JPH05295417A - Treatment of molten steel - Google Patents

Treatment of molten steel

Info

Publication number
JPH05295417A
JPH05295417A JP12933092A JP12933092A JPH05295417A JP H05295417 A JPH05295417 A JP H05295417A JP 12933092 A JP12933092 A JP 12933092A JP 12933092 A JP12933092 A JP 12933092A JP H05295417 A JPH05295417 A JP H05295417A
Authority
JP
Japan
Prior art keywords
molten steel
steel
slag
converter
molten
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP12933092A
Other languages
Japanese (ja)
Inventor
Hironori Goto
裕規 後藤
Kenichi Miyazawa
憲一 宮沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP12933092A priority Critical patent/JPH05295417A/en
Publication of JPH05295417A publication Critical patent/JPH05295417A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Treatment Of Steel In Its Molten State (AREA)

Abstract

PURPOSE:To prevent reduction of MnO in molten slag from being reduced and entering molten steel and to easily produce a low-Mn steel by adding a specific quantity of boron oxide into the molten steel at the time of tapping the molten steel from a converter. CONSTITUTION:At the time of tapping the molten steel from the converter after making the molten steel by decarburize-refining molten iron in the converter, the boron oxide is added at 0.5-3kg/ton of the molten steel. Reducing agents such as A, Si, etc., are added at the time of tapping the molten steel because of deoxidation of the molten steel and the adjustment of components, but as MnO in the molten slag has an intense affinity with B2O3 and is combined with B2O3, activity of MnO is rekmarkably lowered. Therefore, Mn reduced with Al and Si do not go into the molten steel, and rather, Mn in the molten steel is oxidized to MnO and removed into the molten slag, and the low-Mn steel is easily and stably obtd.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は低Mn鋼の製造におい
て、スラグから溶鋼へのMn還元の抑制あるいは溶鋼か
らのMn除去により効率的に低Mn鋼を製造することを
目的とする溶鋼処理方法に関する。
FIELD OF THE INVENTION The present invention relates to a method for producing a low Mn steel, which is intended to efficiently produce a low Mn steel by suppressing Mn reduction from slag to molten steel or removing Mn from the molten steel in the production of low Mn steel. Regarding

【0002】[0002]

【従来の技術】近年、極低硫鋼、極低燐鋼の製造では、
鋼中の化学成分の管理が益々厳しくなっている。硫黄は
酸化精錬である転炉では効率的に除去することは困難で
あり、以前から生石灰などの脱硫剤を鍋等に投入する溶
銑の炉外脱硫が行なわれてきた。また珪素、燐について
も転炉の吹錬のみで除去することは大きな負担となるの
で溶銑にて酸化鉄を添加して脱珪素処理し、生成したス
ラグを分離除去した後に脱燐用フラックスを添加して脱
燐処理し、得られた処理溶銑を転炉で吹錬する方法が知
られている(特公昭60−59962号)。
2. Description of the Related Art In recent years, in the production of ultra-low sulfur steel and ultra-low phosphorus steel,
The control of chemical components in steel is becoming more and more strict. It is difficult to remove sulfur efficiently in a converter, which is an oxidative refining process, and hot metal desulfurization has been performed for a long time, in which desulfurizing agents such as quick lime are put in a pan or the like. Also, since it is a great burden to remove silicon and phosphorus only by blowing in the converter, iron oxide is added to the hot metal to desiliconize it, and the slag generated is separated and removed, and then a flux for dephosphorization is added. Then, dephosphorization treatment is performed, and the obtained treated hot metal is blown in a converter (Japanese Patent Publication No. 60-59962).

