diffraction grating is formed. Therefore, in order to form a region optimized by the first-order diffracted light without changing the diffraction angle θ, equation (2),
From (3), the lattice spacing P and the lattice thickness D in this region are 1 /
It may be multiplied by m.

【0012】図1は本発明の原理を説明するための図で
あって、(a)は第1の工程で形成された断面形状が鋸
歯状に加工された不等間隔回折格子の一部の領域を示す
略断面図、(b)はこの回折格子の断面を分割する第2
の工程を示す回折格子の略断面図、(c)は第2の工程
で形成される回折格子の一部の領域を示す略断面図であ
る。図中、L′は第1の工程で形成される回折格子、L
は第2の工程で形成される回折格子、Pは格子間隔、D
は格子厚である。ここで、この回折格子は第1の工程で
3次の回折光で最適化されているとすると、1次の回折
光で最適化された領域を形成するためには、同図(a)
で示す回折格子の1周期分の断面構造を同図(b)に示
すように区切り、同一形状の部位1を鋸歯状の斜面に沿
って3箇所に形成すればよい。このとき、部位1の形状
は同図(a)の1周期分の鋸歯形状を1/3の大きさに
縮小したものに相当する。同図(b)における部位1の
底部2を同一面内に揃えたものが同図(c)であるが、
これは第1の工程で形成された回折格子の格子間隔Pと
格子厚Dをそれぞれ1/3倍にしたものに相当し、上記
式(2),(3)より、このような操作をした領域が回
折角を変化させずに、1次の回折光で最適化されている
ことがわかる。
FIG. 1 is a diagram for explaining the principle of the present invention. FIG. 1A shows a part of a non-equidistant diffraction grating in which the sectional shape formed in the first step is processed into a sawtooth shape. A schematic cross-sectional view showing a region, (b) shows a second cross section of this diffraction grating.
FIG. 3C is a schematic cross-sectional view of the diffraction grating showing the step of, and FIG. 7C is a schematic cross-sectional view showing a partial region of the diffraction grating formed in the second step. In the figure, L'is a diffraction grating formed in the first step, L '
Is the diffraction grating formed in the second step, P is the grating spacing, and D is
Is the grid thickness. Here, assuming that this diffraction grating is optimized by the diffracted light of the third order in the first step, in order to form an area optimized by the diffracted light of the first order, FIG.
The sectional structure of one period of the diffraction grating shown in (1) is divided as shown in FIG. 2B, and the portions 1 having the same shape may be formed at three locations along the serrated slope. At this time, the shape of the portion 1 corresponds to the sawtooth shape for one cycle shown in FIG. The bottom portion 2 of the portion 1 in FIG. 2B is arranged in the same plane as shown in FIG.
This corresponds to the grating pitch P and the grating thickness D of the diffraction grating formed in the first step multiplied by 1/3, respectively, and such an operation was performed from the above equations (2) and (3). It can be seen that the region is optimized by the first-order diffracted light without changing the diffraction angle.

【0013】又、同図(a)乃至(c)の逆の過程によ
り、即ち隣接する格子の鋸歯状の斜面を結合することに
より、低次の回折光で最適化された,例えば回折格子の
外周付近の領域を、回折角を変化させることなく、より
高次の回折光で最適化させることができる。
Also, by the reverse process of FIGS. 9A to 9C, that is, by combining the sawtooth slopes of the adjacent gratings, for example, a diffraction grating optimized for low-order diffracted light. The region near the outer periphery can be optimized by higher-order diffracted light without changing the diffraction angle.

【0014】[0014]

【実施例】以下、本発明の実施例を図面に基づいて説明
する。第1実施例 図2は、第1実施例により不等間隔の回折格子で成る回
折型レンズが形成される工程を示した回折格子の略断面
図である。本実施例の回折型レンズは、格子間隔の広い
中心付近の領域Iにおいては1次の回折光を利用し、格
子間隔の狭い外周付近の領域IIにおいては2次の回折光
を利用しようとするものである。
Embodiments of the present invention will be described below with reference to the drawings. First Embodiment FIG. 2 is a schematic cross-sectional view of a diffraction grating showing a step of forming a diffraction lens composed of diffraction gratings of unequal intervals according to the first embodiment. The diffractive lens of the present embodiment attempts to use the first-order diffracted light in the region I near the center with a wide lattice spacing and the second-order diffracted light in the region II near the outer periphery with a narrow lattice spacing. It is a thing.

