JPH05296715A - Measurement device for position of coiled wire material - Google Patents

Measurement device for position of coiled wire material

Info

Publication number
JPH05296715A
JPH05296715A JP4097653A JP9765392A JPH05296715A JP H05296715 A JPH05296715 A JP H05296715A JP 4097653 A JP4097653 A JP 4097653A JP 9765392 A JP9765392 A JP 9765392A JP H05296715 A JPH05296715 A JP H05296715A
Authority
JP
Japan
Prior art keywords
image
bright spot
wire material
lighting
illumination
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4097653A
Other languages
Japanese (ja)
Inventor
Hiroyasu Matsuura
宏育 松浦
Tatsuo Horiuchi
立夫 堀内
Ichiro Ishimaru
伊知郎 石丸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP4097653A priority Critical patent/JPH05296715A/en
Publication of JPH05296715A publication Critical patent/JPH05296715A/en
Pending legal-status Critical Current

Links

Landscapes

  • Image Processing (AREA)
  • Image Analysis (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

PURPOSE:To enable the overall length and posture of a coiled wire material to be obtained by finding the vertex position of the wire material at the radial upper section thereof. CONSTITUTION:Four light guides 3-4 are connected to an illuminant 4 for dividing light into four systems, and four types of lighting 3a to 3d are projected to an air-core coil 1 inserted in a board 2 from the four different radial directions thereof. An image pickup means comprising an image pickup lens 5 and a video camera 6, and an electrode actuator are synchronously operated to obtain the image signals of the four lighting systems. The image signals are inputted to an image processing device 7, converted to binary image signals and, then, saved in an image memory. A lighting system is so established that luminescent spot images 9a and 10a are available from the lighting 3a, luminescent spot images 9b and 10b available from the lighting 3b, and a superposed section is formed in the images 9a and 9b. Luminescent spots 12A and 12B on the upper external surface of the coil 1 are thereby obtained. Also, the luminescent spot gravity 15 and 16 of luminescent spot trains 12A and 12B is obtained, and the gravity center of a luminescent spot on a wire material is calculated, thereby finding the upper vertex 18 of the air-core coil 1 on the center axis thereof. The position of the wire material of the air-core coil 1 and posture thereof are obtained on the basis of the position of the vertex 18. Also, when the diameter of the wire material is known, the overall length L of the coil 1 can be found.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、表面に光沢を有する断
面が円形状である線材を弦巻状に巻いた、例えば空芯コ
イルあるいはバネなどの線材に対して、線材の位置,姿
勢および全長を画像処理により計測を行う方式である。
本方式によれば線材表面の光沢状態や取り付けている基
板などからの周囲からの乱反射の影響を受けにくく、空
芯コイル等の位置計測を安定して行うことが可能とな
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a wire rod, such as an air-core coil or a spring, in which a wire rod having a glossy surface and a circular cross section is wound in a spiral shape. Is a method of performing measurement by image processing.
According to this method, it is possible to stably measure the position of the air-core coil and the like, unlikely to be affected by the glossy state of the surface of the wire or diffuse reflection from the surroundings such as the attached substrate.

【0002】[0002]

【従来の技術】空芯コイルやばねのように、線材を弦巻
状に巻いた物(以後弦巻状線材と呼ぶ)の位置,姿勢及び
全長を非接触で測定する方法の公知例は見当たらない。
2. Description of the Related Art There is no known method for contactlessly measuring the position, posture and total length of a coiled wire (hereinafter referred to as a coiled wire) such as an air-core coil or a spring.

