JPH0529707B2 - - Google Patents

Info

Publication number
JPH0529707B2
JPH0529707B2 JP59195693A JP19569384A JPH0529707B2 JP H0529707 B2 JPH0529707 B2 JP H0529707B2 JP 59195693 A JP59195693 A JP 59195693A JP 19569384 A JP19569384 A JP 19569384A JP H0529707 B2 JPH0529707 B2 JP H0529707B2
Authority
JP
Japan
Prior art keywords
weight
stage treatment
treatment
heat
rubber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59195693A
Other languages
Japanese (ja)
Other versions
JPS6175877A (en
Inventor
Minoru Takeda
Tadao Shikanuma
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP59195693A priority Critical patent/JPS6175877A/en
Publication of JPS6175877A publication Critical patent/JPS6175877A/en
Publication of JPH0529707B2 publication Critical patent/JPH0529707B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Reinforced Plastic Materials (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

産業上の利用分野 本発明はポリエステル繊維材料とエラストマー
組成物、特にゴム組成物との接着処理方法の改良
に関し、更に詳しくは従来法に比べ初期及び耐熱
接着力を著しく向上せしめ、かつデイツプ加工反
の高品化が可能な新規な組成の接着剤を用いたポ
リエステル繊維材料の接着処理方法に関する。 従来の技術 周知の如く、車輛及び航空機用タイヤ、ホース
類、コンベアベルト、動力伝達用ベルト等の工業
用ゴム製品は、これらの製品の引張強さを増加さ
せて厳しい条件下における変形の程度を抑制する
役目をする繊維材料で一般に補強されている。近
年、ポリエステル繊維が開発されるに従つて、ポ
リエステル繊維もこれらゴム補強用繊維材料とし
て用いられるようになつてきており、特にポリエ
ステル繊維は強度、タフネスが大であると共に寸
法安定性に優れている等、ゴム補強材としての極
めて好ましい物理的特性を有している。しかしな
がら、このような補強材料としてポリエステル繊
維を使用する場合、ポリエステルは繊維構造が緻
密であり、かつ官能基が少ないため、ナイロン、
レーヨン等の繊維とゴム組成物とを良好に接着さ
せることが可能な接着剤である、レゾルシン・ホ
ルマリン・ゴムラテツクスからなるRFL液のみ
では充分な接着が得られないという問題があつ
た。これを改良するために、(1)原糸にエポキシ樹
脂などの接着前処理剤を付与する方法、(2)エポキ
シ系又はイソシアネート系接着剤に次いでRFL
液で処理する2段処理方法、(3)エポキシ樹脂・イ
ソシアネート化合物・ゴムラテツクスの第1段処
理に次いでRFL及びポリイソシアネート化合物
で処理する2段処理方法(特開昭54−77796号公
報参照)等による種々の接着処理方法が提案され
ている。 しかし、前記(1)の方法は前処理剤付与装置の汚
れなどのために生産管理上非常に煩雑であり、前
記(2)の方法は初期接着力は改良されるものの、耐
熱接着力が不充分であり、更に前記(3)の方法は初
期接着力は非常に高い水準に確保できるが、耐熱
接着力が充分でなく、加工時の反物へのデイツプ
粗付着が多く、反物の品位を著しく損うといつた
問題があり、すべての点において満足し得る方法
は未だ開発されるに至つていないのが現状であ
る。 発明が解決しようとする問題点 本発明者等は、ポリエステル繊維材料とゴム組
成物との接着を工業的に実施するに際して、前記
したように、従来、初期及び耐熱接着力が高くか
つデイツプ加工反の高品位化を可能にする接着処
理方法が存在しなかつた点を解決して、従来法に
比べ初期及び耐熱接着力を著しく向上させかつデ
イツプ加工反の高品位化を両立し得る接着処理方
法を開発すべく鋭意検討した結果、本発明の完成
させるに至つた。 問題点を解決するための手段及び作用 本発明に従えば、ポリエステル繊維材料をエラ
ストマー組成物と接着するに際し、該繊維材料に
対し、第1段処理として、ポリエチレンイミンを
含む水溶液を含浸せしめ、次いで第2段処理とし
て、ブロツクポリイソシアネート化合物とレゾル
シン・ホルマリン・ゴムラテツクスを含む溶液
(以下、RFL/I液という)を含浸せしめ、熱処
理することから成るポリエステル繊維材料の接着
処理方法が提供される。 本発明において、ポリエステル繊維材料とは、
分子中にエステル結合を含み、かつ繊維軸方向に
高度に配向した線状高分子ポリエステル繊維、例
えばポリエチレンテレフタレート繊維、ポリブチ
レンテレフタレート繊維を主体とする長繊維及
び/又は短繊維から構成される、編物、織物、組
紐、コード、ロープ、又はこれらの混合体であ
り、ポリエステル繊維以外の繊維材料、例えばポ
リアミド繊維、アラミド繊維、レーヨン繊維、ビ
ニロン繊維などの通常ゴム補強材として用いられ
る繊維材料を一部含んでいても良い。 本発明方法において、第1段処理液として用い
られるポリエステルイミンは、低温度熱処理での
接着性が良く、低濃度でも従来と比べて格段の接
着性を有するものであり、他の化合物、例えばエ
ポキシ樹脂やポリイソシアネート化合物では、こ
の様な特性は得られない。ポリエチレンイミン
は、エチレンイミンを重合して得られる通常の化
合物を用いれば良く、その重合度には特に限定は
ないが、例えば重合度200〜2000程度のものの使
用が好ましい。ポリエチレンイミン水溶液の濃度
も良好な接着レベルを確保するものであれば特に
限定はないが、例えば0.1〜2.0重量%程度の濃度
が好ましい。 本発明方法において使用される第1段処理液に
はポリエチレンイミンを単独で用いても良いが、
接着力増大のために他の薬剤を含んでいても良
い。かかる薬剤としては処理液の安定性や接着性
を損なわないものであれば良く、特定するもので
はないが、例えば、ゴムラテツクス類やイソシア
ネート化合物等に一般に使用されている接着活性
化助剤、安定剤、増粘剤、消泡剤、分散剤、柔軟
剤等を添加しても良い。第1段処理液のポリエス
テル繊維材料への付与方法はデイツプ、コーテイ
ング、スプレー等の任意の方法によることができ
る。第1段処理液の被処理繊維材料に対する付着
量は繊維材料に対して固着分で1〜3重量%が適
当である。付与した後の熱処理は、乾燥工程に次
いで熱処理しても良いし、乾燥工程を省いても良
い。この処理温度には特に限定はないが、例えば
乾燥処理は温度100〜160℃で1〜5分間、熱処理
は温度160〜200℃で1〜3分間行なえば良い。 本発明方法において、第2段処理液に用いる
RFL/I液は初期接着力、耐熱接着力及び接着
