JPH05294631A - Production of electrically-conductive powder coated with tin oxide doped with antimony oxide - Google Patents

Production of electrically-conductive powder coated with tin oxide doped with antimony oxide

Info

Publication number
JPH05294631A
JPH05294631A JP10217792A JP10217792A JPH05294631A JP H05294631 A JPH05294631 A JP H05294631A JP 10217792 A JP10217792 A JP 10217792A JP 10217792 A JP10217792 A JP 10217792A JP H05294631 A JPH05294631 A JP H05294631A
Authority
JP
Japan
Prior art keywords
tin
powder
aqueous solution
antimony
oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP10217792A
Other languages
Japanese (ja)
Inventor
Daisuke Shibuta
大介 渋田
Kuniaki Wakabayashi
邦昭 若林
Akio Yanagisawa
明男 柳沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP10217792A priority Critical patent/JPH05294631A/en
Publication of JPH05294631A publication Critical patent/JPH05294631A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Conductive Materials (AREA)

Abstract

PURPOSE:To provide a whitish superconducting powder showing white or a color, having electrically conductive function. CONSTITUTION:In coating the surface of inorganic powder with tin oxide doped with antimony oxide, an aqueous solution of hydrochloric acid of tin chloride and an alkali aqueous solution are simultaneously added to an aqueous solution suspending the inorganic powder, the inorganic powder is coated with tin hydrate precipitated by hydrolysis, successively a mixed aqueous solution of hydrochloric acid of tin chloride and antimony chloride and the alkali aqueous solution are simultaneously added to the solution to give a tin hydrate containing antimony hydrate coprecipitated on the inorganic powder coated with the tin hydrate. The tin hydrate is heated and burnt and an oxide tin layer doped with antimony oxide is formed to produce electrically conductive powder. Consequently, powder obtained by this method is observed to have much more improved effects on electrical conductivity than powder coated with the same amount by the conventional method and a raw material supply source is widened.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、紙、繊維、ブラスチッ
クス、ゴム、塗装皮膜等に白色または有色の導電性の機
能を付与することのできる白色の導電性粉末に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a white conductive powder capable of imparting a white or colored conductive function to paper, fibers, blastics, rubber, coating films and the like.

【0002】[0002]

【従来技術とその問題点】近年、電子写真用器材、半導
体製造及びコンピュータールーム建材、記録紙、自動車
軽量化プラスチックス部材等の帯電防止性ないし導電性
のプラスチックス、塗料等は白色化またはカラー化が要
求されてきており、カーボンブラック及び金属系粉末に
代り、酸化錫系の導電性皮膜層を有する粉末が使用され
ている。
2. Description of the Related Art In recent years, antistatic or conductive plastics such as electrophotographic equipment, semiconductor manufacturing and computer room building materials, recording paper, automobile weight reduction plastics members, paints, etc. have become white or colored. However, powders having a tin oxide-based conductive coating layer have been used in place of carbon black and metal-based powders.

【0003】一般には前記用途のために、代表的な白色
顔料である二酸化チタニウム粉末の表面に酸化アンチモ
ンをドープした酸化錫皮膜を形成した白色導電性粉末
(特開昭58−209002号公報、特公昭60−21
553号公報、特開昭61−286221号公報、特開
昭62ー180903、特開平2ー149415)が知
られており、これらの被覆方法は基材の二酸化チタニウ
ム(TiO2)粉末を水溶液中に懸濁させ、塩化錫、塩
化アンチモン混合溶 液とアルカリ溶液とを同時に添加
し、アンチモン及び錫を加水分解して基材表面に共沈す
る手段が取られている。
Generally, for the above-mentioned use, a white conductive powder having a tin oxide film doped with antimony oxide formed on the surface of titanium dioxide powder, which is a typical white pigment, is disclosed in Japanese Patent Application Laid-Open No. 58-209002. Kosho 60-21
553, JP-A-61-286221, JP-A-62-180903, and JP-A-2-149415 are known, and these coating methods are based on titanium dioxide (TiO 2 ) powder as a base material in an aqueous solution. In this method, a mixed solution of tin chloride and antimony chloride and an alkaline solution are simultaneously added to hydrolyze antimony and tin to coprecipitate on the surface of the substrate.

