JPH0529583Y2 - - Google Patents

Info

Publication number
JPH0529583Y2
JPH0529583Y2 JP1988114446U JP11444688U JPH0529583Y2 JP H0529583 Y2 JPH0529583 Y2 JP H0529583Y2 JP 1988114446 U JP1988114446 U JP 1988114446U JP 11444688 U JP11444688 U JP 11444688U JP H0529583 Y2 JPH0529583 Y2 JP H0529583Y2
Authority
JP
Japan
Prior art keywords
flexible boot
wall thickness
wall
valleys
circumferential
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1988114446U
Other languages
Japanese (ja)
Other versions
JPH0234865U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP1988114446U priority Critical patent/JPH0529583Y2/ja
Publication of JPH0234865U publication Critical patent/JPH0234865U/ja
Application granted granted Critical
Publication of JPH0529583Y2 publication Critical patent/JPH0529583Y2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Sealing Devices (AREA)
  • Diaphragms And Bellows (AREA)

Description

【考案の詳細な説明】 産業上の利用分野 本考案は、相対変位する機械要素の結合部分を
覆つて塵埃、水等の侵入を防ぎ、自由に伸縮、屈
曲変形するフレキシブルブーツに関するものであ
る。
[Detailed Description of the Invention] Industrial Application Field The present invention relates to a flexible boot that covers the joints of mechanical elements that are relatively displaced to prevent the intrusion of dust, water, etc., and that can freely expand, contract, and bend.

従来技術 斯かるフレキシブルブーツは例えば自動車のス
テアリング装置、動力伝達系等で用いられ、通
常、その主胴部分が複数の山谷部を有する蛇腹形
状体として形成されている。ここで、自動車のラ
ツク・ピニオン式ステアリング装置に適用したフ
レキシブルブーツの例について述べる(第6図参
照)。ラツク・ピニオン式ステアリング装置は、
ハンドルの回転運動をラツクにより直ちに直線運
動に変えて操向を行う形式のものである。第6図
はその要部構造を示しており、ピニオン軸1の先
端にはラツク(ラツク軸3参照)と噛み合うピニ
オンが付され、ラツクがピニオンの回転に応じて
ステアリング・ハウジング2の中を左右に直線的
に動く。ラツク軸3の両端にはタイロツド4が連
結されており、ラツク軸3の動きがタイロツド4
を介して左右両車輪のナツクルアームに伝達さ
れ、車輪の操向が行われる。
PRIOR ART Such flexible boots are used, for example, in automobile steering devices, power transmission systems, etc., and the main body portion thereof is usually formed as a bellows-shaped body having a plurality of peaks and troughs. Here, an example of a flexible boot applied to a rack and pinion type steering device of an automobile will be described (see FIG. 6). The rack and pinion steering system is
This type of steering is performed by immediately converting the rotational movement of the handle into linear movement using a rack. Figure 6 shows the structure of the main part. A pinion that engages with a rack (see rack shaft 3) is attached to the tip of the pinion shaft 1, and the rack moves left and right inside the steering housing 2 according to the rotation of the pinion. move in a straight line. A tie rod 4 is connected to both ends of the rack shaft 3, and the movement of the rack shaft 3 is controlled by the tie rod 4.
The signal is transmitted to the knuckle arms of both the left and right wheels through the steering wheel, and the wheels are steered.

ゴム、樹脂等のエラストマーで形成されたフレ
キシブルブーツ8は、ラツク軸3とタイロツド4
の連結部であるボールジヨイント5部分、および
ラツク軸3の端部を覆つて締着バンド6,7によ
りタイロツド4、ステアリング・ハウジング2に
嵌着固定される。フレキシブルブーツ8は、山部
10、谷部11の複数の連なりから成る蛇腹形状
体として形成されたその主胴部9の一端が大径の
開口として、他端が小径の開口としてそれぞれ開
放されている。
A flexible boot 8 made of elastomer such as rubber or resin is connected to the rack shaft 3 and the tie rod 4.
It is fitted and fixed to the tie rod 4 and steering housing 2 by means of fastening bands 6 and 7, covering the ball joint 5, which is the connecting part of the rack shaft 3, and the end of the rack shaft 3. The flexible boot 8 is formed as a bellows-shaped body consisting of a plurality of series of peaks 10 and troughs 11. One end of the main body 9 is open as a large-diameter opening, and the other end is open as a small-diameter opening. There is.