【0003】弦巻状線材を画像処理により位置認識を行
うには以下の問題があった。弦巻状線材に照明を与えた
場合、線材表面の反射による輝点2値化像は物体の上部
外側面と下部内側面に発生する(図1参照)。下部内側
面上に発生する輝点は弦巻線材の線材自身の影に入るこ
とがあるので、必ずしも発生するとは限らない。このた
め、下部内側面上に不安定に発生する輝点像を位置、姿
勢などの計測に利用することは難しい。そこで、上部外
側面上の輝点と下部内側面上の輝点とを区別し上部外側
面上の輝点のみを抽出する必要がある。図1に示すよう
な最も一般的な同軸照明では、図8のように、上部及び
下部に発生する輝点2値化画像が一直線に並んでしまう
ため、上部、下部の判別ができない。また、背後に基板
等がある場合、その正反射が直接入力されるために、弦
巻状線材の輝点像との分離が難しい。透過照明を用いれ
ば、弦巻状の線材のシルエットを得ることができる。し
かし、このシルエットでは物体の立体形状を解析するこ
とは難しく、さらに背後に基板等がある場合には使用で
きない。基板等からの正反射が直接撮像手段に入力され
ないために斜方照明が用いられることがある。公知例、
パターン検出装置(特開昭60−135704)に示さ
れるように、2系統の2値化画像の間で論理演算を行う
ことによって基板等からの反射像を除去する例が知られ
ている。
There have been the following problems in recognizing the position of the coiled wire by image processing. When the coiled wire is illuminated, the binarized image of the bright spots due to the reflection on the surface of the wire is generated on the upper outer surface and the lower inner surface of the object (see FIG. 1). The bright spots generated on the inner surface of the lower portion may enter the shadow of the wire itself of the string winding material, and thus do not always occur. For this reason, it is difficult to use the bright spot image, which is unstablely generated on the inner surface of the lower portion, for measuring the position, posture, and the like. Therefore, it is necessary to distinguish between the bright spots on the upper outer surface and the bright spots on the lower inner surface to extract only the bright spots on the upper outer surface. In the most general coaxial illumination as shown in FIG. 1, since the binarized bright spot images generated in the upper and lower parts are aligned in a straight line as shown in FIG. 8, the upper part and the lower part cannot be distinguished. Further, when there is a substrate or the like in the back, the specular reflection is directly input, so that it is difficult to separate it from the bright spot image of the coiled wire. By using transmitted illumination, it is possible to obtain a silhouette of a wire rod having a string shape. However, it is difficult to analyze the three-dimensional shape of an object with this silhouette, and it cannot be used when there is a substrate or the like behind it. Oblique illumination may be used because specular reflection from the substrate or the like is not directly input to the imaging means. Known example,
As shown in a pattern detection device (Japanese Patent Laid-Open No. 60-135704), an example is known in which a reflected image from a substrate or the like is removed by performing a logical operation between two systems of binarized images.

【0004】[0004]

【発明が解決しようとする課題】表面に光沢のある弦巻
状線材の位置及び姿勢の計測に関して、次のような課題
があった。
The following problems have been encountered in measuring the position and orientation of a spirally wound wire rod having a glossy surface.

【0005】(1)照明光の背景からの正反射像と線材
の輝点像を分離する。
(1) The specular reflection image from the background of the illumination light and the bright spot image of the wire are separated.

【0006】(2)弦巻状線材の輝点像を上部外側か下
部内側かを判別する(図3、図4)。本発明では、以上
の様な問題を解決し、位置,姿勢及び全長を計測するこ
とを可能にする弦巻状線材位置計測装置の提供を目的と
する。
(2) It is determined whether the bright spot image of the coiled wire is the upper outer side or the lower inner side (FIGS. 3 and 4). SUMMARY OF THE INVENTION It is an object of the present invention to provide a string-shaped wire rod position measuring device that solves the above problems and that can measure the position, posture, and overall length.

【0007】[0007]

【課題を解決するための手段】上記課題を解決するため
に、次のように構成した。
[Means for Solving the Problems] In order to solve the above-mentioned problems, the following structure is adopted.