の安定性を得る上で必須のものであり、RFL単
独又はRFLとブロツクドポリイソシアネート化
合物以外の化合物との混合物では本発明の目的を
達することができない。 本発明方法に用いるRFL/I液中のブロツク
ドポリイソシアネート化合物の固型分重量%には
特に限定はないが、一般には例えば1〜5重量%
で、好ましくは2〜3重量%である。RFL液も
通常の接着処方に用いられるものであれば任意の
ものを使用でき、好ましくはR/F比が1/1〜
1/2、RF/L比が1/5〜1/10の範囲が良
く、全固型分重量%は10〜20%程度であれば良
い。 本発明方法において使用するブロツクドポリイ
ソシアネート化合物はポリイソシアネート化合物
とブロツク化剤との付加化合物である。かかるポ
リイソシアネートとしては、例えばメタフエニレ
ンジイソシアネート、ジフエニルメタンジイソシ
アネート、トリレンジイソシアネート、ヘキサメ
チレンジイソシアネート、ポリメチレンポリフエ
ニルイソシアネート、トリフエニルメタントリイ
ソシアネート等を用いることができる。 一方、ブロツク化剤としては、例えばレゾルシ
ノール、クレゾール、フエノール、チオフエノー
ル等のフエノール類;ジフエニルアミン、キシリ
ジン等の芳香族第2級アミン類;フタル酸イミド
等のイミド類;カプロラクタム、パレロラクタム
等のラクタム類;t−ブタノール、t−ペンタノ
ール等の第3級アルコール類等を用いることがで
きる。 前述の第1段処理を施したポリエステル繊維材
料への第2段処理液の付与方法は、デイツプ、コ
ーテイング、スプレー等の任意の方法によること
ができる。第2段処理液の付着量にも特に限定は
ないが、繊維材料に対して固着分で2〜5重量%
が適当である。第2段処理液を付与した後の熱処
理は、乾燥工程に次いで緊張熱処理しても良い
し、乾燥工程を省いても良い。処理温度にも特に
限定はないが、乾燥は、例えば温度100〜160℃で
1〜5分間、熱処理は温度200〜250℃で1〜3分
間行うのが適当である。このようにして2段処理
されたポリエステル繊維材料を通常の方法に従つ
てゴム組成物中に埋込み、加硫接着せしめること
ができる。 本発明方法によれば、従来法、例えば(1)エポキ
シ樹脂又はイソシアネート化合物に次いでRFL
液で処理する2段処理法、(2)エポキシ樹脂・イソ
シアネート化合物・ゴムラテツクスの第1段処理
に次いでRFL及びポリイソシアネート化合物で
処理する2段処理法等に比べて、ポリエステル繊
維材料とゴム組成物とを強固に接着させ、加工反
の品位を著しく向上させることができる。 本発明方法はゴム組成物に対して有効である
が、ゴム以外のエラストマー、例えばポリ塩化ビ
ニル、エチレン/酢酸ビニル、フツ素系ビニル、
ポリオレフインなどのエラストマー類に適用する
ことができる。 実施例 以下に本発明の実施例を説明するが、本発明の
技術的範囲をこれらの実施例に限定するものでな
いことはいうまでもない。 実施例 1 ポリエチレンイミン(エポミンSP−003、日本
触媒化学工業(株)製)3重量部と水957重量部とを
混合して0.3重量%の第1段処理液を調製した。
一方、レゾルミン14重量部と37重量%のホルマリ
ン水溶液16重量部とを混合し、これに触媒として
10重量%の苛性ソーダ水溶液8重量部と水464重
量部を加え、6時間熟成した。かくして得られた
液をビニールピリジンゴムラテツクス438重量部
及び水60重量部と混合し、24時間熟成して全固型
分約20重量%のRFL液を調製した。 接着剤処理及び熱処理は米国リツラー社製のコ
ンピユートリーター処理機で行つた。1500d/
2、40×40T/dmの撚り構成の旭化成工業(株)製
ポリエステルコードに前記第1段処理液を含浸せ
しめたのち、130℃で2分間乾燥し、次いで160℃
で1分間熱処理した。引続いて、上で調製した
RFL液と25重量%のMDI−カプロラクタムブロ
ツク体の分散液(DMS−3、明成化学工業(株)製)
120重量部及び固系分重量を約20%にする為に必
要な水を混合した第2段処理液(RFL/I液)
に含浸し、150℃で2分間乾燥後、1%緊張下に
245℃、1分間熱処理した。得られた処理コード
を、天然ゴムとスチレン−ブタジエン共重合体ゴ
ムとを混合せしめたタイヤカーカス用未加硫ゴム
に埋込み、150℃で30分間加硫を行い、処理コー
ドとゴムとを接着せしめた。接着力は1センチ長
さのゴム埋込みコードの引抜き力を室温で測定し
て求めた。これを初期接着試験とする。一方、前
記処理コードをタイヤカーカス用未加硫ゴムに埋
込み、180℃で60分間加硫を行つて接着せしめ、、
前述と同条件で引抜き力を測定した。これを耐熱
接着試験とする。 得られた結果は第1表に示した通りであつた。 第1表の結果から明らかなように、本発明の接
着処理方法によれば、初期及び耐熱接着力が著し
く改善され、また処理コードの表面にはデイツプ
粕等の付着物はほとんど認められなかつた。 比較例 1 実施例1に準じて第2段処理液にブロツクドポ
リイソシアネート化合物を添加せずに第1段処理
コードに含浸せしめ、しかる後接着試験を行つ
た。 得られた結果は第1表に示す通りであり、第2
段処理液にブロツクドポリイソシアネートを添加
しない接着処理法では、初期接着力15.5Kg/cm、
耐熱接着力6.7Kg/cmと本発明の処理方法に従つ
て、第2段処理液(RFL/I液)で処理した場
合の接着力に比べ非常に低かつた。 実施例 2 実施例1と同様の方法でポリエチレンイミンの
重合度が300と2000の第1段処理液を調製し、コ
ードに含浸せしめ、180℃で2分間熱処理後、第
2段処理液に含浸し、次いで150℃で2分間乾燥
後、245℃で1分間熱処理し、しかる後処理コー
ドの接着試験を行つた。 得られた結果は第1表に示す通りであつた。 第1表の結果から明らかなように、本発明に従
つた接着処理法における、第1段処理液に用いる
ポリエチレンイミンの重合度の接着性におよぼす
影響は、上記重合度範囲内で特に問題とならず、
初期及び耐熱接着力ともに良好な結果を示すこと
が判つた。 実施例 3 実施例1と同様の方法でポリエチレンイミン水
溶液の濃度が、0.2、0.5及び1.0重量%の第1段処
理液を調製し、重量濃度%と接着性との関係につ
いて検討した。 得られた結果を第1表に示す通りであつた。 第1表の結果から明らかなように、ポリエチレ
ンイミン水溶液の重量濃度%を種々変更した第1
段処理液を用いた場合にも極めて良好な接着力が
得られることが判つた。 実施例 4 実施例1と同様の方法で第2段処理液
(RFL/I液)のブロツクドポリイソシアネート
にクルードMDI−カプロラクタムブロツク体及
びTDI−プレポリマーブタノンオキシブロツク体
を用いて第1段処理コードに含浸せしめて、接着
試験を行つた。 得られた結果は第1表に示す通りであつた。 第1表の結果から明らかなように、ブロツクド
ポリイソシアネート化合物の種類を問わず優れた
接着性が得られることが判つた。 比較例 2 エポキシ樹脂5重量部、ブロツクドポリイソシ
アネート60重量部及び水685重量部を混合し、こ
れにビニールピリジンゴムラテツクス250重量部
を混合し、第1段処理液を調製し、次いで実施例
1と同様の第2段処理液(RFL/I液)を調製
した。ポリエステルコードに上記第1段処理液を
含浸せしめた後、熱処理し、次いで第2段処理液
を含浸せしめて熱処理し、しかる後タイヤカーカ
ス用ゴムに埋込み加硫を施したものの接着力を測
定した。 得られた結果は第1表に示す通りであつた。 第1表は結果から明らかなように、初期接着力
