JPH05296934A - Gaseous substance detector - Google Patents

Gaseous substance detector

Info

Publication number
JPH05296934A
JPH05296934A JP10464792A JP10464792A JPH05296934A JP H05296934 A JPH05296934 A JP H05296934A JP 10464792 A JP10464792 A JP 10464792A JP 10464792 A JP10464792 A JP 10464792A JP H05296934 A JPH05296934 A JP H05296934A
Authority
JP
Japan
Prior art keywords
film
light
gas
detected
substance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10464792A
Other languages
Japanese (ja)
Inventor
Masakazu Sakata
雅一 坂田
Sukeyuki Fujii
祐行 藤井
Yuji Hamada
祐次 浜田
Kenichi Shibata
賢一 柴田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP10464792A priority Critical patent/JPH05296934A/en
Publication of JPH05296934A publication Critical patent/JPH05296934A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PURPOSE:To obtain a gaseous substance detector having excellent response characteristics and high detection sensitivity. CONSTITUTION:The title detector is provided with a tubular substrate 1, reflecting film 2 formed on the internal surface of the substrate 1, functional pigment film 3 formed on the film 2 and composed of a color former film which changes in absorbancy upon absorbing or desorbing a gaseous substance 4 to be detected, and light emitting means 5 which is provided on the outside of one side face of the substrate 1 and generates the incident light of the film 3. In addition, the detector is also provided with a light receiving means 6 which receives the light emitted from the means 5 and reflected by the film 3 and detecting means 13 which detects the absorbancy variation of the film 3 based on the output of the means 6 and detects the substance 4 based on the varying value f the absorbancy. The incident light from the means 5 is multiply reflected in the substrate 1.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、光を利用してガス物
質、特に匂い物質などのガス物質を検知することが可能
なガス物質検出装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a gas substance detecting device capable of detecting a gas substance, particularly a gas substance such as an odor substance, by utilizing light.

【0002】[0002]

【従来の技術】従来、この種のガス物質検出装置として
は、SnO2やZnOなどの酸化物半導体を利用し、ガス
の吸脱着による酸化物半導体の導電率などの変化から検
出するもの、また、水晶発振子の表面に高分子等の薄膜
を作製し、ガスの吸脱着による水晶発振子の発振周波数
の変化から検出するものがあった。しかしながら、これ
らの検出装置では電気信号を利用するため、検出に際し
て電気火花の生ずる恐れがあり、引火性のガスを含むも
のを検知するのが困難であった。
2. Description of the Related Art Heretofore, as a gas substance detecting device of this type, an oxide semiconductor such as SnO 2 or ZnO has been used, which is detected from changes in conductivity of the oxide semiconductor due to adsorption / desorption of gas. There is a method in which a thin film such as a polymer is formed on the surface of a crystal oscillator, and the thin film is detected from changes in the oscillation frequency of the crystal oscillator due to adsorption and desorption of gas. However, since these detection devices use electric signals, electric sparks may occur during detection, and it has been difficult to detect those containing flammable gas.

【0003】そこで、最近では被検出ガスの吸脱着によ
って吸収波長、または吸光度が変化する機能性色素膜を
用いた検出方法が提案され、これにより引火性のガスを
含む物質の検出が可能となってきた。
Therefore, recently, a detection method using a functional dye film whose absorption wavelength or absorbance changes due to adsorption and desorption of a gas to be detected has been proposed, which makes it possible to detect a substance containing a flammable gas. Came.

【0004】しかし、この機能性色素膜は、検出感度が
色素膜の膜厚に依存し、膜厚が大きいほど検出感度が向
上する反面、応答速度が遅くなるという特性を有してお
り、短時間で、感度のよいガス検出を行うことができな
かった。
However, this functional dye film has a characteristic that the detection sensitivity depends on the film thickness of the dye film, and as the film thickness increases, the detection sensitivity increases, but the response speed decreases. In time, sensitive gas detection could not be performed.