【0015】先ず、同図(a)に示すように2次の回折
光について回折効率が最適化された鋸歯状の断面形状を
有する回折型レンズL′をガラス基板上に形成する。図
中、2dは格子厚を示している。このように断面形状を
鋸歯形状に加工する方法としては、例えば特開平3−1
20501号公報で開示されているように、機械加工や
収束ビームによる加工等の公知の方法を利用すればよ
い。
First, as shown in FIG. 1A, a diffractive lens L'having a sawtooth cross-section whose diffraction efficiency is optimized for the second-order diffracted light is formed on a glass substrate. In the figure, 2d indicates the grating thickness. As a method of processing the cross-sectional shape into a sawtooth shape in this manner, for example, Japanese Patent Laid-Open No. 3-1
As disclosed in Japanese Patent No. 20501, a known method such as machining or machining with a convergent beam may be used.

【0016】2次の回折光で最適化された回折型レンズ
の一部の領域に、1次の回折光で最適化された領域を形
成するためには、その領域において格子厚と格子間隔を
夫々1/2倍すればよく、これをフォトリソグラフィー
の手法により実現する。即ち、同図(a)で示した回折
格子表面にフォトレジスト3を塗布し、1次の回折光で
最適化させる領域Iのみに、同図(b)で示すように下
地のパターンと同周期でデューティー比が1:1のバイ
ナリーパターンを形成する。
In order to form a region optimized by the first-order diffracted light in a partial region of the diffractive lens optimized by the second-order diffracted light, the grating thickness and the grating interval are set in that region. Each may be multiplied by 1/2, and this is realized by a photolithography method. That is, the photoresist 3 is applied to the surface of the diffraction grating shown in FIG. 7A, and only the region I optimized by the first-order diffracted light has the same period as the underlying pattern as shown in FIG. To form a binary pattern with a duty ratio of 1: 1.

【0017】そして、この基板に深さdの異方性エッチ
ングを施した後、レジストを剥離すれば、最終的に同図
(c)に示すように、格子間隔の広い中心付近の領域I
においては1次の回折光が利用され、格子間隔の狭い外
周の領域IIにおいては2次の回折光が利用され得る、格
子間隔と格子厚が調整された回折型レンズLが形成され
る。
After this substrate is anisotropically etched to a depth of d and the resist is stripped off, finally, as shown in FIG. 3C, a region I near the center with a wide lattice spacing is formed.
1st order diffracted light is used, and the 2nd order diffracted light can be used in the outer peripheral region II where the grating spacing is narrow. Thus, a diffractive lens L with adjusted grating spacing and grating thickness is formed.

【0018】第2実施例 図3は、第2実施例により不等間隔の回折格子で成る回
折型レンズが形成される工程を示した回折格子の略断面
図である。本実施例の回折型レンズは、格子間隔の広い
中心付近の領域Iにおいては1次の回折光を利用し、格
子間隔の狭い外周付近の領域IIにおいては3次の回折光
を利用しようとするものである。
Second Embodiment FIG. 3 is a schematic sectional view of a diffraction grating showing a step of forming a diffractive lens composed of diffraction gratings of unequal intervals according to the second embodiment. The diffractive lens of this embodiment attempts to use the first-order diffracted light in the region I near the center with a wide grating spacing and the third-order diffracted light in the region II near the outer periphery with a narrow grating spacing. It is a thing.

【0019】先ず、同図(a)に示すように、3次の回
折光について回折効率が最適化された鋸歯状の断面形状
を有する回折型レンズL′をガラス基板上に形成する。
図中、3dは格子厚を示している。断面形状を加工する
方法は、前記第1実施例で説明した適宜な方法による。
First, as shown in FIG. 3A, a diffractive lens L'having a sawtooth cross-section whose diffraction efficiency is optimized for the third-order diffracted light is formed on a glass substrate.
In the figure, 3d indicates the lattice thickness. The method for processing the cross-sectional shape is the appropriate method described in the first embodiment.