は本発明に従つた第1段処理液を用いた場合と同
に良好な結果が得られるが、耐熱接着力の改善は
認められず、処理後のコードへのデイツプ粕付着
が多く、加工反の品位を損うことが判つた。
INDUSTRIAL APPLICATION FIELD The present invention relates to an improvement in the adhesion treatment method between a polyester fiber material and an elastomer composition, especially a rubber composition. The present invention relates to a method for adhering polyester fiber materials using an adhesive with a new composition that enables high-quality products. BACKGROUND OF THE INVENTION As is well known, industrial rubber products such as vehicle and aircraft tires, hoses, conveyor belts, power transmission belts, etc. are designed to increase the tensile strength of these products to reduce the degree of deformation under severe conditions. It is generally reinforced with a fibrous material that serves as a restraint. In recent years, as polyester fibers have been developed, polyester fibers have also come to be used as fiber materials for reinforcing these rubbers, and polyester fibers in particular have high strength and toughness, as well as excellent dimensional stability. It has extremely favorable physical properties as a rubber reinforcing material. However, when using polyester fibers as such reinforcing materials, polyester has a dense fiber structure and few functional groups, so nylon,
There was a problem in that sufficient adhesion could not be obtained only with RFL liquid consisting of resorcinol, formalin, and rubber latex, which is an adhesive capable of adhering fibers such as rayon and rubber compositions well. In order to improve this, (1) a method of applying an adhesive pretreatment agent such as an epoxy resin to the yarn, (2) a method of applying an adhesive pretreatment agent such as an epoxy resin to the yarn, and (2) a method of applying an adhesive pretreatment agent such as an epoxy resin or an isocyanate adhesive,
(3) A two-stage treatment method in which epoxy resin/isocyanate compound/rubber latex is treated in the first stage and then treated with RFL and a polyisocyanate compound (see JP-A-54-77796), etc. Various adhesive processing methods have been proposed. However, method (1) above is very complicated in terms of production control due to dirt on the pretreatment agent applying device, and method (2) above improves initial adhesion strength, but has poor heat-resistant adhesive strength. Furthermore, although the method (3) above can ensure a very high level of initial adhesive strength, the heat-resistant adhesive strength is not sufficient, and there is a lot of rough adhesion of dips to the fabric during processing, which significantly deteriorates the quality of the fabric. There are problems that can lead to damage, and the current situation is that a method that is satisfactory in all respects has not yet been developed. Problems to be Solved by the Invention The present inventors have discovered that when adhesion between a polyester fiber material and a rubber composition is carried out industrially, as described above, conventional adhesives that have high initial and heat-resistant adhesive strength and that are resistant to dip processing. An adhesive treatment method that solves the problem that there is no adhesive treatment method that can improve the quality of dip-processed