【0008】例えば図3及び図4に示すように弦巻状線
材の径方向上方に、中心軸に対象となるように4方向か
ら投光する照明手段を設けた。また、これらの異なる4
方向の照明個々により得られる対象物の光学像をそれぞ
れ独立に取り込み、4系統の画像信号に変換する撮像手
段と、撮像手段から出力される4系統の画像信号を2値
化画像信号に変換する2値化回路と、2値化画像を記憶
する2値化画像記憶回路、及び、これら4系統の内任意
の2系統の2値化画像信号間の論理積演算を行う画像論
理演算回路と、2値化画像の隣接する複数の輝点を1つ
の群として認識する輝点群認識回路と、それぞれの輝点
群の重心位置を計測する重心演算回路を設けた。
For example, as shown in FIGS. 3 and 4, an illuminating means for projecting light from four directions so as to be symmetrical with respect to the central axis is provided above the coiled wire rod in the radial direction. Also, these different 4
Image pickup means for individually capturing the optical images of the object obtained by the individual illuminations in the directions and converting them into image signals of four systems, and converting the image signals of four systems output from the image pickup means into binary image signals. A binarization circuit, a binarized image storage circuit for storing a binarized image, and an image logical operation circuit for performing a logical product operation between binary image signals of any two of these four systems, A bright point group recognition circuit for recognizing a plurality of adjacent bright points of the binarized image as one group, and a centroid calculation circuit for measuring the centroid position of each bright point group are provided.

【0009】[0009]

【作用】図5に示すように、弦巻状線材に斜方照明を与
えた場合、上部外側面と下部内側面に発生する。これら
の輝点像は図6に示すように弦巻状線材の中心軸をはさ
んで、2列に並んで発生する。この時、上部外側面上の
輝点像は照明側の列に、下部内側面上に発生する輝点像
はその反対側の列に位置するため、この2者を容易に区
別できるようになる。また、斜方照明によって得られる
2値化画像中の輝点像は照明方向に依存している。異物
等の要因に対して起こる輝点ノイズも照明方向に依存し
ている。このため、2方向から斜方照明を与えることで
異なる位置に輝点ノイズを発生させることができる。従
って、この2つの2値化画像間で、論理積演算を行うこ
とでこの輝点ノイズを排除できる。
As shown in FIG. 5, when oblique illumination is applied to the coiled wire, it occurs on the upper outer surface and the lower inner surface. As shown in FIG. 6, these bright spot images are generated in two rows with the central axis of the coiled wire rod interposed therebetween. At this time, the bright spot images on the upper outer surface are located in the row on the illumination side, and the bright spot images generated on the lower inner surface are located in the row on the opposite side, so that the two can be easily distinguished. .. The bright spot image in the binarized image obtained by the oblique illumination depends on the illumination direction. Bright spot noise caused by factors such as foreign matter also depends on the illumination direction. Therefore, bright spot noise can be generated at different positions by applying oblique illumination from two directions. Therefore, the bright spot noise can be eliminated by performing a logical product operation between the two binarized images.

【0010】一方、線材上に発生する輝点像も照明方向
に依存しているが、同時に、乱反射により輝点像が膨張
する。対象物を中心として例えば図7に示すように90
degずらせた2カ所の位置から個々に斜方照明を与え、
その2値化画像の間で論理積演算を行うことにより、こ
れら2つの照明の中間位置に輝点像を発生させることが
できる。
On the other hand, the bright spot image generated on the wire also depends on the illumination direction, but at the same time, the bright spot image expands due to irregular reflection. For example, as shown in FIG.
From each of the two positions that are offset by deg, give oblique illumination individually,
By performing a logical product operation between the binarized images, a bright spot image can be generated at an intermediate position between these two illuminations.