【0003】これらの方法では、効率的に燐、硫黄の除
去はおこなわれるが、溶銑処理スラグが塩基性であるこ
と、および溶銑予備処理後の溶銑の転炉吹錬では燐濃度
が低下しているためにスラグ量が少ないので、Mnの低
減が困難となっている。なお、特公平3−77245号
で知られるように、溶銑段階で積極的にMn濃度を上昇
させ、転炉の吹止Mnを上昇させ、Mn合金鉄の使用量
を低減することは、強度靱性が高い厚板材、条鋼材を製
造する場合に有用である。しかしながら、加工性が要求
される薄板材では、たとえば0.15%以下とMnが低
いことが必要となっている。この場合、従来の溶銑予備
処理ではMnの低下は困難で、転炉でスラグ量を増加さ
せてMnの低下を図っている。しかしながら転炉出鋼以
後、主に転炉流出スラグ中のMnが出鋼時の脱酸あるい
は二次精錬の還元精錬で溶鋼中へ還元されて溶鋼中のM
nが上昇し、効率的な低Mn鋼の製造方法となっていな
い。
According to these methods, phosphorus and sulfur can be removed efficiently, but the fact that the hot metal treatment slag is basic and that the phosphorus concentration decreases in the converter blowing of the hot metal after the hot metal pretreatment causes a decrease in the phosphorus concentration. Since the amount of slag is small, it is difficult to reduce Mn. In addition, as known from Japanese Examined Patent Publication No. 3-77245, positively increasing the Mn concentration in the hot metal stage, increasing the blow-off Mn of the converter, and reducing the amount of Mn alloyed iron used is toughness and toughness. It is useful when manufacturing thick plate materials and bar steel products. However, in a thin plate material that requires workability, it is necessary that Mn is as low as 0.15% or less. In this case, it is difficult to reduce Mn by the conventional hot metal pretreatment, and the amount of slag is increased in the converter to reduce Mn. However, after tapping the converter, mainly Mn in the slag flowing out of the converter is reduced to molten steel by deoxidation during tapping or reduction refining of secondary refining, and M in molten steel
n increases, and it is not an efficient method for producing a low Mn steel.

【0004】[0004]

【発明が解決しようとする課題】本発明は、スラグから
溶鋼へのMnの還元を抑制し、さらには溶鋼からMnを
除去して効率的に低Mn鋼を製造する方法を提供するこ
とを課題とする。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a method for suppressing the reduction of Mn from slag to molten steel and further removing Mn from the molten steel to efficiently produce a low Mn steel. And

【0005】[0005]

【課題を解決するための手段】本発明は上記課題を解決
するものであって、転炉出鋼時に酸化ホウ素を溶鋼1t
on当り0.5〜3kg添加して、スラグからのMnの
還元を抑制あるいは溶鋼からMnを除去することを特徴
とする溶鋼処理方法である。
SUMMARY OF THE INVENTION The present invention is to solve the above-mentioned problems, in which 1 t of molten steel is mixed with boron oxide at the time of tapping the converter.
The molten steel treatment method is characterized by adding 0.5 to 3 kg per ton to suppress the reduction of Mn from the slag or remove Mn from the molten steel.

【0006】[0006]

【作用】以下スラグから溶鋼へのMn還元の抑制あるい
は溶鋼からのMnの除去方法を説明する。転炉では酸素
を供給し溶鋼中Cを除去するとともにMnを酸化させ、
そのMn酸化物をスラグに吸収させる。この場合スラグ
量が多いとスラグ中に含有されるMn量が増加するので
溶鋼のMnは低減する。次に転炉の吹錬が終了した溶鋼
を取鍋へ出鋼するときに脱酸および成分調整を行うため
にAl、Si等の合金を添加する。この時に転炉で生成
したスラグの一部が不可避的に溶鋼とともに鍋内流出
し、Al、Si等の脱酸剤によって溶鋼が脱酸されると
ともにスラグも脱酸還元され、スラグ内に含有したMn
が溶鋼中へ還元する現象が生じる。
The function of suppressing Mn reduction from slag to molten steel or removing Mn from molten steel will be described below. In the converter, oxygen is supplied to remove C in molten steel and oxidize Mn.
The slag absorbs the Mn oxide. In this case, when the amount of slag is large, the amount of Mn contained in the slag increases, so that the Mn of molten steel decreases. Next, an alloy such as Al or Si is added for deoxidizing and adjusting the composition when the molten steel that has been blown in the converter is tapped into a ladle. At this time, a part of the slag generated in the converter inevitably flows out into the pan together with the molten steel, and the molten steel is deoxidized and deoxidized and reduced by the deoxidizing agent such as Al and Si. Mn
Occurs in the molten steel.