fabrics, significantly improves the initial and heat-resistant adhesive strength compared to conventional methods, and achieves both high-quality dip-processed fabrics. As a result of intensive study to develop the present invention, the present invention has been completed. Means and Effects for Solving the Problems According to the present invention, when bonding a polyester fiber material with an elastomer composition, the fiber material is impregnated with an aqueous solution containing polyethyleneimine as a first stage treatment, and then A method for adhering polyester fiber materials is provided, which comprises impregnating the material with a solution containing a blocked polyisocyanate compound and resorcinol-formalin-rubber latex (hereinafter referred to as RFL/I solution) and heat-treating the material as the second stage treatment. In the present invention, the polyester fiber material is
A knitted fabric composed of long fibers and/or short fibers containing linear polymeric polyester fibers containing ester bonds in the molecule and highly oriented in the fiber axis direction, such as polyethylene terephthalate fibers and polybutylene terephthalate fibers. , woven fabrics, braids, cords, ropes, or mixtures thereof, and some of them are fiber materials other than polyester fibers, such as polyamide fibers, aramid fibers, rayon fibers, vinylon fibers, etc., which are usually used as rubber reinforcement materials. It may be included. In the method of the present invention, the polyesterimine used as the first-stage treatment liquid has good adhesive properties during low-temperature heat treatment, and even at a low concentration, it has remarkable adhesive properties compared to conventional ones, and other compounds such as epoxy Such characteristics cannot be obtained with resins or polyisocyanate compounds. As the polyethyleneimine, a common compound obtained by polymerizing ethyleneimine may be used, and the degree of polymerization is not particularly limited, but it is preferable to use one having a degree of polymerization of about 200 to 2000, for example. The concentration of the polyethyleneimine aqueous solution is not particularly limited as long as it ensures a good adhesion level, but a concentration of about 0.1 to 2.0% by weight is preferred, for example. Although polyethyleneimine may be used alone in the first stage treatment liquid used in the method of the present invention,
Other agents may be included to increase adhesive strength. Such agents may be those that do not impair the stability or adhesion of the treatment liquid, and are not specified, but include, for example, adhesion activation aids and stabilizers commonly used in rubber latexes, isocyanate compounds, etc. , thickeners, antifoaming agents, dispersants, softeners, etc. may be added. The first-stage treatment liquid can be applied to the polyester fiber material by any method such as dipping, coating, and spraying. The amount of the first-stage treatment liquid deposited on the fiber material to be treated is suitably 1 to 3% by weight based on the amount of the fiber material. The heat treatment after application may be performed subsequent to the drying step, or the drying step may be omitted. Although there is no particular limitation on the temperature of this treatment, for example, the drying treatment may be carried out at a temperature of 100 to 160°C for 1 to 5 minutes, and the heat treatment may be carried out at a temperature of 160 to 200°C for 1 to 3 minutes. In the method of the present invention, used for the second stage treatment liquid.