【0011】この論理積演算によってできた輝点を輝点
群処理し、上部外側面上の輝点群それぞれの重心演算を
行う。こうして求めた上部外側面上の輝点は、上から見
て弦巻状線材の中心軸より照明側に位置する。弦巻状線
材の中心軸上の上部頂点位置を求めるために、これまで
行った操作を中心軸に対称の反対側の2系統の照明装置
を用いて行う。そして、上の操作で求まった輝点群重心
点列とここで求めた輝点群重心点列を比較し、対応する
輝点を調べ、その中点を求めることにより、弦巻状線材
の中心軸上の上部頂点座標列を得ることができる。ま
た、弦巻状線材の全長及び姿勢は図8のように求めこと
が可能となる。物体の長さLは、対象物を構成する線材
の直径Dが分かっていれば、 〔数1〕 L=l+D(1/COSθ2 +1/COSθ3)/2 ≒l+D ただし、l≒(弦巻線状物体中心軸上の両端の頂点間距
離)、 θ2,θ3≒0 というように求めることができる。また、この物体の姿
勢は例えば物体中心軸上の頂点列の回帰直線の傾きから
求めることができる。
The bright spots formed by this logical product calculation are processed as a bright spot group, and the center of gravity of each bright spot group on the upper outer surface is calculated. The bright spot thus obtained on the upper outer surface is located on the illumination side with respect to the central axis of the coiled wire as viewed from above. In order to obtain the position of the upper apex on the central axis of the coiled wire, the operations performed so far are performed using two systems of illumination devices on the opposite side symmetrical about the central axis. Then, by comparing the bright point group center of gravity point sequence obtained by the above operation with the bright point group center of gravity point sequence obtained here, the corresponding bright point is examined, and the midpoint thereof is determined to determine the center axis of the coiled wire. You can get the upper vertex coordinate sequence. Further, the total length and posture of the coiled wire can be obtained as shown in FIG. If the diameter D of the wire that constitutes the object is known, the length L of the object is [Equation 1] L = l + D (1 / COSθ2 + 1 / COSθ3) / 2 ≈l + D where l≈ (string winding object The distance between the vertices at both ends on the central axis), θ2, θ3 ≈ 0. Further, the posture of this object can be obtained, for example, from the slope of the regression line of the apex row on the central axis of the object.

【0012】[0012]

【実施例】本発明を実施例により、詳細に説明する。The present invention will be described in detail with reference to Examples.

【0013】図3に本発明の実施例を示す。本実施例
は、基板に挿入された空芯コイルの位置計測を行う装置
である。図3に示すように、光源4に4本のライトガイ
ド3−4を接続し光を4系統に分割する。これらのライ
トガイド3−4により導かれた各々の光を、集光レンズ
3−3によって集光する。集光レンズ3−3の先端を遮
る仕切板3−1と,これを駆動する電磁アクチュエータ
3−2から成るシャッタにより、投光をON,OFFさ
せる。これら4つの照明3a〜3dを空芯コイル径方向
の異なる4方向から基板2に挿入した空芯コイル1に投
光する。図4はこの照明配置を上から見た図である。こ
のように、空芯コイル中心軸に対称となるように照明3
a,3bと3c,3dを配置する。
FIG. 3 shows an embodiment of the present invention. The present embodiment is an apparatus for measuring the position of an air core coil inserted in a substrate. As shown in FIG. 3, four light guides 3-4 are connected to the light source 4 to divide the light into four systems. The respective lights guided by these light guides 3-4 are condensed by the condenser lens 3-3. The projection light is turned on and off by a shutter composed of a partition plate 3-1 which blocks the tip of the condenser lens 3-3 and an electromagnetic actuator 3-2 which drives the partition plate 3-1. The four illuminations 3a to 3d are projected onto the air-core coil 1 inserted in the substrate 2 from four different directions of the air-core coil radial direction. FIG. 4 is a view of this illumination arrangement viewed from above. In this way, the illumination 3 is arranged so as to be symmetrical with respect to the central axis of the air-core coil.
Arrange a, 3b and 3c, 3d.