【0005】一方、特開平2−167449号公報で
は、図3に示すように、ガラス基体21の両面に被検出
ガス22の吸脱着によって吸光度が変化する機能性色素
膜23を形成し、その形成された機能性色素膜23の両
方に被検出ガス22を接触させる構成とし、発光素子2
4で発光された光を基体21の一側面の斜方から入射
し、このときの反射光の吸光度変化を受光素子25によ
って検出して被検出ガス22を検知、定量すると共に、
発光素子24で発光された光を機能性色素膜23に対し
て多重反射させて光反射率を増幅させ、検出感度を向上
させる検出装置が提案されている。
On the other hand, in Japanese Unexamined Patent Publication No. 2-167449, as shown in FIG. 3, a functional dye film 23 whose absorbance is changed by adsorption and desorption of a gas to be detected 22 is formed on both surfaces of a glass substrate 21, and its formation. The detected gas 22 is brought into contact with both of the functional dye film 23 thus formed, and the light emitting element 2
The light emitted in 4 is incident from one side of the base 21 obliquely, and the change in absorbance of reflected light at this time is detected by the light receiving element 25 to detect and quantify the gas 22 to be detected, and
A detection device has been proposed in which light emitted from the light emitting element 24 is multiply reflected on the functional dye film 23 to amplify the light reflectance and improve the detection sensitivity.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、この新
しく提案された検出装置では多重反射させる場合に、反
射光の一部が機能性色素膜23内に屈折し、そのため反
射光が減衰して充分に光反射率が増幅されず、検出感度
を向上させることができなかった。また、上記従来装置
は、被検出ガス22と接触する機能性色素膜23側面と
反対側の側面において発光素子24からの光を多重反射
させているため、反射光の減衰を防止するために反射膜
を機能性色素膜23に設けることが構成上できなかっ
た。
However, in this newly proposed detection device, in the case of multiple reflection, a part of the reflected light is refracted in the functional dye film 23, so that the reflected light is attenuated and is sufficiently attenuated. The light reflectance was not amplified and the detection sensitivity could not be improved. Further, in the above-mentioned conventional device, since the light from the light emitting element 24 is multiply reflected on the side surface opposite to the side surface of the functional dye film 23 that comes into contact with the gas to be detected 22, the light is reflected to prevent attenuation of the reflected light. It was not possible to provide a film on the functional dye film 23 due to the constitution.

【0007】本発明は斯かる上記問題点に鑑みてなされ
たものであって、応答特性が優れ、且つ検出感度の高い
ガス物質検出装置を提供するものである。
The present invention has been made in view of the above problems, and provides a gas substance detection device having excellent response characteristics and high detection sensitivity.

【0008】[0008]

【課題を解決するための手段】本発明は、管状基体と、
該管状基体の内面に形成された反射膜と、該反射膜上に
形成され、被検出ガス物質の吸脱着により吸光度が変化
するカラーフォーマー膜からなる機能性色素膜と、前記
管状基体の一側面外方に設けられ、前記機能性色素膜へ
の入射光を発生する発光手段と、前記管状基体の他側面
外方に設けられ、前記発光手段から発せられ、前記機能
性色素膜にて反射された反射光を受光する受光手段と、
該受光手段の出力に基づいて、前記機能性色素膜の吸光
度変化を検出し、その変化値に基づいて被検出ガス物質
を検知する検知手段と、を備えたガス物質検出装置であ
って、前記管状基体内において、前記発光手段から入射
光を多重反射させている。
SUMMARY OF THE INVENTION The present invention comprises a tubular substrate,
One of the tubular substrate, a reflective film formed on the inner surface of the tubular substrate, a functional dye film formed on the reflective film and comprising a color former film whose absorbance changes by adsorption and desorption of a gas substance to be detected. The light emitting means is provided on the outside of the side surface and emits the light incident on the functional dye film, and the other side surface of the tubular substrate is provided on the outside of the side surface, emitted from the light emitting means, and reflected by the functional dye film. A light receiving means for receiving the reflected light thus reflected,
A gas substance detection device comprising: a detection unit that detects a change in absorbance of the functional dye film based on an output of the light receiving unit and detects a gas substance to be detected based on the change value. In the tubular substrate, incident light from the light emitting means is multiply reflected.