RFL/I liquid is essential for obtaining initial adhesive strength, heat-resistant adhesive strength, and adhesive stability, and RFL alone or a mixture of RFL and a compound other than the blocked polyisocyanate compound achieves the purpose of the present invention. I can't. Although there is no particular limitation on the solid content of the blocked polyisocyanate compound in the RFL/I liquid used in the method of the present invention, it is generally, for example, 1 to 5% by weight.
The amount is preferably 2 to 3% by weight. Any RFL liquid can be used as long as it is used in normal adhesive formulations, preferably with an R/F ratio of 1/1 to 1/1.
1/2, the RF/L ratio is preferably in the range of 1/5 to 1/10, and the total solids weight % is preferably about 10 to 20%. The blocked polyisocyanate compound used in the process of the invention is an addition compound of a polyisocyanate compound and a blocking agent. As such polyisocyanate, for example, metaphenylene diisocyanate, diphenylmethane diisocyanate, tolylene diisocyanate, hexamethylene diisocyanate, polymethylene polyphenyl isocyanate, triphenylmethane triisocyanate, etc. can be used. On the other hand, examples of blocking agents include phenols such as resorcinol, cresol, phenol, and thiophenol; aromatic secondary amines such as diphenylamine and xylidine; imides such as phthalic acid imide; lactams such as caprolactam and parerolactam. ; Tertiary alcohols such as t-butanol and t-pentanol can be used. The second-stage treatment liquid can be applied to the polyester fiber material subjected to the first-stage treatment described above by any method such as dipping, coating, and spraying. There is no particular limit to the amount of the second-stage treatment liquid attached, but it is 2 to 5% by weight of the adhered content to the fiber material.
is appropriate. The heat treatment after applying the second-stage treatment liquid may be a drying step followed by a tension heat treatment, or the drying step may be omitted. Although there is no particular limitation on the treatment temperature, it is appropriate to perform drying at a temperature of 100 to 160°C for 1 to 5 minutes, and heat treatment at a temperature of 200 to 250°C for 1 to 3 minutes, for example. The polyester fiber material thus treated in two stages can be embedded in a rubber composition and vulcanized and bonded in accordance with a conventional method. According to the method of the present invention, following the conventional method, for example (1) epoxy resin or isocyanate compound, RFL
(2) A two-stage treatment method in which epoxy resin, isocyanate compound, and rubber latex are treated in the first stage, followed by treatment with RFL and a polyisocyanate compound. The quality of the processed fabric can be significantly improved by strongly adhering the two. Although the method of the present invention is effective for rubber compositions, elastomers other than rubber, such as polyvinyl chloride, ethylene/vinyl acetate, fluorinated vinyl,