【0014】撮像レンズ5とビデオカメラ6によって構
成される撮像手段と、電磁アクチュエータを連動させて
用いることにより、4方向の照明個々による4系統の画
像信号を得る。この画像信号を画像処理装置7に入力し
て、2値化画像信号に変換する。そして、この2値化画
像信号を画像処理装置7内の画像メモリに記憶する。コ
イルの軸に対して照明装置を左右(図4,AとB)に分
けて、同じ側の2値化画像データ同士で論理積演算を行
う。図4の場合、照明系3aと3b(A)、照明系3c
と3d(B)というように分け、この2組のそれぞれの
投光による2値化画像の結果を論理積演算する。この演
算の例(Aの場合)を図7に示す。このように照明3a
により輝点像9a,10a、照明3bにより輝点像9
b,10bを得ることができる。このうち9a,9bに
交わる部分があるように照明系を設定する。
By using the image pickup means constituted by the image pickup lens 5 and the video camera 6 and the electromagnetic actuator in conjunction with each other, image signals of four systems by individual illumination in four directions are obtained. This image signal is input to the image processing device 7 and converted into a binarized image signal. Then, the binarized image signal is stored in the image memory in the image processing device 7. The illuminating device is divided into the left and right (FIG. 4, A and B) with respect to the axis of the coil, and the logical product operation is performed between the binarized image data on the same side. In the case of FIG. 4, the illumination systems 3a and 3b (A), the illumination system 3c
And 3d (B), and the result of the binarized image by each of these two sets of light projections is ANDed. An example of this calculation (case A) is shown in FIG. Lighting 3a
The bright spot images 9a and 10a by the
b, 10b can be obtained. The illumination system is set so that there is a portion where 9a and 9b intersect.

【0015】乱反射により膨張した輝点像から、線材の
中心点を求めるために次の操作を行う。各方向からの輝
点像は乱反射の影響により膨張して観測されるため、例
えば照明装置3a、3bによる輝点像が共通して発生す
る部分は線材の中心付近12A、13である。そこで、
照明装置3a及び3bの2値化画像間の論理演算結果は
図7の12A及び13という輝点像である。これらの輝
点12A及び13の重心位置を演算し、輝点群の回帰直
線を求め、それに対して照明側の点を上部外側面上の輝
点列、反対側の点を下部内側面上の輝点列として分離す
る。下部内側面上の輝点はコイルの線材自身の影に入
り、安定して発生しない。そこで、本装置では、安定し
て得られる上部外側面上の輝点12Aを用いる。また、
以上の方法によって、もう1組の照明系Bも同様の演算
を行い、上部外側面上の輝点12Bを得る。
The following operation is performed to find the center point of the wire from the bright spot image expanded by diffuse reflection. Since the bright spot images from each direction are expanded and observed due to the influence of diffuse reflection, the portions where the bright spot images are commonly generated by the illumination devices 3a and 3b are near the centers 12A and 13 of the wire. Therefore,
The logical operation result between the binarized images of the illumination devices 3a and 3b is the bright spot images 12A and 13 in FIG. The centroid positions of these bright spots 12A and 13 are calculated to obtain the regression line of the bright spot group, on the other hand, the points on the illumination side are the bright spots on the upper outer surface, and the points on the opposite side are on the lower inner surface. Separate as a sequence of bright spots. The bright spots on the inner surface of the lower part enter the shadow of the wire itself of the coil and do not occur stably. Therefore, in this apparatus, the bright spot 12A on the upper outer surface that is stably obtained is used. Also,
By the above method, the other set of illumination system B also performs the same calculation to obtain the bright spot 12B on the upper outer surface.