【0004】[0004]

【発明が解決しようとする課題】しかし、前記従来の製
造方法にあっては、基材となるTiO2粉末の性状によ
って生成する粉末の導電性に著しい差があり、特にTi
2がアナターゼ型であるとき、またルチル型でもアル
カリ金属の含有量が多いときには導電性が低く、原料基
材粉の供給ソースが制限されるという問題があった。
However, in the above-mentioned conventional manufacturing method, there is a marked difference in the conductivity of the powder produced depending on the properties of the TiO 2 powder used as the base material.
When O 2 is of anatase type, and even of rutile type, when the content of alkali metal is large, the conductivity is low, and there is a problem that the supply source of the raw material base material powder is limited.

【0005】本発明は、前記した従来技術の問題点を解
消し、安定で特性の優れた導電性無機粉末の製造方法を
提供することを目的としている。
An object of the present invention is to solve the above-mentioned problems of the prior art and to provide a method for producing a conductive inorganic powder which is stable and has excellent characteristics.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するた
め、本発明者等は鋭意研究を重ねた結果、導電性向上の
ためにドープする酸化アンチモンがアナターゼ型TiO
2と優先的に反応して消費され、ドープが十分に行なわ
れないことを知見し、これを回避して本発明を完成する
に至った。
In order to achieve the above object, the inventors of the present invention have conducted extensive studies, and as a result, antimony oxide to be doped to improve conductivity is anatase-type TiO 2.
It was found that it was consumed by reacting preferentially with 2 and was not sufficiently doped, and this was avoided to complete the present invention.

【0007】[0007]

【発明の開示】すなわち、本発明の要旨とするところ
は、無機粉末の表面に酸化アンチモンをドープした酸化
錫を被覆する際、まず無機粉末が懸濁した水溶液中に塩
化錫の塩酸水溶液とアルカリ水溶液とを前記無機粉末懸
濁水溶液中に同時に添加し、加水分解により錫水和物を
析出させて被覆し、つづいてこの溶液中に塩化錫塩化ア
ンチモンの混合塩酸水溶液とアルカリ水溶液とを同時に
添加して前記錫水和物で被覆された無機粉末をさらに共
沈したアンチモン水和物を含む錫水和物で被覆し、この
様にして得られた被覆粉末を加熱焼成することからなる
酸化アンチモンドープ酸化錫被覆を有する導電性粉末の
製造方法にある。
DISCLOSURE OF THE INVENTION That is, the gist of the present invention is that when a surface of an inorganic powder is coated with tin oxide doped with antimony oxide, first, an aqueous hydrochloric acid solution of tin chloride and an alkali are added to an aqueous solution in which the inorganic powder is suspended. An aqueous solution and an inorganic powder suspension aqueous solution are simultaneously added, and tin hydrate is precipitated by hydrolysis to coat the solution, and then a mixed hydrochloric acid aqueous solution of tin antimony chloride and an alkaline aqueous solution are simultaneously added to this solution. Then, the above-mentioned tin hydrate-coated inorganic powder is further coated with a tin hydrate containing a co-precipitated antimony hydrate, and the thus-obtained coated powder is heated and fired to produce antimony oxide. A method for producing a conductive powder having a doped tin oxide coating.

【0008】[0008]

【作用】本発明の構成と作用を説明する。本発明におい
ては、従来のように無機粉末を懸濁した水溶液中に、塩
化錫及び塩化アンチモンの塩酸水溶液とアルカリ水溶液
とを同時添加し、アンチモン及び錫の加水分解共沈反応
を起こさせず、はじめに錫水和物の被膜を無機粉末表面
上に形成させる点に特徴がある。
The structure and operation of the present invention will be described. In the present invention, in an aqueous solution in which an inorganic powder is suspended as in the prior art, a hydrochloric acid aqueous solution of tin chloride and antimony chloride and an alkaline aqueous solution are simultaneously added, without causing a hydrolysis coprecipitation reaction of antimony and tin, First, it is characterized in that a tin hydrate film is formed on the surface of the inorganic powder.