【0007】したがって、低Mn鋼を製造する場合には
このMn還元を抑制することが必要である。この問題を
解決するため本発明においてはスラグ中のMnOと結合
力が強くかつMnOの活量を低下させる添加剤を出鋼中
に添加する。酸化ホウ素はMnOとの結合力が強く、か
つ、MnOの活量を低下させるので添加剤として適して
いる。酸化ホウ素を転炉出鋼時に添加する実験を行なっ
た結果を表1に示す。
Therefore, when manufacturing low Mn steel, it is necessary to suppress this Mn reduction. In order to solve this problem, in the present invention, an additive having a strong binding force with MnO in the slag and reducing the activity of MnO is added to the tapping steel. Boron oxide is suitable as an additive because it has a strong binding force with MnO and reduces the activity of MnO. Table 1 shows the results of an experiment in which boron oxide was added at the time of tapping the converter.

【0008】[0008]

【表1】 [Table 1]

【0009】表1で見るように、酸化ホウ素を添加する
ことによってスラグからのMn還元の抑制ならびに添加
量により溶鋼からのMnの除去が可能であることが判明
した。また、その酸化ホウ素含有量には適正範囲があ
り、その範囲は下記に示すとおりである。すなわち、酸
化ホウ素の添加量が溶鋼量1ton当り0.5kg未満
(以下0.5kg/tと記述)ではMnの還元抑制効果
はほとんど認められない。一方、0.5kg/t以上添
加すると、Mnのスラグから溶鋼への還元は抑制でき、
さらに溶鋼からMnが除去される場合もある。しかしな
がら、添加量が3kg/tを超えると、スラグの粘性が
大幅に低下してスラグの泡立(スラグのフォーミング)
が顕著となり、反応容器から吹き出す現象が発生する。
これは生産障害ならびにスラグ内に含有された鉄の系外
へのロスとなり生産性、経済性に大きな問題となる。し
たがって、添加する酸化ホウ素量は溶鋼量当り0.5〜
3kg/tにするのが適当である。なお、添加剤は酸化
ホウ素を含有した物質であってもよい。
As shown in Table 1, it has been found that addition of boron oxide makes it possible to suppress Mn reduction from slag and to remove Mn from molten steel depending on the amount added. Further, the boron oxide content has an appropriate range, and the range is as shown below. That is, when the amount of boron oxide added is less than 0.5 kg per 1 ton of molten steel (hereinafter referred to as 0.5 kg / t), the reduction inhibiting effect of Mn is hardly recognized. On the other hand, when 0.5 kg / t or more is added, reduction of Mn from slag to molten steel can be suppressed,
Further, Mn may be removed from the molten steel. However, if the addition amount exceeds 3 kg / t, the viscosity of the slag is significantly reduced and the slag foams (slag forming).
Becomes noticeable, and the phenomenon of blowing out from the reaction container occurs.
This causes production problems and loss of iron contained in the slag to the outside of the system, which is a serious problem in productivity and economy. Therefore, the amount of boron oxide to be added is 0.5 to 0.5 per amount of molten steel.
3 kg / t is suitable. The additive may be a substance containing boron oxide.

【0010】[0010]

【実施例】転炉出鋼時に酸化ホウ素の添加を行なって転
炉吹錬終了(吹止)時のMn量と取鍋内溶鋼のMn量の
関係をみたのが図1に示すグラフである。酸化ホウ素添
加がなかったり0.5kg/t未満と量が少ないものは
Mn量の変化なしを示す直線より上に取鍋内Mn値があ
ることが多く、Mn量の増加がみられる。これに対し
0.5kg/t以上添加したものはMn量に変化がない
か、減少もみられる。また3.0kg/tを超えて添加
したときにはスラグフォーミングが発生する場合がある
のがわかる。
EXAMPLE The graph shown in FIG. 1 shows the relationship between the Mn content at the end of the converter blowing (blown-out) and the Mn content of the molten steel in the ladle by adding boron oxide during tapping of the converter. . In the case where there is no addition of boron oxide or the amount is less than 0.5 kg / t, the Mn value in the ladle is often above the straight line showing no change in the Mn amount, and the Mn amount is increased. On the other hand, in the case of adding 0.5 kg / t or more, there is no change in the Mn content, or there is a decrease. It is also understood that slag foaming may occur when the amount of addition exceeds 3.0 kg / t.