フレキシブルブーツ8は装着状態で密封空間を
画成し、該空間内に空気が満たされた状態とな
る。
The flexible boot 8 defines a sealed space in the attached state, and the space is filled with air.

考案が解決しようとする課題 しかるに、フレキシブルブーツを形成するゴ
ム、樹脂等の材料は気体透過性を有しており、該
気体透過量はフレキシブルブーツ内外面間の圧力
差の増大および温度上昇に応じて増加する。その
ため、周囲温度の上昇等によりフレキシブルブー
ツ内の空気が膨張して内圧が高くなると、該密封
空間内の空気がフレキシブルブーツの壁を透過し
て外部へ逃げ、次に温度低下によつて密封空間内
の空気が収縮すると、密封空間内が負圧になり、
外部の空気がフレキシブルブーツの壁を透過して
密封空間内へ侵入するという現象が生じる。この
空気の出入り現象では、温度上昇時に排出される
気体透過速度に比して温度低下時に侵入する気体
透過速度が極めて小さいために、フレキシブルブ
ーツ内の空気量が初期低温時の量にまで復帰する
のに著しく長い時間を必要とする。従つて、温度
上昇と低下が反復して起ると、フレキシブルブー
ツ内の圧力が徐々に降下し、それに伴つてフレキ
シブルブーツの主胴部の壁が徐々に径方向内方へ
凹むことになる。このように凹んだ状態でフレキ
シブルブーツを使用していると、該フレキシブル
ブーツが内部の機械要素と頻繁に接触して早期に
摩耗し、或いは機械要素相互の間に噛み込まれて
破断してしまうおそれがある。また、凹みが進行
してフレキシブルブーツが異常変形し、局部的な
応力集中が起つて破断に到ることもある。
Problems to be solved by the invention However, the materials forming the flexible boot, such as rubber and resin, have gas permeability, and the amount of gas permeation increases as the pressure difference between the inner and outer surfaces of the flexible boot increases and the temperature rises. increases. Therefore, when the air inside the flexible boot expands and the internal pressure increases due to a rise in ambient temperature, etc., the air in the sealed space passes through the wall of the flexible boot and escapes to the outside, and then due to the temperature drop, the air in the sealed space increases. When the air inside contracts, the sealed space becomes negative pressure,
A phenomenon occurs in which outside air penetrates the wall of the flexible boot and enters the sealed space. In this phenomenon of air entering and exiting, the rate of gas permeation that enters when the temperature drops is extremely small compared to the rate of gas permeation that is released when the temperature rises, so the amount of air inside the flexible boot returns to the amount at the initial low temperature. It takes a significantly longer time. Therefore, when the temperature rises and falls repeatedly, the pressure within the flexible boot gradually decreases, and the wall of the main body of the flexible boot gradually recesses inward in the radial direction. If a flexible boot is used in such a concave state, the flexible boot will frequently come into contact with internal mechanical elements and wear out prematurely, or it will get caught between the mechanical elements and break. There is a risk. Further, as the dent progresses, the flexible boot may become abnormally deformed, causing localized stress concentration, which may lead to breakage.

本考案は斯かる技術的背景の下に創案されたも
のであり、温度変化等によるフレキシブルブーツ
内密封空間の負圧現象が生じても主胴部の凹み変
形が生じ難い剛性の大きなフレキシブルブーツを
提供することをその目的とする。
The present invention was devised against this technical background, and is designed to provide a highly rigid flexible boot that is unlikely to cause concave deformation of the main trunk even if a negative pressure phenomenon occurs in the sealed space inside the flexible boot due to temperature changes, etc. Its purpose is to provide.