【0009】上記の様にして得られた生成粉末の導電性
が、従来のものと差異が生ずる理由は必ずしも明らかで
はないが、ドープ成分である酸化アンチモンが、アナタ
ーゼ型TiO2と、何らかの相互反応をもって消費され
るためではないかと推定される。例えば、従来の同時加
水分解被膜形成法における被膜形成は、まず酸化アンチ
モンの形成が起こってアナターゼ型TiO2表面のルチ
ル化促進反応に消費され、その後の酸化錫被膜形成にお
いて行なわれる酸化アンチモンのドープが十分に行なわ
れなくなるという機構にしたがっている可能性が考えら
れる。
The reason why the conductivity of the powder obtained as described above differs from that of the conventional one is not clear, but antimony oxide, which is a doping component, reacts with anatase-type TiO 2 in some way. It is estimated that this is because it is consumed with. For example, in the film formation in the conventional simultaneous hydrolysis film formation method, the formation of antimony oxide first occurs and is consumed by the reaction for promoting the rutile conversion of the anatase-type TiO 2 surface, and the doping of antimony oxide performed in the subsequent formation of the tin oxide film is performed. It is possible that the following mechanism is followed.

【0010】また同様なことがチタン酸アルカリ繊維
(一般式aM2O・TiO2・bH2O(但しMはLi、N
a、Kなどのアルカリ金属))、扁平状雲母質粉末(一
般式X0.5-1.02-3410(OH,F)2(但しXはN
a、K、Ca、Ba、Rb、Sr等、YはMg、Fe、
Ni、Mn、Al、Li等、ZはSi、Ge、Al、F
e、B等))及び特開平2−149415号公報記載の
新規合成フッ素雲母(一般式αMF・β(aMgO・γ
SiO2))においても起こり、ドープ剤である酸化ア
ンチモンとアルカリ成分が反応し、アンチモン酸アルカ
リの生成に消費されやすいため、導電性能の低下が生ず
る。
[0010] Similar considerations alkali titanate fiber (formula aM 2 O · TiO 2 · bH 2 O ( where M is Li, N
a, K, etc.), flat micaceous powder (general formula X 0.5-1.0 Y 2-3 Z 4 O 10 (OH, F) 2 (where X is N
a, K, Ca, Ba, Rb, Sr, etc., Y is Mg, Fe,
Ni, Mn, Al, Li, etc., Z is Si, Ge, Al, F
e, B, etc.) and the novel synthetic fluoromica (general formula αMF · β (aMgO · γ) described in JP-A-2-149415.
SiO 2 )) also occurs, and the antimony oxide that is the doping agent reacts with the alkali component, and is easily consumed for the production of alkali antimonate, so that the conductive performance deteriorates.

【0011】本発明によれば、前記した酸化アンチモン
の消耗を防止することによって、アナターゼ型TiO2
粉末を基材としても導電性を低下させない製品を得るこ
とが可能となったのである。
According to the present invention, by preventing the above-mentioned consumption of antimony oxide, the anatase type TiO 2
It is now possible to obtain a product that does not reduce the conductivity even if powder is used as the base material.

【0012】本発明における基材無機粉末に対する被覆
酸化物層の割合は1〜30wt%であり、好ましくは5
〜25wt%である。1wt%未満では、無機粉末を完
全に被覆することができなくなり、必要とする導電性が
得られない。また30wt%を超えても導電性向上に効
果はなく、不経済である。また、酸化アンチモンドープ
酸化錫皮膜中のアンチモンは0.1〜20wt%で残部
は実質的に酸化錫である。皮膜中のアンチモンが0.1
%未満では十分なドーピング効果が発揮されず、20%
を超えると灰色又は青色がかって白色度が低下する傾向
があり、白色導電材料としての利用価値が低下するとと
もに高価となって使用上不利となる。
The ratio of the coating oxide layer to the base inorganic powder in the present invention is 1 to 30 wt%, preferably 5
~ 25 wt%. If it is less than 1 wt%, the inorganic powder cannot be completely covered, and the required conductivity cannot be obtained. Further, if it exceeds 30 wt%, there is no effect in improving the conductivity, which is uneconomical. The antimony in the antimony oxide-doped tin oxide film is 0.1 to 20 wt% and the balance is substantially tin oxide. Antimony in the film is 0.1
If it is less than 20%, a sufficient doping effect is not exhibited and 20%
When it exceeds, the whiteness tends to be reduced due to grayish or blue color, the utility value as a white conductive material is lowered, and it is expensive and disadvantageous in use.