It can be applied to elastomers such as polyolefins. Examples Examples of the present invention will be described below, but it goes without saying that the technical scope of the present invention is not limited to these examples. Example 1 3 parts by weight of polyethyleneimine (Epomin SP-003, manufactured by Nippon Shokubai Kagaku Kogyo Co., Ltd.) and 957 parts by weight of water were mixed to prepare a 0.3% by weight first stage treatment liquid.
On the other hand, 14 parts by weight of resolmin and 16 parts by weight of a 37% by weight formalin aqueous solution were mixed, and this was used as a catalyst.
8 parts by weight of a 10% by weight aqueous solution of caustic soda and 464 parts by weight of water were added, and the mixture was aged for 6 hours. The liquid thus obtained was mixed with 438 parts by weight of vinyl pyridine rubber latex and 60 parts by weight of water, and aged for 24 hours to prepare an RFL liquid with a total solid content of about 20% by weight. Adhesive treatment and heat treatment were performed using a computer treater manufactured by Ritzler, USA. 1500d/
2. After impregnating a polyester cord manufactured by Asahi Kasei Industries, Ltd. with a twisted structure of 40 x 40 T/dm with the first stage treatment solution, it was dried at 130°C for 2 minutes, and then dried at 160°C.
The sample was heat-treated for 1 minute. Subsequently, the above prepared
Dispersion of RFL liquid and 25% by weight MDI-caprolactam block (DMS-3, manufactured by Meisei Chemical Industry Co., Ltd.)
2nd stage treatment liquid (RFL/I liquid) mixed with 120 parts by weight and water necessary to make the solid content approximately 20%
After drying at 150℃ for 2 minutes, under 1% tension.
Heat treatment was performed at 245°C for 1 minute. The obtained treated cord was embedded in unvulcanized tire carcass rubber made of a mixture of natural rubber and styrene-butadiene copolymer rubber, and vulcanization was performed at 150°C for 30 minutes to bond the treated cord and rubber. Ta. The adhesive strength was determined by measuring the pull-out force of a 1 cm long embedded rubber cord at room temperature. This is the initial adhesion test. On the other hand, the treated cord was embedded in unvulcanized rubber for a tire carcass, and vulcanized at 180°C for 60 minutes to bond it.
The pull-out force was measured under the same conditions as described above. This is called a heat resistant adhesion test. The results obtained were as shown in Table 1. As is clear from the results in Table 1, according to the adhesive treatment method of the present invention, the initial and heat-resistant adhesive strength was significantly improved, and almost no deposits such as dip residue were observed on the surface of the treated cord. . Comparative Example 1 According to Example 1, a cord treated in the first stage was impregnated with the blocked polyisocyanate compound without adding it to the second stage treatment solution, and then an adhesion test was conducted. The results obtained are shown in Table 1, and
In the adhesive treatment method that does not add blocked polyisocyanate to the stage treatment solution, the initial adhesive strength is 15.5 kg/cm,