【0009】[0009]

【作用】本発明によれば、管状基体とその内面に設けら
れた機能性色素膜との間に反射膜を設けているので、入
射光を機能性色素膜内で多重反射させた場合に、反射光
が機能性色素膜内に屈折し減衰することがない。
According to the present invention, since the reflecting film is provided between the tubular substrate and the functional dye film provided on the inner surface thereof, when the incident light is multiply reflected in the functional dye film, The reflected light is not refracted and attenuated in the functional dye film.

【0010】従って、入射光を機能性色素膜内で多重反
射させることにより、光反射率が増幅され、ガス物質検
出の感度が向上する。
Therefore, by multiply reflecting the incident light in the functional dye film, the light reflectance is amplified and the sensitivity of gas substance detection is improved.

【0011】[0011]

【実施例】以下、本発明をその実施例を示す図面に基づ
いて説明する。図1は本発明の一実施例を示すガス物質
検出装置の要部概略断面図である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below with reference to the drawings showing its embodiments. FIG. 1 is a schematic cross-sectional view of a main part of a gas substance detection device showing an embodiment of the present invention.

【0012】同図において、1はガラス、プラスチック
などで構成された管状基体(管長90mm,内径20m
m)、2は管状基体1の内面に蒸着法、またはスパッタ
リング法により形成された反射膜である。尚、反射膜2
には可視光領域(300nm〜800nm)の光に対する反
射率が高いクロム、またはアルミニウム薄膜を用いてお
り、その膜厚を1000Åとした。3はこの反射膜2上
に形成された機能性色素膜であり、被検出ガス物質4の
吸脱着によって吸光度が変化するカラーフォーマー膜で
構成されている。
In the figure, 1 is a tubular substrate made of glass, plastic, etc. (tube length 90 mm, inner diameter 20 m)
m) and 2 are reflection films formed on the inner surface of the tubular substrate 1 by vapor deposition or sputtering. The reflective film 2
A thin film of chromium or aluminum having a high reflectance for light in the visible light region (300 nm to 800 nm) is used as the thin film, and the film thickness is set to 1000 Å. Reference numeral 3 is a functional dye film formed on the reflective film 2, and is composed of a color former film whose absorbance changes by adsorption and desorption of the gas substance 4 to be detected.

【0013】尚、本実施例では機能性色素膜3として、
[化1]に示す化学構造を有するクリスタルバイオレッ
トラクトン(以下、CVと略記する)、及び[化2]に
示す化学構造を有するビスフェノールA(以下、BFと
略記する)を、CV:BF=1:2の重量比に混合し、
マトリクス材料として酢酸セルロースをCVに対し5倍
の重量比で、さらに溶媒としてテトラヒドロフランをC
Vに対して125倍の重量比でそれぞれ添加して作製し
たトリフェニルメタンフタリド色素からなるカラーフォ
ーマー膜を、キャスト法にて反射膜2上に形成した。こ
のトリフェニルメタンフタリド色素の化学構造を[化
3]に示す。
In this embodiment, as the functional dye film 3,
A crystal violet lactone (hereinafter abbreviated as CV) having a chemical structure shown in [Chemical Formula 1] and a bisphenol A (hereinafter abbreviated as BF) having a chemical structure shown in [Chemical Formula 2] were used as CV: BF = 1. : 2 by weight,
Cellulose acetate is used as a matrix material in a weight ratio of 5 times that of CV, and tetrahydrofuran is used as a solvent.
A color former film made of a triphenylmethanephthalide dye produced by adding 125 times by weight to V was formed on the reflective film 2 by a casting method. The chemical structure of this triphenylmethanephthalide dye is shown in [Chemical Formula 3].

【0014】[0014]

【化1】 [Chemical 1]

【0015】[0015]

【化2】 [Chemical 2]

【0016】[0016]

【化3】 [Chemical 3]

【0017】この際、キャスト法にて機能性色素膜3を
反射膜2上に形成する前に、まず反射膜2表面をアセト
ンなどにより超音波洗浄し、この後、酸洗浄(過酸化水
素水と硫酸を1:1で混合したものに浸漬)を行って、
反射膜2上の有機物、及び無機物を除去することによ
り、機能性色素膜3を反射膜2上に均一に形成させてい
る。尚、機能性色素膜3の膜厚は1000Åとした。
At this time, before the functional dye film 3 is formed on the reflective film 2 by the casting method, the surface of the reflective film 2 is first ultrasonically cleaned with acetone or the like, and then acid cleaning (hydrogen peroxide solution) is performed. Dipped in a mixture of 1: 1 and sulfuric acid),
By removing the organic substance and the inorganic substance on the reflective film 2, the functional dye film 3 is uniformly formed on the reflective film 2. The film thickness of the functional dye film 3 was 1000Å.