【0016】こうして求められた、線材外側面上の輝点
列12A,12Bは、図9に示すように空芯コイルの中
心軸に対して対称に並んでいる。そこで、上で求めた2
つの輝点列12A,12Bそれぞれの輝点の重心15及
び16を求め、対応する線材上の輝点の重心の中点を算
出することによってコイルの中心軸上の上部頂点18を
求めることができる。この操作によって、基板からの正
反射像の影響を排除することができる。さらに、画像デ
ータ上に発生するノイズをさらに低減させることもでき
る。これらのコイルの軸上の上部頂点18の位置をもと
に、空芯コイルの線材の位置,コイルの姿勢(図7のθ
1 )を求めれる。また、予め線材の線径Dが分かってい
れば、コイルの全長Lは 〔数2〕 L=l+D(1/COSθ2+1/COSθ3)/2 ≒l+D ただし、l≒(コイル中心軸上の両端の頂点間距離)、 θ2,θ3≒0 (図7) というように求めることができる。
The bright spot rows 12A and 12B on the outer surface of the wire thus obtained are arranged symmetrically with respect to the central axis of the air-core coil as shown in FIG. Therefore, 2 obtained above
The upper vertices 18 on the central axis of the coil can be obtained by obtaining the centers of gravity 15 and 16 of the respective bright spots of the two bright spot rows 12A and 12B and calculating the midpoint of the center of gravity of the bright spots on the corresponding wire. .. By this operation, the influence of the specular reflection image from the substrate can be eliminated. Furthermore, it is possible to further reduce the noise generated on the image data. Based on the position of the upper apex 18 on the axes of these coils, the position of the wire rod of the air-core coil and the posture of the coil (θ in FIG. 7).
1) is required. If the wire diameter D of the wire is known in advance, the total length L of the coil is [Equation 2] L = l + D (1 / COSθ2 + 1 / COSθ3) / 2 ≈l + D where l≈ (vertex of both ends on the coil center axis) Distance), θ2, θ3 ≈ 0 (Fig. 7).

【0017】[0017]

【発明の効果】本発明によれば、弦巻状線材の径方向上
部の線材頂点位置のみを得ることができる。これにより
弦巻状線材の全長及び姿勢を求めることが可能となる。
また、空芯コイルの巻き数のチェック、ギャップ間隔の
測定等も可能となる。
According to the present invention, it is possible to obtain only the wire rod apex position of the upper part in the radial direction of the coiled wire rod. This makes it possible to determine the total length and posture of the coiled wire.
Also, it is possible to check the number of turns of the air-core coil and measure the gap interval.

【図面の簡単な説明】[Brief description of drawings]

【図1】同軸照明を用いた場合の輝点像の発生位置を示
す図である。
FIG. 1 is a diagram showing a position where a bright spot image is generated when coaxial illumination is used.

【図2】同軸照明を用いた場合の輝点像発生位置を示す
図である。
FIG. 2 is a diagram showing a bright spot image generation position when coaxial illumination is used.

【図3】弦巻状線材位置計測装置の構成例を示す図であ
る。
FIG. 3 is a diagram showing a configuration example of a coiled wire rod position measuring device.

【図4】上方向から見た照明系の配置を示す図である。FIG. 4 is a diagram showing an arrangement of illumination systems viewed from above.

【図5】斜方照明を用いた場合の輝点像の発生位置を示
す図である。
FIG. 5 is a diagram showing a position where a bright spot image is generated when oblique illumination is used.

【図6】斜方照明を用いた場合の輝点像発生位置を示す
図である。
FIG. 6 is a diagram showing a bright spot image generation position when oblique illumination is used.

【図7】4方向中、2方向から斜方照明を与えた場合の
輝点像の発生位置を示す図である。
FIG. 7 is a diagram showing a generation position of a bright spot image when oblique illumination is applied from two directions in four directions.

【図8】弦巻状線材の姿勢及び長さの算出方法を示す図
である。
FIG. 8 is a diagram showing a method of calculating a posture and a length of a coiled wire.

【図9】弦巻状線材の中心軸上頂点位置の算出方法を示
す図である。
FIG. 9 is a diagram showing a method of calculating a vertex position on a central axis of a coiled wire.