The heat-resistant adhesive strength was 6.7 kg/cm, which was much lower than the adhesive strength when treated with the second stage treatment liquid (RFL/I liquid) according to the treatment method of the present invention. Example 2 First-stage treatment solutions with polyethyleneimine polymerization degrees of 300 and 2000 were prepared in the same manner as in Example 1, impregnated into a cord, heat-treated at 180°C for 2 minutes, and then impregnated into the second-stage treatment solution. Then, after drying at 150°C for 2 minutes, heat treatment was performed at 245°C for 1 minute, and an adhesion test of the post-treated cord was conducted. The results obtained are shown in Table 1. As is clear from the results in Table 1, in the adhesive treatment method according to the present invention, the influence of the degree of polymerization of polyethyleneimine used in the first-stage treatment liquid on adhesiveness is particularly problematic within the above degree of polymerization range. Not,
It was found that both initial and heat-resistant adhesive strength showed good results. Example 3 First-stage treatment solutions containing polyethyleneimine aqueous solutions having concentrations of 0.2, 0.5, and 1.0% by weight were prepared in the same manner as in Example 1, and the relationship between the weight concentration% and adhesiveness was investigated. The results obtained are shown in Table 1. As is clear from the results in Table 1, the first sample with various weight concentration percentages of the polyethyleneimine aqueous solution was used.
It has been found that extremely good adhesive strength can be obtained even when the stage treatment liquid is used. Example 4 In the same manner as in Example 1, a crude MDI-caprolactam block and a TDI-prepolymer butanone oxyblock were used in the first stage treatment for the blocked polyisocyanate of the second stage treatment liquid (RFL/I solution). An adhesion test was conducted by impregnating the cord. The results obtained are shown in Table 1. As is clear from the results in Table 1, it was found that excellent adhesiveness could be obtained regardless of the type of blocked polyisocyanate compound. Comparative Example 2 5 parts by weight of epoxy resin, 60 parts by weight of blocked polyisocyanate and 685 parts by weight of water were mixed, and 250 parts by weight of vinyl pyridine rubber latex was mixed thereto to prepare a first stage treatment liquid, and then the treatment solution was prepared. A second stage treatment liquid (RFL/I liquid) similar to that in Example 1 was prepared. After impregnating a polyester cord with the above-mentioned first-stage treatment liquid, it was heat-treated, then impregnated with the second-stage treatment liquid and heat-treated, and then embedded in tire carcass rubber and vulcanized, and the adhesive strength was measured. . The results obtained are shown in Table 1. As is clear from the results in Table 1, good initial adhesion strength is obtained as in the case of using the first-stage treatment liquid according to the present invention, but no improvement in heat-resistant adhesive strength was observed. It was found that there was a lot of dip lees adhering to the cord after treatment, impairing the quality of the processed fabric.