課題を解決するための手段およびその作用 この目的は、ゴム、樹脂等のエラストマーから
なり、主胴部分が複数の山谷部を有する蛇腹形状
体として形成されたフレキシブルブーツにおい
て、一つ又は相隣接する少数の任意の山谷部につ
き、山頂部分と谷底部分のうち少なくとも一方の
壁厚を、周方向に沿う少なくとも一箇所で相対的
に短い周長範囲に亘つて残部よりも厚肉に形成
し、フレキシブルブーツの軸線方向で前記一つ又
は相隣接する少数の山谷部と隣り合う山谷部の同
様の厚肉部分と前者の厚肉部分との周方向位相を
ずらすことによつて達成される。
Means for Solving the Problems and Their Effects This object is to provide a flexible boot made of an elastomer such as rubber or resin and whose main body portion is formed as a bellows-shaped body having a plurality of peaks and troughs. For a small number of arbitrary peaks and valleys, the wall thickness of at least one of the peak part and the valley bottom part is formed to be thicker than the remaining part over a relatively short circumferential length range at at least one place along the circumferential direction, thereby making the wall thickness flexible. This is achieved by shifting the circumferential phase of the one or a small number of adjacent peaks and valleys and the similar thickened portions of the adjacent peaks and valleys and the former thickened portion in the axial direction of the boot.

本考案の原理を第1図、第2図により説明す
る。第1図は第6図に示す如きフレキシブルブー
ツの任意の山部につき、その山頂部分20に沿つ
て輪切り状に截断した断面図であり、直交する座
標軸x,yで示される座標に即して言えば、x軸
と交差する位置にある対向壁20a,20aの壁
厚が小さく、y軸と交差する位置にある対向壁2
0b,20bの壁厚が大きくなつている。第2図
は前記第1図の山部に隣接する山部につき、その
山頂部分21に沿つて輪切り状に截断した断面図
であり、x軸と交差する位置にある対向壁21
a,21aの壁厚が大きく、y軸と交差する位置
にある対向壁21b,21bの壁厚が小さくなつ
ている。
The principle of the present invention will be explained with reference to FIGS. 1 and 2. FIG. 1 is a cross-sectional view of an arbitrary mountain part of the flexible boot as shown in FIG. In other words, the wall thickness of the opposing walls 20a, 20a at the position intersecting the x-axis is small, and the opposing wall 2 at the position intersecting the y-axis
The wall thickness of 0b and 20b is increased. FIG. 2 is a cross-sectional view of the mountain adjacent to the mountain shown in FIG. 1, taken along the top portion 21 of the mountain.
The wall thicknesses of the walls a and 21a are large, and the wall thicknesses of the opposing walls 21b and 21b at positions intersecting the y-axis are small.