【0020】3次の回折光で最適化された回折型レンズ
の一部の領域に、1次の回折光で最適化された領域を形
成するためには、その領域において格子厚と格子間隔を
夫々1/3倍すればよい。これをフォトリソグラフィー
の手法により実現するためには、同図(a)で示した回
折格子表面にフォトレジスト4を塗布し、1次の回折光
で最適化させる領域Iのみに、同図(b)で示すように
下地のパターンと同周期でデューティー比が1:2のバ
イナリーパターンを形成する。
In order to form a region optimized for the first-order diffracted light in a partial region of the diffractive lens optimized for the third-order diffracted light, the grating thickness and the lattice spacing are set in that region. Each one should be multiplied by 1/3. In order to realize this by the photolithography method, the photoresist 4 is applied to the surface of the diffraction grating shown in FIG. 7A, and only the region I optimized by the first-order diffracted light is used in FIG. ), A binary pattern having the same cycle as the background pattern and a duty ratio of 1: 2 is formed.

【0021】この基板に深さ2dの異方性エッチングを
施した後、レジストを剥離すれば、同図(c)に示す断
面形状の格子パターンが形成される。更に、同図(c)
で示したパターン表面にフォトレジスト5を塗布し、1
次の回折光で最適化させる領域Iのみに、同図(d)で
示すように下地のパターンと同周期でデューティー比が
1:2のバイナリーパターンを形成する。そして、この
基板に深さdの異方性エッチングを施した後、レジスト
を剥離すれば、最終的に同図(e)で示すように、格子
間隔の広い中心付近の領域Iにおいては1次の回折光が
利用され、格子間隔の狭い外周の領域IIにおいては3次
の回折光が利用され得る、格子間隔と格子厚が調整され
た回折型レンズLが形成される。
After this substrate is anisotropically etched to a depth of 2d and the resist is peeled off, a lattice pattern having a sectional shape shown in FIG. Furthermore, the same figure (c)
Photoresist 5 is applied to the surface of the pattern shown by, and 1
Only in the region I to be optimized by the next diffracted light, a binary pattern having the same cycle as the underlying pattern and a duty ratio of 1: 2 is formed, as shown in FIG. Then, after anisotropic etching of depth d is applied to this substrate, the resist is peeled off, and finally, in the region I near the center where the lattice spacing is wide, as shown in FIG. Diffracted light is used, and in the outer peripheral region II where the grating spacing is narrow, a diffractive lens L is formed in which the grating spacing and the grating thickness are adjusted so that the third-order diffracted light can be used.

【0022】上述の実施例では、断面構造を分割する方
法として異方性エッチングを用いたが、この工程を、基
板と同じ光学的性質を有する材料を堆積することによ
り、隣接する格子の鋸歯状の斜面を結合する工程に置き
換えても同様な結果が得られる。又、本発明において
は、回折格子の断面形状を鋸歯形状に加工する方法に制
限はない。
In the above-described embodiment, anisotropic etching was used as a method for dividing the cross-sectional structure, but this step is performed by depositing a material having the same optical property as that of the substrate so that the sawtooth shape of the adjacent lattice is formed. Similar results can be obtained by replacing the slopes of the above step. Further, in the present invention, there is no limitation on the method of processing the cross-sectional shape of the diffraction grating into a sawtooth shape.

【0023】[0023]