【表】【table】

【表】【table】

Claims (1)

【特許請求の範囲】[Claims] 1 ポリエステル繊維材料をエラストマー組成物
と接着するに際し、該繊維材料に対し、第1段処
理として、ポリエチレンイミンを含む水溶液を含
浸せしめ、次いで第2段処理として、ブロツクド
ポリイソシアネート化合物とレゾルシン・ホルマ
リン・ゴムラテツクスを含む溶液を含浸せしめ、
熱処理することを特徴とするポリエステル繊維材
料の接着処理方法。
1. When adhering a polyester fiber material to an elastomer composition, the fiber material is impregnated with an aqueous solution containing polyethyleneimine as a first step treatment, and then impregnated with a blocked polyisocyanate compound and resorcin formalin as a second step treatment. - Impregnated with a solution containing rubber latex,
A method for adhesion processing of polyester fiber materials, characterized by heat treatment.
JP59195693A 1984-09-20 1984-09-20 Adhesive treatment of polyester fiber material Granted JPS6175877A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59195693A JPS6175877A (en) 1984-09-20 1984-09-20 Adhesive treatment of polyester fiber material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59195693A JPS6175877A (en) 1984-09-20 1984-09-20 Adhesive treatment of polyester fiber material

Publications (2)

Publication Number Publication Date
JPS6175877A JPS6175877A (en) 1986-04-18
JPH0529707B2 true JPH0529707B2 (en) 1993-05-06

Family

ID=16345424

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59195693A Granted JPS6175877A (en) 1984-09-20 1984-09-20 Adhesive treatment of polyester fiber material

Country Status (1)

Country Link
JP (1) JPS6175877A (en)

Also Published As

Publication number Publication date
JPS6175877A (en) 1986-04-18

Similar Documents

Publication Publication Date Title
RU2346015C2 (en) Two-stage method of saturating synthetic fibre
JPH08100165A (en) Adhesive composition for rubber/fiber, synthetic fiber for reinforcing rubber and fiber-reinforced rubber structure
JP2011236533A (en) Carbon fiber for rubber reinforcement
JP2007046210A (en) Method of producing fiber for reinforcing rubber
KR20110078380A (en) Method for producing polyester fiber for rubber reinforcement
JP2002226812A (en) Adhesion treatment agent for carbon fiber, carbon fiber for rubber reinforcement and method for producing the same
JPH0529707B2 (en)
JPS6024226B2 (en) Processing method of polyester fiber material for rubber reinforcement
JP2011236534A (en) Manufacturing method of carbon fiber for rubber reinforcement
JP3762581B2 (en) Polyester fiber cord manufacturing method
JP2001234143A (en) Adhesive treatment agent for rubber/fiber, and fibrous cord for reinforcing rubber and its production method
JP5519401B2 (en) Method for producing rubber reinforcing fiber
JP3762583B2 (en) Polyester fiber cord manufacturing method
JP4229822B2 (en) Method for producing aramid fiber cord for belt reinforcement
WO2016043395A1 (en) Polyester fiber, method for preparing same, and tire code comprising same
JPH06299134A (en) Adhesive composition for polyester fiber
JP3030999B2 (en) Processing method of polyester fiber for rubber reinforcement
JPS62243879A (en) Treatment of polyester fiber material
JPH08158261A (en) Rubber reinforcing fiber and reinforced rubber product
JP4198565B2 (en) Processing method of rubber reinforcing fiber
JPH02170830A (en) Bonding of aromatic polyamide fiber and rubber compound
JP2011241513A (en) Manufacturing method of rubber reinforcing fiber
AU615893B2 (en) Adhesive active finish for reinforcing members and related methods
KR100995601B1 (en) Adhesive composition for supporting rubber and polyester textile coating the same
JP2021042503A (en) Hybrid cord for rubber reinforcement