このように、山頂部分の壁厚が周方向で変化し
ている場合、機械要素に装着されたフレキシブル
ブーツの密封空間A内が温度変化によつて減圧状
態になると、例えば第1図における山頂部分20
が、周方向での剛性の違いにより矢印B,Cで指
示されるようにy軸方向を長径とする楕円形状に
変形しようとする。ところが、隣接する山部の山
頂部分21はその周方向における壁厚の大小関係
が山頂部分20と相違し、厚肉の壁21a,21
aの周方向における位相が厚肉の壁20b,20
bに対して中心角(θ)=90度だけずれているた
め、密封空間A内が減圧状態になることによつて
矢印D,Eで指示されるようにx軸方向を長径と
する楕円形状に変形しようとする。したがつて、
山頂部分20の薄肉壁20a,20aを内側へ凹
ませようとする矢印Bで指示される力に対して、
山頂部分21の厚肉壁21a,21aを外側へ膨
らませようとする矢印Eで指示される力が対抗
し、同様に矢印Dで指示される力に対して矢印C
で指示される力が対抗する。この事は、山頂部分
20の薄肉壁20aの低い剛性を隣接する山頂部
分21の厚肉壁21aの高い剛性で補い得ること
を意味している。かくて、全ての相隣接する山部
につき、山頂部分の厚肉壁の周方向における位相
を相互にずらすことにより、密封空間A内が減圧
状態になつたときのフレキシブルブーツの主胴部
壁が内側へ凹む現象を効果的に防ぐことができ
る。ここで留意すべきは、山頂部分の壁厚を全周
に亘つて大きくした場合に比べて前記本考案の構
成を採用した場合の方が減圧時の変形抵抗を大き
くでき、また材料節減効果が得られることであ
る。以上のような作用効果は、隣り合う山頂部分
の厚肉壁の位相差を中心角90度未満にしても得る
ことができ、厚肉壁(厚肉部分)の数を一対(二
つ)に限らず一つ又は三つ以上にしてもよい。た
だし、その数を余り増やすと、山頂部分の壁厚を
全周に亘つて大きくした場合と差がなくなる。
In this way, when the wall thickness of the mountain top part changes in the circumferential direction, if the pressure inside the sealed space A of the flexible boot attached to the machine element becomes reduced due to temperature changes, for example, the mountain top part in FIG. 20
However, due to the difference in rigidity in the circumferential direction, it tries to deform into an elliptical shape with the major axis in the y-axis direction, as indicated by arrows B and C. However, the mountain top portion 21 of the adjacent mountain portion is different from the mountain top portion 20 in the size relationship of wall thickness in the circumferential direction, and thick walls 21a, 21
Walls 20b, 20 whose phase in the circumferential direction of a is thick
Since the central angle (θ) is shifted by 90 degrees from b, the pressure inside the sealed space A becomes reduced, resulting in an elliptical shape with the major axis in the x-axis direction, as indicated by arrows D and E. trying to transform into Therefore,
Against the force indicated by arrow B that attempts to dent the thin walls 20a, 20a of the mountain top portion 20 inward,
The force indicated by arrow E which attempts to bulge the thick walls 21a, 21a of the mountain top portion 21 outward opposes the force indicated by arrow D, and similarly the force indicated by arrow D is opposed by arrow C.
The forces directed by will oppose. This means that the low rigidity of the thin wall 20a of the peak portion 20 can be compensated for by the high rigidity of the thick wall 21a of the adjacent peak portion 21. Thus, by mutually shifting the circumferential phase of the thick wall at the top of all the adjacent peaks, the main trunk wall of the flexible boot when the sealed space A is in a reduced pressure state is The phenomenon of inward depression can be effectively prevented. What should be noted here is that compared to the case where the wall thickness at the top of the mountain is increased over the entire circumference, when the structure of the present invention is adopted, the deformation resistance during depressurization can be increased, and the material saving effect is also reduced. That's what you get. The above-mentioned effects can be obtained even if the phase difference between the thick walls at the adjacent peak parts is less than 90 degrees at the center angle, and the number of thick walls (thick parts) is reduced to one pair (two). However, the number may be one or three or more. However, if the number is increased too much, there will be no difference from the case where the wall thickness at the top of the mountain is increased over the entire circumference.

本考案の構成としては幾つかの異なる形態が考
えられ、その数例を以下に示す。
Several different configurations of the present invention are possible, some examples of which are shown below.

第1図、第2図に示すように隣り合う山頂部
分の各大きな壁厚箇所の周方向位相をずらす。
As shown in FIGS. 1 and 2, the circumferential phase of each large wall thick portion of adjacent mountain top portions is shifted.

前項の構成に加えて、谷底部分についても
周方向に沿う局所範囲(相対的に短い周長範
囲)の壁厚を大きくなし、隣り合う谷底部分の
各大きな壁厚箇所の周方向位相をずらす。
In addition to the configuration described in the previous section, the wall thickness of the local range (relatively short circumferential length range) along the circumferential direction of the valley bottom portion is increased, and the circumferential phase of each large wall thickness location of adjacent valley bottom portions is shifted.

前項の構成において、対をなす山頂部分と
谷底部分の各厚肉壁位置の周方向位相差を中心
角(θ)=0°とする。
In the configuration described above, the circumferential phase difference between the thick-wall positions of the peak and bottom portions of each pair is set to a central angle (θ) of 0°.

前項の構成において、対をなす山頂部分と
谷底部分の各厚肉壁位置の周方向の位相を互い
にずらす。
In the configuration described in the previous section, the circumferential phases of the respective thick wall positions of the paired mountain top portion and valley bottom portion are shifted from each other.

前項の構成から前記の構成を省く。即
ち、前項の構成を採用せず、谷底部分につい
て周方向に沿う局所範囲(相対的に短い周長範
囲)の壁厚を大きくなし、隣り合う谷底部分の
各大きな壁厚箇所の周方向位相をずらす。
The above configuration is omitted from the configuration in the previous section. That is, without adopting the configuration described in the previous section, the wall thickness is increased in a local range along the circumferential direction (relatively short circumferential length range) in the valley bottom part, and the circumferential phase of each large wall thickness point in the adjacent valley bottom part is changed. shift.