【0013】加水分解反応により、水溶液から水不溶性
の水和物が無機粉末表面上に沈着する。反応液から固形
物を濾過、デカンテーションあるいは遠心分離等によっ
て分離し、水洗、乾燥させる。つづいて、所定の導電性
及び安定中で行なうが、導電性を高めるため、不活性乃
至適度の還元性雰囲気で行なうこともできる。使用する
無機粉末としては、白色系顔料として一般的な酸化チタ
ニウム、チタン酸アルカリ、雲母質粉末、シリカ、アル
ミナ、亜鉛白、ジルコニア、マグネシア等が挙げられ、
平均粒径が0.15〜5.0μに調整されたものが望ま
しい。特にアナターゼ型酸化チタニウム、チタン酸アル
カリ、雲母質粉末は優れた結果が得られる。加水分解に
使用するアルカリ水溶液としては、水酸化ナトリウム、
水酸化カリウム、炭酸ナトリウム、炭酸カリウム等のア
ルカリ金属水酸化物、炭酸塩やアンモニア等が挙げられ
る。
By the hydrolysis reaction, a water-insoluble hydrate is deposited from the aqueous solution on the surface of the inorganic powder. The solid matter is separated from the reaction solution by filtration, decantation, centrifugation or the like, washed with water and dried. Subsequently, it is carried out in a predetermined conductivity and stability, but it may be carried out in an inert or moderately reducing atmosphere in order to enhance the conductivity. Examples of the inorganic powder to be used include titanium oxide which is a general white pigment, alkali titanate, mica powder, silica, alumina, zinc white, zirconia, magnesia, and the like.
It is desirable that the average particle size is adjusted to 0.15 to 5.0 μ. In particular, excellent results are obtained with anatase-type titanium oxide, alkali titanate and mica powder. As the alkaline aqueous solution used for hydrolysis, sodium hydroxide,
Examples thereof include alkali metal hydroxides such as potassium hydroxide, sodium carbonate and potassium carbonate, carbonates and ammonia.

【0014】[0014]

【発明の具体的開示】本発明の構成・効果を実施例によ
り具体的に説明するが、これにより本発明が限定される
ものではない。
DETAILED DESCRIPTION OF THE INVENTION The constitution and effects of the present invention will be specifically described by way of examples, but the present invention is not limited thereto.

【実施例1】アナターゼ型二酸化チタニウム粉末((株)
トーケムプロダクツ、商標名TCA555)(平均粒径
0.2μm、白色度92、比表面積8.5m2/g)1
00gを純水0.3リットルに攪拌分散し、90℃に保
持し、塩化第二錫3.5gを含む塩酸酸性水溶液を添加
後、NaOH水溶液(75g/リットル)をpHが2〜
4になるように10分かけて徐々に滴下し、加水分解さ
せて前記粉末上に錫水和物の被膜を形成した。
Example 1 Anatase type titanium dioxide powder (Co., Ltd.)
Tochem Products, trade name TCA555) (average particle size 0.2 μm, whiteness 92, specific surface area 8.5 m 2 / g) 1
After stirring and dispersing 00 g in 0.3 liter of pure water and maintaining it at 90 ° C., an acidic aqueous hydrochloric acid solution containing 3.5 g of stannic chloride was added, and then an aqueous NaOH solution (75 g / liter) was added at a pH of 2 to 2.
4 was gradually added dropwise over 10 minutes so as to be hydrolyzed to form a tin hydrate film on the powder.