【0018】5は管状基体1の一側面の斜方から入射角
75度で入射する光を発生するハロゲンランプ、LED
などからなる発光素子、6は発光素子5からの入射光が
管状基体1内で多重反射した後の反射光を検出するフォ
トダイオード、フォトトランジスタなどからなる受光素
子である。尚、本実施例では、多重反射として管状基体
1内で15回反射するように設定した。
Reference numeral 5 denotes a halogen lamp or LED which generates light incident at an incident angle of 75 degrees from one side of the tubular substrate 1.
Reference numeral 6 denotes a light receiving element including a photodiode, a phototransistor and the like for detecting reflected light after the incident light from the light emitting element 5 is multiply reflected in the tubular substrate 1. In this example, the multiple reflections were set to reflect 15 times in the tubular substrate 1.

【0019】次に、本発明のガス物質検出装置を用いた
場合の検出動作について、図2を参照して説明する。図
2は、本発明のガス物質検出装置の概略構成図を示して
いる。尚、図1と同一符号の部分は同一構成を示してい
る。
Next, the detection operation when the gas substance detection device of the present invention is used will be described with reference to FIG. FIG. 2 shows a schematic configuration diagram of the gas substance detection device of the present invention. The same reference numerals as those in FIG. 1 indicate the same components.

【0020】図2において、11は被検出ガス物質4を
管状基体1内に導入させるガス導入口、12は管状基体
1内の被検出ガス4を装置外部に排出するガス排出口、
13は発光素子5のオン、オフを制御すると共に、受光
素子6の出力に基づいて被検出ガス4の検知、定量を行
う制御回路、14は制御回路13からの出力を表示する
CRTである。
In FIG. 2, 11 is a gas inlet for introducing the gas substance 4 to be detected into the tubular substrate 1, 12 is a gas outlet for discharging the gas 4 to be detected from the tubular substrate 1 to the outside of the apparatus,
Reference numeral 13 is a control circuit for controlling on / off of the light emitting element 5 and detecting and quantifying the gas to be detected 4 based on the output of the light receiving element 6, and 14 is a CRT for displaying the output from the control circuit 13.

【0021】まず、ガス導入口11から被検出ガス4を
管状基体1内に導入し、管状基体1内を被検出ガス4雰
囲気中とする。その後、発光素子5をオンさせ、管状基
体1内に光を入射し、多重反射させた後の反射光の出力
を受光素子6により検出する。次に、制御回路13にお
いて、受光素子6の出力値に基づいて機能性色素膜3の
吸光度変化を検出し、その変化値に基づいて被検出ガス
4の検知、定量を行う。尚、制御回路13には、予めエ
タノール、アセトン、アンモニア、硫化水素、メタノー
ルの5種類の匂い物質の吸光度特性データが記憶されて
おり、そのデータに基づいて被検出ガス4の検知、定量
を行っている。そして、その結果をCRT14に表示さ
せる。
First, the gas to be detected 4 is introduced into the tubular substrate 1 through the gas introduction port 11 so that the inside of the tubular substrate 1 is in an atmosphere of the gas to be detected 4. Thereafter, the light emitting element 5 is turned on, light is made incident into the tubular substrate 1, and the output of the reflected light after multiple reflection is detected by the light receiving element 6. Next, in the control circuit 13, the change in the absorbance of the functional dye film 3 is detected based on the output value of the light receiving element 6, and the detected gas 4 is detected and quantified based on the change value. It should be noted that the control circuit 13 stores in advance the absorbance characteristic data of five kinds of odorous substances such as ethanol, acetone, ammonia, hydrogen sulfide, and methanol, and the detection target gas 4 is detected and quantified based on the data. ing. Then, the result is displayed on the CRT 14.