隣り合う複数(好ましくは二つ)の山頂部分
の各大きな壁厚箇所の周方向位相を一致させ、
これに隣接する他の複数の山頂部分の同様な大
きな壁厚箇所に対しては、相互に周方向位相を
ずらす。
Matching the circumferential phase of each large wall thickness point of multiple (preferably two) adjacent mountain top portions,
The circumferential phases of other adjacent mountain top portions having similar large wall thicknesses are shifted from each other.

隣り合う複数(好ましくは二つ)の谷底部分
の各大きな壁厚箇所の周方向位相を一致させ、
これに隣接する他の複数の谷底部分の同様な大
きな壁厚箇所に対しては、相互に周方向位相を
ずらす。
Match the circumferential phase of each large wall thickness point of a plurality of adjacent valley bottom portions (preferably two),
The circumferential phases of other adjacent valley bottom portions having similar large wall thicknesses are shifted from each other.

前項の構成に加えて、谷底部分についても
周方向に沿う局所範囲の壁厚を大きくなし、各
複数の山頂部分と、該山頂部分と対をなす谷底
部分との各大きな壁厚箇所の周方向位相差を零
とする。
In addition to the configuration described in the previous section, the wall thickness in a local area along the circumferential direction is also increased for the valley bottom portion, and the wall thickness is increased in the circumferential direction at each large wall thickness point of each of the plurality of mountain top portions and the valley bottom portion that is paired with the mountain top portion. Set the phase difference to zero.

前項の構成に加えて、谷底部分についても
周方向に沿う局所範囲の壁厚を大きくなし、各
複数の山頂部分と、該山頂部分と対をなす谷底
部分との各大きな壁厚箇所の周方向位相を互い
にずらす。
In addition to the configuration described in the previous section, the wall thickness in a local area along the circumferential direction is also increased for the valley bottom portion, and the wall thickness is increased in the circumferential direction at each large wall thickness point of each of the plurality of mountain top portions and the valley bottom portion that is paired with the mountain top portion. shift the phases from each other.

実施例 以下、第3図ないし第5図に示した一実施例に
ついて説明する。
Embodiment An embodiment shown in FIGS. 3 to 5 will be described below.

第3図は、フレキシブルブーツ30をその軸線
Lに沿う方向から見た端面図であり、第4図は第
3図における−線断面図である。フレキシブ
ルブーツ30の主胴部31は多数の山部32と谷
部34が連なつた円筒状蛇腹形状体として形成さ
れている。図中、特定の山部32A,32Bにつ
いて注目すると、その山頂部分33の壁厚がy軸
と交差する短い周長範囲において厚肉壁33b,
33bとして形成され、x軸と交差する部分を含
めた残部壁厚が通常採用される肉厚寸法の相対的
薄肉壁33aとして形成されている。また、山部
32A,32Bと対をなす谷部34A,34Bの
谷底部分35の壁厚は、山頂部分33の厚肉壁3
3bと周方向同位相で大きくなされている(厚肉
壁35b,35b)。
3 is an end view of the flexible boot 30 viewed from the direction along the axis L thereof, and FIG. 4 is a sectional view taken along the line -- in FIG. 3. The main body portion 31 of the flexible boot 30 is formed as a cylindrical bellows-shaped body in which a large number of peaks 32 and valleys 34 are connected. In the figure, if we pay attention to specific mountain parts 32A and 32B, in a short circumferential range where the wall thickness of the mountain top part 33 intersects with the y-axis, thick wall 33b,
33b, and the remaining wall thickness including the portion intersecting the x-axis is formed as a relatively thin wall 33a having a normally adopted wall thickness dimension. Further, the wall thickness of the valley bottom portions 35 of the valley portions 34A, 34B that are paired with the mountain portions 32A, 32B is different from the thick wall thickness of the mountain top portion 33.
3b in the same phase in the circumferential direction (thick walls 35b, 35b).