【発明の効果】以上説明したように本発明によれば、い
かなる方法で回折格子の断面形状を鋸歯形状に加工する
場合においても、所望の領域において、所望の次数の回
折光で回折効率が最適化された不等間隔回折格子を製造
することができる。このことは、従来の製造プロセスを
殆ど変更する必要がないことを示している。又、本発明
によれば、回折格子面内の領域によって回折次数が異な
るにも関わらず、特定の次数で不等間隔回折格子を設計
し、その後に任意の領域における回折次数を変化させる
ことができるため、設計上の煩わしさを低減できる。従
って、回折格子面内の異なる領域において夫々所望の回
折次数で最適化されていて断面形状が鋸歯に加工された
不等間隔回折格子を容易に提供することができる。
As described above, according to the present invention, no matter what method is used to process the cross-sectional shape of the diffraction grating into the sawtooth shape, the diffraction efficiency is optimized in the desired region with the diffracted light of the desired order. It is possible to manufacture a nonuniformly spaced diffraction grating. This indicates that the conventional manufacturing process requires little modification. Further, according to the present invention, it is possible to design a non-equidistant diffraction grating with a specific order and then change the diffraction order in an arbitrary area, although the diffraction order varies depending on the area in the diffraction grating surface. Therefore, the troublesomeness in design can be reduced. Therefore, it is possible to easily provide the unequal-spaced diffraction gratings each having a desired diffraction order and optimized in different regions in the diffraction grating surface, and the cross-sectional shape of which is processed into a sawtooth shape.

【図面の簡単な説明】[Brief description of drawings]

【図1】(a)乃至(c)は夫々本発明により回折格子
の一部の領域が任意の次数の回折光で最適化される工程
を示した断面形状が鋸歯状に加工された不等間隔回折格
子の略断面図である。
1 (a) to 1 (c) are respectively unequal shapes in which a sectional shape is processed into a sawtooth shape, showing a process in which a partial region of a diffraction grating is optimized by diffracted light of an arbitrary order according to the present invention. It is a schematic sectional drawing of an interval diffraction grating.

【図2】(a)乃至(c)は夫々本発明の第1実施例に
より2次の回折光で最適化された回折格子の一部の領域
が1次の回折光で最適化される工程を示した断面形状が
鋸歯状に加工された不等間隔回折格子の略断面図であ
る。
FIGS. 2A to 2C are steps of optimizing a partial region of a diffraction grating optimized with second-order diffracted light according to the first embodiment of the present invention with first-order diffracted light. FIG. 3 is a schematic cross-sectional view of a non-equidistant diffraction grating whose sectional shape shown in FIG.

【図3】(a)乃至(e)は夫々本発明の第2実施例に
より3次の回折光で最適化された回折格子の一部の領域
が1次の回折光で最適化される工程を示した断面形状が
鋸歯状に加工された不等間隔回折格子の略断面図であ
る。
3 (a) to (e) are steps of optimizing a partial region of a diffraction grating optimized with a 3rd order diffracted light according to the second embodiment of the present invention with a 1st order diffracted light. FIG. 3 is a schematic cross-sectional view of a non-equidistant diffraction grating whose sectional shape shown in FIG.

【図4】断面形状を鋸歯状に形成し且つレンズ作用を持
つように間隔を調整して回折格子を加工した回折型レン
ズの正面図である。
FIG. 4 is a front view of a diffractive lens in which the cross-sectional shape is formed in a sawtooth shape and a diffraction grating is processed by adjusting an interval so as to have a lens effect.

【図5】図4に示した回折型レンズの略断面図である。5 is a schematic cross-sectional view of the diffractive lens shown in FIG.

【符号の説明】[Explanation of symbols]

1・・・部位 2・・・底部 3,4,5・・
・レジスト L′・・・第1の工程で形成される回折格子 L ・・・第2の工程で形成される回折格子
1 ... Site 2 ... Bottom 3, 4, 5 ...
-Resist L '... Diffraction grating formed in first step L ... Diffraction grating formed in second step

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成4年12月2日[Submission date] December 2, 1992

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0012[Correction target item name] 0012