【0015】次に前記の溶液を90℃に保持し、塩化第
二錫14gと塩化アンチモン(III)5gとを含む塩酸
酸性水溶液とNaOH水溶液(75g/リットル)と
を、pHが2〜4になるように30分にわたって同時に
滴下し、錫、アンチモンの水和共沈物を、前記錫水和物
の被膜をもつ粉末に被覆した。得られた粉末を濾別、水
洗、乾燥(100℃)した後、550℃で1時間焼成し
た。その結果110gの収量(被覆量10重量%)で、
体積電気抵抗率5Ω・cm(100kg/cm2の 加圧
下)、白色度82の導電性白色粉末が得られた。
Next, the above solution was maintained at 90 ° C., and an acidic aqueous hydrochloric acid solution containing 14 g of stannic chloride and 5 g of antimony (III) chloride and an aqueous NaOH solution (75 g / liter) were added to adjust the pH to 2 to 4. Then, the hydrated coprecipitate of tin and antimony was coated on the powder having a coating film of tin hydrate so as to be simultaneously added dropwise over 30 minutes. The powder obtained was filtered, washed with water, dried (100 ° C.), and then calcined at 550 ° C. for 1 hour. As a result, with a yield of 110 g (coating amount 10% by weight),
A conductive white powder having a volume resistivity of 5 Ω · cm (under a pressure of 100 kg / cm 2 ) and a whiteness of 82 was obtained.

【0016】[0016]

【実施例2】チタン酸カリウム繊維((株)クボタ、商標
名TXAX−C)(繊維長15μm、径0.3μm)1
00gを純水0.3リットルに攪拌分散し95℃に保持
しながら塩化第二錫7gを含む塩酸酸性水溶液を添加混
合し、NaOH水溶液(75g/リットル)を20分に
わたって添加した。次に前記溶液を95℃に保持したま
ま、塩化第二錫27gと塩化アンチモン(III)5gと
を含む塩酸酸性水溶液とNaOH水溶液(75g/リッ
トル)とを、pHが2〜4になるように30分にわたっ
て同時に滴下し、錫、アンチモンの水和共沈物を、前記
錫水和物の被膜をもつ繊維に被覆した。前記繊維を濾
別、水洗、乾燥(100℃)した後、550℃で1時間
焼成した。その結果119gの収量(被覆量19重量
%)で、体積電気抵抗率8Ω・cm、白色度79の導電
性白色繊維が得られた。
Example 2 Potassium titanate fiber (Kubota Corp., trade name TXAX-C) (fiber length 15 μm, diameter 0.3 μm) 1
While stirring and dispersing 00 g in pure water 0.3 liter and maintaining at 95 ° C., an acidic hydrochloric acid aqueous solution containing 7 g of stannic chloride was added and mixed, and an aqueous NaOH solution (75 g / liter) was added over 20 minutes. Next, while maintaining the solution at 95 ° C., a hydrochloric acid acidic aqueous solution containing 27 g of stannic chloride and 5 g of antimony (III) chloride and a NaOH aqueous solution (75 g / liter) were adjusted to pH 2-4. The hydrated coprecipitate of tin and antimony was coated on the fibers having the tin hydrate coating by dropping simultaneously for 30 minutes. The fibers were filtered, washed with water, dried (100 ° C.), and then calcined at 550 ° C. for 1 hour. As a result, a conductive white fiber having a volume resistivity of 8 Ω · cm and a whiteness of 79 was obtained with a yield of 119 g (coating amount: 19% by weight).

【0017】[0017]

【実施例3】フッ素雲母粉末(コープケミカル(株)
製、商品名MK−100)(平均粒径2μm、比表面積
3.7m2/g、白色度95)100gを実施例1と同
じ方法によって被覆した。その結果、111gの収量
(被覆量10重量%)で、体積電気抵抗率7Ω・cm、
白色度83の導電性白色雲母が得られた。
Example 3 Fluorine mica powder (Corp Chemical Co., Ltd.)
Co., Ltd., trade name MK-100) (average particle size 2 μm, specific surface area 3.7 m 2 / g, whiteness 95) was coated in the same manner as in Example 1. As a result, with a yield of 111 g (coating amount 10% by weight), the volume resistivity was 7 Ω · cm,
A conductive white mica having a whiteness of 83 was obtained.