山部32A,32B、谷部34A,34Bに隣
接する山部32C,32D、谷部34C,34D
にあつては、その山頂部分および谷底部分の壁厚
はいずれもx軸と交差する短い周長範囲において
厚肉壁として形成されている。
Mountain parts 32A, 32B, mountain parts 32C, 32D adjacent to valley parts 34A, 34B, valley parts 34C, 34D
In this case, the wall thickness of the mountain top portion and the valley bottom portion are both formed as thick walls in a short circumferential length range intersecting the x-axis.

そして、山部32C,32D、谷部34C,3
4Dに隣接する山部32E,32F、谷部34
E,34Fにあつては、その山頂部分および谷底
部分の壁厚がいずれもy軸と交差する短い周長範
囲で厚肉壁として形成され、以下順次隣接する他
の山部、谷部についても同様な周方向位相差関係
をもつて厚肉壁が形成されている。
And the mountain parts 32C, 32D, the valley parts 34C, 3
Peaks 32E, 32F and valleys 34 adjacent to 4D
In the case of E, 34F, the wall thickness of the mountain top part and the valley bottom part are both formed as a thick wall in a short circumferential range that intersects the y-axis, and the following successively applies to other adjacent peaks and valley parts. The thick wall is formed with a similar circumferential phase difference relationship.

ここで、山頂部分33の相対的薄肉壁箇所で測
定したフレキシブルブーツ30の外径をD1、谷
底部分35の相対的薄肉壁箇所で測定したフレキ
シブルブーツ30の内径をD2、山頂部分33の
厚肉壁の壁厚をt1、薄肉壁の壁厚をt2、全ての山
頂部分33相互間で等しいピツチをPとすると
き、例えば下記寸法を採用するのが好ましい。
Here, the outer diameter of the flexible boot 30 measured at the relatively thin wall portion of the mountain top portion 33 is D 1 , the inner diameter of the flexible boot 30 measured at the relatively thin wall portion of the valley bottom portion 35 is D 2 , and the inner diameter of the flexible boot 30 measured at the relatively thin wall portion of the valley bottom portion 35 is D 2 . When the wall thickness of the thick wall is t 1 , the wall thickness of the thin wall is t 2 , and the pitch that is equal among all the peak portions 33 is P, it is preferable to adopt, for example, the following dimensions.

D1=60Φmm, D2=45Φmm t1=2.0mm, t2=1.5mm P=8mm フレキシブルブーツ30は以上のように形成さ
れており、第6図に示す態様で該フレキシブルブ
ーツ30を機械要素に装着して使用する間、密封
空間であるフレキシブルブーツ30の内部空間が
温度変化によつて減圧状態になつたとき、相互に
隣接する山部32A,32B、谷部34A,34
Bと山部32C,32D、谷部34C,34D間
で厚肉壁の周方向位相が中心角(θ)=90度だけ
ずれているため、一方の山部および谷部を変形さ
せようとする力と他方の山部および谷部を変形さ
せようとする力とが互いに相殺し、いずれの箇所
も凹み変形が生じ難い。この特性は全ての隣接す
る山部、谷部間で同様であり、フレキシブルブー
ツ30の耐負圧特性は、全ての山頂部分および谷
底部分の壁厚を前記厚肉壁の壁厚と同等に大きく
した場合のそれよりも優れている。この事は又、
材料節減を計りつつフレキシブルブーツ30の剛
性(耐負圧特性)を向上させ得ることを意味して
いる。
D 1 = 60Φmm, D 2 = 45Φmm t 1 = 2.0mm, t 2 = 1.5mm P = 8mm The flexible boot 30 is formed as described above, and the flexible boot 30 is attached to a mechanical element in the manner shown in FIG. When the internal space of the flexible boot 30, which is a sealed space, becomes depressurized due to a temperature change, the mutually adjacent peaks 32A, 32B and valleys 34A, 34
Since the circumferential phase of the thick wall is shifted by the central angle (θ) = 90 degrees between B, the peaks 32C, 32D, and the valleys 34C, 34D, an attempt is made to deform one of the peaks and valleys. The force and the force that attempts to deform the other peak and trough cancel each other out, making it difficult for any part to undergo concave deformation. This characteristic is the same between all adjacent peaks and valleys, and the negative pressure resistance of the flexible boot 30 is achieved by making the wall thickness of all the peaks and valleys as large as the thick walls. Better than that in case. This also means that
This means that the rigidity (negative pressure resistance characteristics) of the flexible boot 30 can be improved while saving materials.