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0012】図1は本発明の原理を説明するための図で
あって、(a)は第1の工程で形成された断面形状が鋸
歯状に加工された不等間隔回折格子の一部の領域を示す
略断面図、(b)はこの回折格子の断面を分割する第2
の工程を示す回折格子の略断面図、(c)は第2の工程
で形成される回折格子の一部の領域を示す略断面図であ
る。図中、L′は第1の工程で形成される回折格子、L
は第2の工程で形成される回折格子、Pは格子間隔、D
は格子厚である。ここで、この回折格子は第1の工程で
3次の回折光で最適化されているとすると、1次の回折
光で最適化された領域を形成するためには、同図(a)
で示す回折格子の1周期分の断面構造を同図(b)に示
すように区切り、底部2が同一面内に揃うように、同一
形状の部位1を3箇所に形成すればよい。このとき、部
位1の形状は同図(a)の1周期分の鋸歯形状を1/3
の大きさに縮小したものに相当する。同図(b)におけ
る部位1の底部2を同一面内に揃えたものが同図(c)
であるが、これは第1の工程で形成された回折格子の格
子間隔Pと格子厚Dをそれぞれ1/3倍にしたものに相
当し、上記式(2),(3)より、このような操作をし
た領域が回折角を変化させずに、1次の回折光で最適化
されていることがわかる。
FIG. 1 is a diagram for explaining the principle of the present invention. FIG. 1A shows a part of a non-equidistant diffraction grating in which the sectional shape formed in the first step is processed into a sawtooth shape. A schematic cross-sectional view showing a region, (b) shows a second cross section of this diffraction grating.
FIG. 3C is a schematic cross-sectional view of the diffraction grating showing the step of, and FIG. 7C is a schematic cross-sectional view showing a partial region of the diffraction grating formed in the second step. In the figure, L'is a diffraction grating formed in the first step, L '
Is the diffraction grating formed in the second step, P is the grating spacing, and D is
Is the grid thickness. Here, assuming that this diffraction grating is optimized by the diffracted light of the third order in the first step, in order to form an area optimized by the diffracted light of the first order, FIG.
The sectional structure of one period of the diffraction grating shown in 1 is divided as shown in FIG. 2B, and the portions 1 having the same shape may be formed at three locations so that the bottom portions 2 are aligned in the same plane. At this time, the shape of the part 1 is 1/3 of the sawtooth shape for one cycle in FIG.
It corresponds to the size reduced to. The bottom part 2 of the part 1 in FIG. 2 (b) is aligned in the same plane.
However, this corresponds to the grating spacing P and the grating thickness D of the diffraction grating formed in the first step multiplied by 1/3, respectively, and from the above equations (2) and (3), It can be seen that the region that has been subjected to such an operation is optimized by the first-order diffracted light without changing the diffraction angle.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 任意の次数の回折光について、ある所定
の回折効率を満足するような鋸歯状の断面形状を有する
不等間隔回折格子を形成する第1の工程と、 該第1の工程で形成された不等間隔回折格子の任意の領
域において、鋸歯形状を保ったまま断面構造を分割し又
は結合することによって、より低次又は高次の回折光の
回折効率が最適化され、且つ、所望の回折角が該低次又
は高次の回折光で達成された領域を形成する第2の工程
とから成る、不等間隔回折格子の製造方法。
1. A first step of forming a non-equidistant diffraction grating having a sawtooth cross-sectional shape that satisfies a predetermined diffraction efficiency for diffracted light of an arbitrary order, and the first step. By dividing or combining the cross-sectional structure while maintaining the saw-tooth shape in any region of the formed nonuniform grating, the diffraction efficiency of lower-order or higher-order diffracted light is optimized, and A second step of forming a region in which a desired diffraction angle is achieved by the low-order or high-order diffracted light.
【請求項2】 回折格子の断面構造を分割又は結合する
第2の工程は、回折格子の一部の領域の厚さを、エッチ
ングにより減少させ、又は適当な物質を堆積させて増加
させるフォトリソグラフィープロセスであることを特徴
とする、請求項1に記載の製造方法。
2. A second step of dividing or joining the sectional structure of a diffraction grating is photolithography, in which the thickness of a partial region of the diffraction grating is reduced by etching, or increased by depositing a suitable material. The manufacturing method according to claim 1, which is a process.
JP10473892A 1992-04-23 1992-04-23 Manufacture of unequally spaced diffraction grating Withdrawn JPH05297209A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10473892A JPH05297209A (en) 1992-04-23 1992-04-23 Manufacture of unequally spaced diffraction grating

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10473892A JPH05297209A (en) 1992-04-23 1992-04-23 Manufacture of unequally spaced diffraction grating

Publications (1)

Publication Number Publication Date
JPH05297209A true JPH05297209A (en) 1993-11-12

Family

ID=14388846

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10473892A Withdrawn JPH05297209A (en) 1992-04-23 1992-04-23 Manufacture of unequally spaced diffraction grating