【0011】[0011]

【発明の効果】以上の説明のごとく本発明によればスラ
グからのMnの還元を抑制でき、転炉吹錬と組合せ効率
的に除去することにより加工性のよい低Mn鋼の安定製
造が可能となった。また材質ニーズから鋼材中の燐含有
量の低下(たとえばP≦0.010%)があわせて要求
される極低燐低Mn鋼の製造する場合、脱燐処理を主体
とした溶銑予備処理と転炉吹錬とを組合せることによっ
て極低燐低Mn鋼を安定に製造できることが可能となっ
た。
As described above, according to the present invention, reduction of Mn from slag can be suppressed, and efficient removal in combination with converter blowing enables stable production of low Mn steel with good workability. Became. Further, when manufacturing ultra-low phosphorus low Mn steel, which is required to reduce the phosphorus content in the steel material (for example, P ≦ 0.010%) due to material needs, hot metal pretreatment and conversion that mainly consist of dephosphorization treatment are performed. By combining with furnace blowing, it has become possible to stably produce ultra low phosphorus low Mn steel.

【図面の簡単な説明】[Brief description of drawings]

【図1】出鋼時の酸化ホウ素添加量と溶鋼中Mnの関係
を示すグラフ
FIG. 1 is a graph showing the relationship between the amount of boron oxide added at the time of tapping and Mn in molten steel.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 転炉出鋼時に酸化ホウ素を溶鋼1ton
当り0.5〜3kg添加して、スラグからのMnの還元
を抑制あるいは溶鋼からMnを除去することを特徴とす
る溶鋼処理方法。
1. 1 ton of molten steel containing boron oxide when the converter is tapped
A molten steel treatment method, which comprises adding 0.5 to 3 kg per unit to suppress reduction of Mn from slag or remove Mn from molten steel.
JP12933092A 1992-04-23 1992-04-23 Treatment of molten steel Withdrawn JPH05295417A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12933092A JPH05295417A (en) 1992-04-23 1992-04-23 Treatment of molten steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12933092A JPH05295417A (en) 1992-04-23 1992-04-23 Treatment of molten steel

Publications (1)

Publication Number Publication Date
JPH05295417A true JPH05295417A (en) 1993-11-09

Family

ID=15006936

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12933092A Withdrawn JPH05295417A (en) 1992-04-23 1992-04-23 Treatment of molten steel

Country Status (1)

Country Link
JP (1) JPH05295417A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102719607A (en) * 2011-03-29 2012-10-10 鞍钢股份有限公司 Boron alloying method for ladle refining

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102719607A (en) * 2011-03-29 2012-10-10 鞍钢股份有限公司 Boron alloying method for ladle refining

Similar Documents

Publication Publication Date Title
JP2575827B2 (en) Manufacturing method of ultra low carbon steel for continuous casting with excellent cleanliness
JP2008063647A (en) Method for desulfurizing molten steel
JP5386825B2 (en) Method for melting Mn-containing ultra-low carbon steel
CN112322958A (en) Low-carbon aluminum-containing steel and smelting control method thereof
GB2072221A (en) Steelmaking process with separate refining steps
US4097269A (en) Process of desulfurizing liquid melts
JPH10212514A (en) Production of high clean extra-low sulfur steel excellent in hydrogen induced cracking resistance
JP4765374B2 (en) Desulfurization treatment method for chromium-containing hot metal
JP3627755B2 (en) Method for producing high cleanliness ultra low carbon steel with extremely low S content
US5037609A (en) Material for refining steel of multi-purpose application
JPH0472009A (en) Method for refining high cleanliness steel
JPH05295417A (en) Treatment of molten steel
JPH10140227A (en) Production of high alloy steel by joining two molten steels
KR20000041028A (en) Method of deoxidizing and bubbling slag
JPH09235611A (en) Production of extra-low sulfur pure iron having high cleanliness
JPH10298631A (en) Method for melting clean steel
JP2000109924A (en) Method for melting extra-low sulfur steel
KR100267273B1 (en) The making method of high purity al-si complex deoxidizing steel
JP2855334B2 (en) Modification method of molten steel slag
JP2976849B2 (en) Method for producing HIC-resistant steel
JPH08134528A (en) Production of extra low carbon steel
JP2855333B2 (en) Modification method of molten steel slag
JP2750048B2 (en) Ladle slag reforming method
JPH05287351A (en) Pre-treating method of molten iron
JPH07109507A (en) Method for pretreating molten iron

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19990706