【符号の説明】[Explanation of symbols]

1…弦巻状線材(空芯コイル)、2…基板、3,3a,
3b,3c,3d…照明系、3−1…仕切板、3−2…
電磁アクチュエータ、3−3…集光レンズ、3−4…ラ
イトガイド、4…光源、5…撮像レンズ、6…ビデオカ
メラ、7…画像処理装置、8…同軸照明、9…弦巻状線
材の上部外側面上にできる輝点像、9a…照明系3aに
よって弦巻状線材の上部外側面上にできる輝点像、9b
…照明系3bによって弦巻状線材の上部外側面上にでき
る輝点像、10…弦巻状線材の下部内側面上にできる輝
点像、10a…照明系3aによって弦巻状線材の下部内
側面上にできる輝点像、10b…照明系3bによって弦
巻状線材の下部内側面上にできる輝点像、11…背景
(基板)の反射像、12A…照明系3a及び3bによっ
てできる弦巻状線材の上部外側面上の輝点像間の論理積
演算結果、12B…照明系3c及び3dによってできる
弦巻状線材の上部外側面上の輝点像間の論理積演算結
果、13A…照明系3a及び3bによってできる弦巻状
線材の下部内側面上の輝点像間の論理積演算結果、13
B…照明系3c及び3dによってできる弦巻状線材の下
部内側面上の輝点像間の論理積演算結果、14…12及
び13の重心の点群の回帰直線、15…12Aの輝点像
の重心位置、16…12Bの輝点像の重心位置、17…
15及び16で対応する輝点像重心の間の中点、18…
17の回帰直線。
1 ... Wound wire (air core coil), 2 ... Substrate, 3, 3a,
3b, 3c, 3d ... Illumination system, 3-1 ... Partition plate, 3-2 ...
Electromagnetic actuator, 3-3 ... Condensing lens, 3-4 ... Light guide, 4 ... Light source, 5 ... Imaging lens, 6 ... Video camera, 7 ... Image processing device, 8 ... Coaxial illumination, 9 ... Upper part of coiled wire Bright spot image formed on the outer surface, 9a ... Bright spot image formed on the upper outer surface of the coiled wire by the illumination system 3a, 9b
... a bright spot image formed on the upper outer surface of the coiled wire by the illumination system 3b, 10 ... a bright spot image formed on the lower inner surface of the coiled wire, 10a ... on the lower inner surface of the coiled wire by the illumination system 3a Bright spot image that can be formed, 10b ... A bright spot image that is formed on the lower inner surface of the coiled wire by the illumination system 3b, 11 ... A reflection image of the background (substrate), 12A ... Outer upper part of the coiled wire that is formed by the illumination systems 3a and 3b. Logical product calculation result between bright spot images on the side surface, 12B ... Logical product calculation result between bright spot images on the upper outer surface of the coiled wire formed by the illumination systems 3c and 3d, 13A ... Performed by the illumination systems 3a and 3b The result of the logical product operation between the bright spot images on the lower inner surface of the coiled wire, 13
B ... Result of AND operation between the bright spot images on the lower inner surface of the coiled wire formed by the illumination systems 3c and 3d, regression line of the point groups 14 ... 12 and 13 and the bright spot image of 15 ... 12A Center of gravity position, 16 ... Center of gravity position of bright spot image of 12B, 17 ...
The midpoint between the luminescent spot image centroids corresponding to 15 and 16, 18 ...
17 regression lines.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】弦巻状に巻かれた線材の径方向の異なる4
方向から照明する手段と、4方向別々に照明して得られ
る光学像を独立に取り込み、4系統の画像信号に変換す
る撮像手段と、撮像手段から出力される4系統の画像信
号を2値化画像信号に変換する2値化回路と、2値化画
像信号を記憶する2値化画像記憶回路、4系統中任意の
2系統の2値化画像信号間の論理積演算を行う画像論理
演算回路と、これにより得られる2値化画像の隣接する
複数の輝点を1つの群として認識する輝点群認識回路
と、それぞれの輝点群の重心位置を算出する重心演算回
路によって構成することを特徴とする弦巻状線材位置計
測装置。
1. Wires wound in the shape of strings in different radial directions.
Means for illuminating from four directions, imaging means for independently capturing optical images obtained by separately illuminating in four directions, and converting into four-system image signals, and binarizing four-system image signals output from the imaging means A binarization circuit for converting into an image signal, a binarized image storage circuit for storing the binarized image signal, and an image logical operation circuit for performing a logical product operation between the binarized image signals of any two of the four systems. And a bright spot group recognition circuit for recognizing a plurality of adjacent bright spots in the binarized image obtained as a single group, and a gravity center calculation circuit for calculating the gravity center position of each bright spot group. Characteristic winding wire position measuring device.
JP4097653A 1992-04-17 1992-04-17 Measurement device for position of coiled wire material Pending JPH05296715A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4097653A JPH05296715A (en) 1992-04-17 1992-04-17 Measurement device for position of coiled wire material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4097653A JPH05296715A (en) 1992-04-17 1992-04-17 Measurement device for position of coiled wire material