Country Status (1)

Country Link
JP (1) JPH05297209A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5623473A (en) * 1994-06-30 1997-04-22 Nikon Corporation Method and apparatus for manufacturing a diffraction grating zone plate
JP2004053992A (en) * 2002-07-22 2004-02-19 Hitachi Cable Ltd Diffraction grating, wavelength multiplexer/demultiplexer and wavelength multiplex signal optical transmission module using them
US6903803B2 (en) 2000-05-30 2005-06-07 Nikon Corporation Projection optical system, exposure apparatus incorporating this projection optical system, and manufacturing method for micro devices using the exposure apparatus
JP2015515640A (en) * 2012-02-27 2015-05-28 イービジョン スマート オプティクス インコーポレイテッド Electroactive lens with multiple depth diffractive structures
WO2016021075A1 (en) * 2014-08-08 2016-02-11 株式会社メニコン Diffractive multi-focal lens and method for manufacturing diffractive multi-focal lens

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5623473A (en) * 1994-06-30 1997-04-22 Nikon Corporation Method and apparatus for manufacturing a diffraction grating zone plate
US6903803B2 (en) 2000-05-30 2005-06-07 Nikon Corporation Projection optical system, exposure apparatus incorporating this projection optical system, and manufacturing method for micro devices using the exposure apparatus
JP2004053992A (en) * 2002-07-22 2004-02-19 Hitachi Cable Ltd Diffraction grating, wavelength multiplexer/demultiplexer and wavelength multiplex signal optical transmission module using them
JP2015515640A (en) * 2012-02-27 2015-05-28 イービジョン スマート オプティクス インコーポレイテッド Electroactive lens with multiple depth diffractive structures
US9329309B2 (en) 2012-02-27 2016-05-03 E-Vision Smart Optics, Inc. Electroactive lens with multiple depth diffractive structures
US10054725B2 (en) 2012-02-27 2018-08-21 E-Vision Smart Optics, Inc. Electroactive lens with multiple depth diffractive structures
WO2016021075A1 (en) * 2014-08-08 2016-02-11 株式会社メニコン Diffractive multi-focal lens and method for manufacturing diffractive multi-focal lens
US10747022B2 (en) 2014-08-08 2020-08-18 Menicon Co., Ltd. Diffractive multi-focal lens and method for manufacturing diffractive multi-focal lens

Similar Documents

Publication Publication Date Title
US5982545A (en) Structure and method for manufacturing surface relief diffractive optical elements
US10422934B2 (en) Diffraction gratings and the manufacture thereof
JPWO2004081620A1 (en) Diffraction element and optical device
JP2005157118A (en) Blazed holographic grating and manufacturing method therefor, and replica grating
JP2005258053A (en) Transmission type diffraction grating
JPH05297209A (en) Manufacture of unequally spaced diffraction grating
JP4380590B2 (en) Multi-stage diffractive optical element
JP2000098116A (en) Element or manufacture of mold for manufacturing element
US6922286B2 (en) Off-axis diffractive beam shapers and splitters for reducing sensitivity to manufacturing tolerances
US6480333B1 (en) Diffractive optical elements on non-flat substrates using electron beam lithography
JP2010102008A (en) Photomask and method for making sawtooth pattern
JP2018036633A (en) Diffractive optical element and light irradiation device
JP4206678B2 (en) Diffractive optical element
JP4238296B2 (en) Diffractive optical element
JP2005084485A (en) Diffraction optical element
JP2768154B2 (en) Optical device and manufacturing method thereof
JP2020086055A (en) Diffractive optical element and manufacturing method therefor
JPH07113907A (en) Diffraction optical element
JPH05150108A (en) Phase shift diffraction grating and production thereof
JP2003322705A (en) Optical member
US7465524B2 (en) Photomask and method of controlling transmittance and phase of light using the photomask
JP3214964B2 (en) Diffractive optical element
JPH11305005A (en) Anti reflection film and its manufacture
JPH05150107A (en) Irregularly spaced diffraction grating
JPH02151862A (en) Mask for photolithography and production thereof

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19990706