【0022】以上のように、管状基体1とその内面に設
けられた機能性色素膜3との間に反射膜2を設けている
ので、機能性色素膜3内に入射光を多数回通過させるこ
とにより光反射率が増幅され、被検出ガス4を高感度で
検知、定量することができる。
As described above, since the reflecting film 2 is provided between the tubular substrate 1 and the functional dye film 3 provided on the inner surface thereof, the incident light is allowed to pass through the functional dye film 3 many times. As a result, the light reflectance is amplified, and the gas to be detected 4 can be detected and quantified with high sensitivity.

【0023】次に、酒の匂い物質であるエタノールガス
に対し、図1実施例の装置において多重反射(15回)
させた場合、及び単反射させた場合について、乾燥空気
中、エタノール濃度0.1%、エタノール濃度0.01
%の3種類の条件下で吸光度測定した結果を表1に示
す。尚、測定の応答時間は、全て2〜3秒であった。
Next, multiple reflections (15 times) were performed on the ethanol gas, which is the odorous substance of sake, in the apparatus of FIG. 1 embodiment.
In the dry air, the concentration of ethanol was 0.1%, the concentration of ethanol was 0.01, and the concentration was 0.01.
The results obtained by measuring the absorbance under three kinds of conditions are shown in Table 1. The response time of the measurement was all 2 to 3 seconds.

【0024】ここで、表1に示す吸光度値は次式に基づ
いて算出されている。従って、光反射率100%の場合
には吸光度値が0、光反射率10%の場合には吸光度値
が1となる。
Here, the absorbance values shown in Table 1 are calculated based on the following equation. Therefore, when the light reflectance is 100%, the absorbance value is 0, and when the light reflectance is 10%, the absorbance value is 1.

【0025】尚、機能性色素膜3がエタノールガスとの
接触により膜物性が変化し、最も吸光特性が変化する波
長が609.1nmであるため、受光素子6では波長60
9.1nmにおける出射光を測定した。
The functional dye film 3 changes its physical properties by contact with ethanol gas, and the wavelength at which the light absorption property changes most is 609.1 nm.
The emitted light at 9.1 nm was measured.

【0026】[0026]

【表1】 [Table 1]

【0027】[0027]

【数1】 [Equation 1]

【0028】表1より、単反射のみの場合には、吸光度
が乾燥空気中で0.0901、エタノール濃度0.1%
で0.0887、エタノール濃度0.01%で0.09
00であり、エタノール濃度0.01%の条件下では乾
燥空気中に対して吸光度差が殆ど無いのに対して、多重
反射の場合には、乾燥空気中で1.3501、エタール
濃度0.1%で1.3290、エタノール濃度0.01
%で1.3487となっており、エタノール濃度0.0
1%の条件下においても乾燥空気中に対して吸光度差が
0.0014あり、検出感度が向上していることが分か
る。
From Table 1, in the case of only single reflection, the absorbance is 0.0901 in dry air and the ethanol concentration is 0.1%.
0.0887, 0.01% ethanol concentration 0.09
00, there is almost no difference in absorbance with respect to dry air under the condition that the ethanol concentration is 0.01%, whereas in the case of multiple reflection, 1.3501 in dry air and 0.1% etal concentration. %, 1.3290, ethanol concentration 0.01
% Is 1.3487, and the ethanol concentration is 0.0
Even under the condition of 1%, the difference in absorbance with respect to that in dry air is 0.0014, which shows that the detection sensitivity is improved.

【0029】また、図1実施例の装置において反射膜2
を設けず、多重反射(15回)させた場合について、上
記条件と同様にして吸光度の測定を行ったが、反射光が
機能性色素膜3内に屈折して出射光が微小出力となり、
吸光度の測定ができなかった。
Further, in the apparatus of FIG. 1 embodiment, the reflection film 2
In the case of multiple reflection (15 times) without providing, the absorbance was measured under the same conditions as above, but the reflected light was refracted into the functional dye film 3 and the emitted light became a minute output,
Absorbance could not be measured.