考案の効果 以上の説明から明らかなように、主胴部分が複
数の山谷部を有する蛇腹形状体として形成された
本考案のフレキシブルブーツでは、一つ又は相隣
接する少数の任意の山谷部につき、山頂部分と谷
底部分のうち少なくとも一方の壁厚を、周方向に
沿う少なくとも一箇所で相対的に短い周長範囲に
亘つて残部よりも厚肉に形成するとともに、フレ
キシブルブーツの軸線方向で前記一つ又は相隣接
する少数の山谷部と隣合う山谷部の同様の厚肉部
分と前者の厚肉部分との周方向位相をずらしたた
め、該フレキシブルブーツを機械要素に装着して
使用する間、密封空間であるフレキシブルブーツ
の内部空間が減圧状態になつたとき、互いに周方
向位相の異なる厚肉壁を有する隣接山頂部分また
は谷底部分相互の減圧時変形特性(変形方向)が
異なり、該特性差によつて主胴部壁の凹み変形が
効果的に抑制され、優れた耐負圧特性を期待する
ことができる。また、本考案のフレキシブルブー
ツでは、山頂部分あるいは谷底部分の全周に亘る
壁厚を大きくしている訳ではないため、相対的意
味での材料節減効果も得られる。
Effects of the Invention As is clear from the above explanation, in the flexible boot of the present invention in which the main trunk portion is formed as a bellows-shaped body having a plurality of peaks and valleys, for one or a small number of adjacent peaks and valleys, The wall thickness of at least one of the mountain top portion and the valley bottom portion is formed to be thicker in at least one portion along the circumferential direction than the remaining portion over a relatively short circumferential length range, and the wall thickness of at least one of the mountain top portion and the valley bottom portion is formed to be thicker than the remaining portion over a relatively short circumferential length range. Because the circumferential phase of a small number of adjacent peaks and valleys and the similar thick walled portions of the adjacent peaks and valleys and the thick walled portion of the former are shifted, the flexible boot is sealed while being attached to a machine element and used. When the internal space of the flexible boot is in a depressurized state, the decompression characteristics (deformation direction) of adjacent mountain top portions or valley bottom portions having thick walls with different circumferential phases are different, and the deformation characteristics (deformation direction) are different due to the characteristic difference. Therefore, concave deformation of the main body wall is effectively suppressed, and excellent negative pressure resistance can be expected. Further, in the flexible boot of the present invention, since the wall thickness is not increased over the entire circumference of the mountain top portion or the valley bottom portion, a material saving effect can be obtained in a relative sense.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本考案例に係るフレキシブルブーツの
任意の山部につき、その山頂部分に沿つて輪切り
状態に截断した断面図、第2図は前記フレキシブ
ルブーツにおいて第1図の山部(山頂部分)に隣
接する山部につき、その山頂部分に沿つて輪切り
状に截断した断面図、第3図は一実施例に係るフ
レキシブルブーツをその軸線Lに沿う方向から見
た端面図、第4図は第3図における−線断面
図、第5図は第3図における−線断面図(要
部拡大図)、第6図は自動車のラツク・ピニオン
式ステアリング装置の要部および該装置に適用さ
れた公知に係るフレキシブルブーツの全体形状を
示す断面図である。 20……山頂部分、20a……薄肉壁、20b
……厚肉壁、21……山頂部分、21a……厚肉
壁、21b……薄肉壁、30……フレキシブルブ
ーツ、31……主胴部、32……山部、33……
山頂部分、33a……薄肉壁、33b……厚肉
壁、34……谷部、35……谷底部分、35b…
…厚肉壁。
FIG. 1 is a cross-sectional view of an arbitrary peak of a flexible boot according to an example of the present invention, cut into circles along the peak, and FIG. 2 is a sectional view of the peak of the flexible boot shown in FIG. 1 (peak). FIG. 3 is an end view of a flexible boot according to an embodiment as viewed from the direction along its axis L, and FIG. 3 is a sectional view taken along the - line in FIG. 3, FIG. 5 is a sectional view taken along the - line in FIG. 3 (enlarged view of the main part), and FIG. It is a sectional view showing the whole shape of the flexible boot concerning this. 20...Mountain top part, 20a...Thin wall, 20b
...Thick wall, 21... Mountain top portion, 21a... Thick wall, 21b... Thin wall, 30... Flexible boot, 31... Main trunk, 32... Mountain part, 33...
Mountain top portion, 33a... Thin wall, 33b... Thick wall, 34... Valley portion, 35... Valley bottom portion, 35b...
...thick walls.