【0018】[0018]

【比較例】実施例1で用いたアナターゼ型酸化チタニウ
ム粉末100gを純水0.3リットルに攪拌分散させ、
90℃に保持し、塩化第二錫17gと塩化アンチモン
(III)2.5gを含む塩酸酸性水溶液とNaOH水溶
液(75g/リットル)とをpHが2〜4になるように
40分にわたって同時滴下を行なった。
Comparative Example 100 g of the anatase-type titanium oxide powder used in Example 1 was stirred and dispersed in 0.3 liter of pure water,
The temperature was maintained at 90 ° C., and an acidic aqueous hydrochloric acid solution containing 17 g of stannic chloride and 2.5 g of antimony (III) chloride and an aqueous NaOH solution (75 g / liter) were simultaneously added dropwise over 40 minutes so that the pH became 2 to 4. I did.

【0019】得られた粉末を濾別、水洗、乾燥(100
℃)した後、550℃で1時間焼成した。その結果10
9gの収量(被覆量10重量%)で、体積電気抵抗率3
70Ω・cm、白色度76の導電性白色粉末であった。
これらの結果をまとめて表1に示す。
The powder obtained is filtered, washed with water and dried (100
C.) and calcined at 550.degree. C. for 1 hour. As a result 10
Yield of 9 g (10 wt% coating amount), volume resistivity 3
It was a conductive white powder having 70 Ω · cm and whiteness of 76.
The results are summarized in Table 1.

【0020】[0020]

【表1】 No. 基 体 粉体白色度 体積抵抗率(Ω・cm) 実施例1 アナターセ゛型二酸化チタン 82 5 〃 2 チタン酸カリウム繊維 79 8 〃 3 フッ素雲母 83 7 比較例 アナターセ゛型二酸化チタン 76 370[Table 1] No. Base powder Whiteness Volume resistivity (Ω · cm) Example 1 Anatase type titanium dioxide 82 5 〃 2 Potassium titanate fiber 79 8 〃 3 Fluorine mica 83 7 Comparative example Anatase type titanium dioxide 76 370

【0021】[0021]

【発明の効果】本発明は、以上説明したように構成され
ているから、従来法で同量の被覆を施した粉末に比較し
て著しい導電性向上効果が認められ、特にアナターゼ型
酸化チタニウム、チタン酸アルカリ繊維、雲母質粉末に
対する効果は顕著であり、原料ソースが拡張されて産業
上極めて有用である。
EFFECTS OF THE INVENTION Since the present invention is constituted as described above, a remarkable conductivity improving effect is recognized as compared with the powder coated with the same amount by the conventional method, and particularly, anatase type titanium oxide, The effect on alkali titanate fiber and micaceous powder is remarkable, and the raw material source is expanded, which is extremely useful industrially.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】無機粉末の表面に酸化アンチモンをドープ
した酸化錫を被覆する際、まず無機粉末が懸濁した水溶
液中に塩化錫の塩酸水溶液とアルカリ水溶液とを前記無
機粉末懸濁水溶液中に同時に添加し、加水分解により錫
水和物を析出させて被覆し、つづいてこの溶液中に塩化
錫塩化アンチモンの混合塩酸水溶液とアルカリ水溶液と
を同時に添加して前記錫水和物で被覆された無機粉末を
さらに共沈したアンチモン水和物を含む錫水和物で被覆
し、この様にして得られた被覆粉末を加熱焼成すること
からなる酸化アンチモンドープ酸化錫被覆を有する導電
性粉末の製造方法。
1. When coating the surface of an inorganic powder with tin oxide doped with antimony oxide, first, a hydrochloric acid aqueous solution of tin chloride and an alkaline aqueous solution are added to the aqueous solution in which the inorganic powder is suspended. Simultaneously added, the tin hydrate was deposited by hydrolysis to coat it, and then a mixed hydrochloric acid aqueous solution of tin antimony chloride and an alkaline aqueous solution were simultaneously added to this solution to coat the tin hydrate. Production of a conductive powder having an antimony oxide-doped tin oxide coating, which comprises coating an inorganic powder with tin hydrate containing co-precipitated antimony hydrate, and heating the coated powder thus obtained Method.
【請求項2】 無機粉末が酸化チタニウム、チタン酸ア
ルカリ、雲母質粉末、シリカ、アルミナ、亜鉛白、ジル
コニア、マグネシアである請求項1に記載の導電性粉末
の製造方法。
2. The method for producing a conductive powder according to claim 1, wherein the inorganic powder is titanium oxide, alkali titanate, mica powder, silica, alumina, zinc white, zirconia or magnesia.
【請求項3】 酸化チタニウムがアナターゼ型である請
求項1記載の導電性粉末の製造方法。
3. The method for producing a conductive powder according to claim 1, wherein the titanium oxide is anatase type.
【請求項4】 無機粉末に対する被覆酸化物層の割合は
1〜30wt%である請求項1、2又は3に記載の導電
性粉末の製造方法。
4. The method for producing a conductive powder according to claim 1, wherein the ratio of the coating oxide layer to the inorganic powder is 1 to 30 wt%.
JP10217792A 1992-03-27 1992-03-27 Production of electrically-conductive powder coated with tin oxide doped with antimony oxide Withdrawn JPH05294631A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10217792A JPH05294631A (en) 1992-03-27 1992-03-27 Production of electrically-conductive powder coated with tin oxide doped with antimony oxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10217792A JPH05294631A (en) 1992-03-27 1992-03-27 Production of electrically-conductive powder coated with tin oxide doped with antimony oxide