【0030】尚、上記実施例では機能性色素膜3の膜厚
が1000Åの場合について説明したが、この他の値で
あっても構わない。但し、検出の応答特性が機能性色素
膜3の膜厚に依存するため、その膜厚は500〜100
0Åにするのが好ましい。また、多重反射の回数が15
回の場合について説明したが、この他の回数であっても
よく、被検出物質4に応じて適宜回数を設定すればよ
い。
In the above embodiment, the case where the film thickness of the functional dye film 3 is 1000Å has been described, but other values may be used. However, since the response characteristic of detection depends on the film thickness of the functional dye film 3, the film thickness is 500 to 100.
It is preferable to set it to 0Å. In addition, the number of multiple reflections is 15
Although the case of the number of times is described, the number of times may be other than this, and the number of times may be set appropriately according to the substance 4 to be detected.

【0031】更に、上記実施例では機能性色素膜3とし
て、トリフェニルメタンフタリド色素からなるカラーフ
ォーマー膜で構成した場合について説明したが、その他
のカラーフォーマー膜、例えばインドリルフタリド色素
からなるカラーフォーマー膜で構成させても同様の効果
を奏することができる。
Further, in the above embodiment, the case where the functional dye film 3 is composed of the color former film made of triphenylmethanephthalide dye has been described, but other color former films, for example, indolylphthalide dye. The same effect can be obtained even if the color former film is composed of.

【0032】[0032]

【発明の効果】以上述べた通り本発明によれば、管状基
体とその内面に設けられた機能性色素膜との間に反射膜
を設けているので、入射光を機能性色素膜内で多重反射
させた場合に、反射光が機能性色素膜内に屈折して減衰
することなく、その結果光反射率が増幅されることにな
る。
As described above, according to the present invention, since the reflecting film is provided between the tubular substrate and the functional dye film provided on the inner surface thereof, incident light is multiplexed within the functional dye film. When reflected, the reflected light is not refracted and attenuated in the functional dye film, and as a result, the light reflectance is amplified.

【0033】従って、機能性色素膜の膜厚を大きくせ
ず、ガス物質検出の感度を向上させたガス物質検出装置
を提供することができる。
Therefore, it is possible to provide a gas substance detection device in which the sensitivity of gas substance detection is improved without increasing the film thickness of the functional dye film.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例を示すガス物質検出装置の要
部概略断面図である。
FIG. 1 is a schematic cross-sectional view of a main part of a gas substance detection device showing an embodiment of the present invention.

【図2】本発明の一実施例を示すガス物質検出装置の概
略構成図である。
FIG. 2 is a schematic configuration diagram of a gas substance detection device showing an embodiment of the present invention.

【図3】従来のガス物質検出装置の概略断面図である。FIG. 3 is a schematic cross-sectional view of a conventional gas substance detection device.

【符号の説明】[Explanation of symbols]

1 管状基体 2 反射膜 3 機能性色素膜 4 被検出ガス物質 5 発光素子(発光手段) 6 受光素子(受光手段) 11 ガス導入口 12 ガス排出口 13 制御回路(検知手段) 14 CRT DESCRIPTION OF SYMBOLS 1 Tubular substrate 2 Reflective film 3 Functional dye film 4 Gas substance to be detected 5 Light emitting element (light emitting means) 6 Light receiving element (light receiving means) 11 Gas introduction port 12 Gas exhaust port 13 Control circuit (detection means) 14 CRT