Claims (1)

【実用新案登録請求の範囲】 ゴム、樹脂等のエラストマーからなり、主胴部
分が複数の山谷部をを有する蛇腹形状体として形
成されたフレキシブルブーツにおいて、 一つ又は相隣接する少数の任意の山谷部につ
き、山頂部分と谷底部分のうち少なくとも一方の
壁厚が、周方向に沿う少なくとも一箇所で相対的
に短い周長範囲に亘つて残部よりも厚肉に形成さ
れ、フレキシブルブーツの軸線方向で前記一つ又
は相隣接する少数の山谷部と隣り合う山谷部の同
様の厚肉部分と前者の厚肉部分との周方向位相が
異なつていることを特徴とするフレキシブルブー
ツ。
[Claims for Utility Model Registration] A flexible boot made of an elastomer such as rubber or resin and whose main body portion is formed as a bellows-shaped body having a plurality of peaks and valleys, one or a small number of adjacent peaks and valleys. For each part, at least one wall thickness of the peak part and the valley bottom part is formed to be thicker in at least one part along the circumferential direction than the remaining part over a relatively short circumferential length range, and in the axial direction of the flexible boot. A flexible boot characterized in that the circumferential phase of one or a small number of adjacent peaks and valleys and a similar thick walled portion of an adjacent peak and valley are different from that of the former thick walled portion.
JP1988114446U 1988-08-31 1988-08-31 Expired - Lifetime JPH0529583Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1988114446U JPH0529583Y2 (en) 1988-08-31 1988-08-31

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1988114446U JPH0529583Y2 (en) 1988-08-31 1988-08-31

Publications (2)

Publication Number Publication Date
JPH0234865U JPH0234865U (en) 1990-03-06
JPH0529583Y2 true JPH0529583Y2 (en) 1993-07-28

Family

ID=31355205

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1988114446U Expired - Lifetime JPH0529583Y2 (en) 1988-08-31 1988-08-31

Country Status (1)

Country Link
JP (1) JPH0529583Y2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014228138A (en) * 2013-05-27 2014-12-08 株式会社日本自動車部品総合研究所 Boot for constant velocity joint

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61286687A (en) * 1985-06-12 1986-12-17 市川 博夫 Cylindrical body, length thereof can be changed

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5986469U (en) * 1982-12-01 1984-06-11 豊田工機株式会社 boots

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61286687A (en) * 1985-06-12 1986-12-17 市川 博夫 Cylindrical body, length thereof can be changed

Also Published As

Publication number Publication date
JPH0234865U (en) 1990-03-06

Similar Documents

Publication Publication Date Title
JP3868486B2 (en) Protective bellows
JPH0529583Y2 (en)
US5937703A (en) Rack guide
JPH0529584Y2 (en)
US5279522A (en) Transmission joint body of the type comprising a connecting flange
JP2007309389A5 (en)
JPH0115959Y2 (en)
JPS6438325U (en)
JP7270512B2 (en) Boots for constant velocity joints
JP2001065594A (en) Boot for constant velocity joint
JP6443004B2 (en) Steering device
KR940008830B1 (en) Bellows
JP2501954Y2 (en) Flexible boots
JP2008222049A (en) Steering device
JP3818848B2 (en) Universal joint boots
JP3832962B2 (en) Universal joint slidable in the axial direction
JPH08210514A (en) Resin flexible boot
JPH0228276Y2 (en)
JP3910046B2 (en) Rack and pinion type steering device
JPH0523855Y2 (en)
JPS6023249Y2 (en) Rack and pinion type steering device
WO2022149369A1 (en) Steering device
JPH078926Y2 (en) Flexible boots
JPH064104Y2 (en) Joint boots
JPH0546545Y2 (en)