Publications (1)

Publication Number Publication Date
JPH05294631A true JPH05294631A (en) 1993-11-09

Family

ID=14320408

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10217792A Withdrawn JPH05294631A (en) 1992-03-27 1992-03-27 Production of electrically-conductive powder coated with tin oxide doped with antimony oxide

Country Status (1)

Country Link
JP (1) JPH05294631A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005008515A (en) * 2003-05-26 2005-01-13 Nissan Chem Ind Ltd Metal oxide particle and its manufacturing method
WO2009075375A1 (en) 2007-12-13 2009-06-18 Hiraaki Co., Ltd. Process for producing electroconductive inorganic oxide particles and electroconductive inorganic oxide particles produced by the process

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005008515A (en) * 2003-05-26 2005-01-13 Nissan Chem Ind Ltd Metal oxide particle and its manufacturing method
WO2009075375A1 (en) 2007-12-13 2009-06-18 Hiraaki Co., Ltd. Process for producing electroconductive inorganic oxide particles and electroconductive inorganic oxide particles produced by the process

Similar Documents

Publication Publication Date Title
US4880703A (en) Acicular electroconductive titanium oxide and process for producing same
KR0136789B1 (en) Electrically conductive pigment platelets
EP0743654B1 (en) Improved electroconductive composition and process of preparation
JP3357107B2 (en) White conductive titanium dioxide powder and method for producing the same
JPH11279433A (en) Blue multilayer interference pigment
US4917952A (en) Electroconductive iron oxide particles
US5827361A (en) Carbon-containing figments
CA2055853A1 (en) Fibrous electrically-conductive filler and process for producing the same
US5322561A (en) Conductive flaky pigments
JP3737617B2 (en) Method for producing film-coated powder
JP2959927B2 (en) White conductive powder and method for producing the same
JPH06279618A (en) Rodlike fine particulate electrically conductive titanium oxide and production thereof
JPH0782508A (en) Stabilized conductive pigment
JPH05294631A (en) Production of electrically-conductive powder coated with tin oxide doped with antimony oxide
US5266107A (en) Pearlscent pigment and process for producing the same
JP2844011B2 (en) Conductive fine powder and method for producing the same
JPH06183708A (en) Electric conductive white powder
JPH08507036A (en) Method for producing conductive powder
JPH05294632A (en) Production of electrically-conductive powder coated with tin oxide doped with antimony oxide
JPS6156258B2 (en)
JP4078660B2 (en) Conductive titanium oxide, process for producing the same, and plastic composition containing the same
GB2252551A (en) Particulate titanium dioxide coated with silica followed by a tin oxide coat containing antimony oxide
DE4237355A1 (en) Electroconductive pigment with shell of fluoride-doped tin oxide - and use in antistatic lacquer, plastics and fibre which is non-toxic and has good properties in use
JP2781798B2 (en) White conductive substance and method for producing the same
JP3418015B2 (en) Pigment and its production method

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19990608