───────────────────────────────────────────────────── フロントページの続き (72)発明者 柴田 賢一 大阪府守口市京阪本通2丁目18番地 三洋 電機株式会社内 ─────────────────────────────────────────────────── ─── Continued front page (72) Inventor Kenichi Shibata 2-18 Keihan Hondori, Moriguchi City, Osaka Sanyo Electric Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】管状基体と、 該管状基体の内面に形成された反射膜と、 該反射膜上に形成され、被検出ガス物質の吸脱着により
吸光度が変化するカラーフォーマー膜からなる機能性色
素膜と、 前記管状基体の一側面外方に設けられ、前記機能性色素
膜への入射光を発生する発光手段と、 前記管状基体の他側面外方に設けられ、前記発光手段か
ら発せられ、前記機能性色素膜にて反射された反射光を
受光する受光手段と、 該受光手段の出力に基づいて、前記機能性色素膜の吸光
度変化を検出し、その変化値に基づいて被検出ガス物質
を検知する検知手段と、を備えたガス物質検出装置であ
って、 前記管状基体内において、前記発光手段から入射光を多
重反射させることを特徴とするガス物質検出装置。
1. A functionality comprising a tubular substrate, a reflective film formed on the inner surface of the tubular substrate, and a color former film formed on the reflective film and having an absorbance changing by adsorption and desorption of a gas substance to be detected. A dye film, a light emitting means provided on the outer side of one side surface of the tubular substrate, and emitting light incident on the functional dye film, and a light emitting means provided on the outer side of the other side surface of the tubular substrate, emitted from the light emitting means. A light receiving means for receiving the reflected light reflected by the functional dye film, and a change in absorbance of the functional dye film based on the output of the light receiving means, and a gas to be detected based on the change value. A gas substance detection device comprising: a detection unit that detects a substance, wherein the incident light from the light emission unit is multiply reflected in the tubular substrate.
【請求項2】前記被検出ガス物質は、匂い物質であるこ
とを特徴とする請求項1記載のガス物質検出装置。
2. The gas substance detection device according to claim 1, wherein the gas substance to be detected is an odor substance.
JP10464792A 1992-04-23 1992-04-23 Gaseous substance detector Pending JPH05296934A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10464792A JPH05296934A (en) 1992-04-23 1992-04-23 Gaseous substance detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10464792A JPH05296934A (en) 1992-04-23 1992-04-23 Gaseous substance detector

Publications (1)

Publication Number Publication Date
JPH05296934A true JPH05296934A (en) 1993-11-12

Family

ID=14386260

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10464792A Pending JPH05296934A (en) 1992-04-23 1992-04-23 Gaseous substance detector

Country Status (1)

Country Link
JP (1) JPH05296934A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000065328A1 (en) * 1999-04-22 2000-11-02 Shimadzu Research Laboratory (Europe) Ltd. Apparatus and method for measuring decay in intensity of electromagnetic radiation in multipass spectrometry

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000065328A1 (en) * 1999-04-22 2000-11-02 Shimadzu Research Laboratory (Europe) Ltd. Apparatus and method for measuring decay in intensity of electromagnetic radiation in multipass spectrometry
US6940600B1 (en) 1999-04-22 2005-09-06 Shimadzu Research Laboratory (Europe) Ltd. Apparatus and method for measuring decay in intensity of electromagnetic radiation in multipass spectrometry

Similar Documents

Publication Publication Date Title
Nylander et al. Gas detection by means of surface plasmon resonance
JP2895229B2 (en) Gas sample chamber
US5661036A (en) Process for the detection of sulfur
US5892140A (en) Micromachined inferential opto-thermal gas sensor
US20100075431A1 (en) Formaldehyde detector body, formaldehyde detector, formaldehyde detection method and formaldehyde detection reagent
CN108351293A (en) Detector with normalized response and improvement sensitivity
JP3864048B2 (en) Fire alarm
US4513087A (en) Reversible optical waveguide vapor sensor
US5042288A (en) Method of sensing contamination in the atmosphere
US5952237A (en) Method for detecting harmful gases which is applicable to broad gas concentration range
JPH05296934A (en) Gaseous substance detector
JPH08247942A (en) Infrared ray gas analyzer
Angelini et al. Plasma modified POF sensors for in situ environmental monitoring of museum indoor environments
JPH07243973A (en) Detecting material for acid gas or alkaline gas, manufacture thereof, and detecting device therefor
JP2007088133A (en) Method and device for measuring surface state
CN110887805A (en) Regional anomalous gas detection device of multiple spot sight
JP2001165769A (en) Contaminant or contaminant gas detecting method
NO300346B1 (en) Photo-acoustic measuring device
JP2000199731A (en) Optical characteristics measuring device and film formation apparatus provided with the optical- characteristic measuring device
WO1995030889A1 (en) Method and device for optoelectronic chemical sensing
JPH0682431A (en) Odor detection device
JPH06317511A (en) Odor detection device
CN218584643U (en) Methane gas detection equipment
JPH09236547A (en) Hydrogen detecting element and its manufacturing method
RU2741266C1 (en) Carbon monoxide test carbon monoxide