Publications (1)

Publication Number Publication Date
JPH05296715A true JPH05296715A (en) 1993-11-09

Family

ID=14198047

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4097653A Pending JPH05296715A (en) 1992-04-17 1992-04-17 Measurement device for position of coiled wire material

Country Status (1)

Country Link
JP (1) JPH05296715A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010101693A (en) * 2008-10-22 2010-05-06 Chuo Spring Co Ltd Apparatus and method for measuring shape of coil spring
US10872418B2 (en) 2016-10-11 2020-12-22 Kabushiki Kaisha Toshiba Edge detection device, an edge detection method, and an object holding device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010101693A (en) * 2008-10-22 2010-05-06 Chuo Spring Co Ltd Apparatus and method for measuring shape of coil spring
US10872418B2 (en) 2016-10-11 2020-12-22 Kabushiki Kaisha Toshiba Edge detection device, an edge detection method, and an object holding device

Similar Documents

Publication Publication Date Title
JP2927955B2 (en) Real-time three-dimensional sensing device
US4731856A (en) Automatic assembly apparatus
US5986763A (en) Method for measuring heights of bumps and apparatus for measuring heights of bumps
JP2564963B2 (en) Target and three-dimensional position and orientation measurement system using the target
JP3386269B2 (en) Optical inspection equipment
JP2007523333A (en) Surface inspection method and system
JPH05508702A (en) Automatic monitoring method and device for three-dimensional shape data in semiconductor device manufacturing
TW384387B (en) Method and apparatus for visually inspecting an object
CN1975790B (en) Coin detecting apparatus
US5045688A (en) Method and apparatus for inspection of bottle thread having a unitary image plane
JPWO2003032261A1 (en) Coin discrimination device and coin discrimination method
US3712979A (en) Illumination of convex surfaces
JPH05296715A (en) Measurement device for position of coiled wire material
JPH11160247A (en) Method and apparatus for visual inspection
JPH06307833A (en) Surface unevenness shape recognizing device
US10571667B2 (en) Device and method for imaging an object by arranging a reflective optical surface or reflective optical system around the object
JPH029297B2 (en)
JPH10288508A (en) External appearance inspection device
JPS636679A (en) Method for detecting tilt of wire
JPS61193007A (en) Inspecting method for rod type projection body
JPS6280505A (en) Shape inspecting device for spiral spring
JP4231445B2 (en) Coin identification device
TW200946900A (en) Device for the optical detection of the lateral position of characteristics on traveling material webs and method for operating this device
JPH03197806A (en) Measurement light projector
JPH0124561Y2 (en)