JPH05292681A - Solar battery type power unit - Google Patents

Solar battery type power unit

Info

Publication number
JPH05292681A
JPH05292681A JP4092537A JP9253792A JPH05292681A JP H05292681 A JPH05292681 A JP H05292681A JP 4092537 A JP4092537 A JP 4092537A JP 9253792 A JP9253792 A JP 9253792A JP H05292681 A JPH05292681 A JP H05292681A
Authority
JP
Japan
Prior art keywords
secondary battery
voltage
solar cell
external
charging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4092537A
Other languages
Japanese (ja)
Other versions
JP2697472B2 (en
Inventor
Masaharu Ono
雅晴 大野
Akira Ono
昭 大野
Shin Arakawa
伸 荒川
Mikio Murozono
幹夫 室園
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP4092537A priority Critical patent/JP2697472B2/en
Publication of JPH05292681A publication Critical patent/JPH05292681A/en
Application granted granted Critical
Publication of JP2697472B2 publication Critical patent/JP2697472B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Photovoltaic Devices (AREA)

Abstract

PURPOSE:To obtain a widely-usable solar battery type power unit, having a function of discriminating sunshine by a solar battery and a function of charging a built-in secondary battery from output terminals. CONSTITUTION:A container containing a secondary battery 2 and a control circuit and having external output terminals 8 and 9 connected with an output controlling semiconductor device 7, is united with a solar battery 1 in a body, and a solar battery type power unit which detects the variation of the voltage between both terminals of an adjusting resistor 4 connected in parallel with a thin-film solar battery, is obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は太陽電池と二次電池と制
御回路を用いる汎用性の高い独立した直流電源装置に関
するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a highly versatile independent DC power supply device using a solar cell, a secondary battery and a control circuit.

【0002】[0002]

【従来の技術】太陽電池によって充電される二次電池を
電源とし、出力制御用半導体素子を介して負荷への出力
を制御する装置として、従来より、夜間にLEDを自動
点滅させる標識灯、夜間に自動点灯する庭園灯や屋外時
計用照明灯、人体検知センサにより自動点灯する照明装
置や光音を発する警報装置などが実用化されている。
2. Description of the Related Art Conventionally, as a device that uses a secondary battery charged by a solar cell as a power source and controls the output to a load via a semiconductor element for output control, a marker lamp that automatically blinks an LED at night, a night time. A garden light that automatically lights up, a lighting for an outdoor clock, a lighting device that automatically lights up by a human body detection sensor, and an alarm device that emits a sound have been put into practical use.

【0003】これらの実用例はすべて、太陽電池と二次
電池と回路部と負荷装置を構造上最適な場所に配置して
電気結線した装置である。したがって照明や標識等の負
荷装置の設計を簡略化するため、直流電源装置部を汎用
性のある電源ユニットとして分離する技術思想は見られ
ない。また外部出力端子も必要が無い。日照判別の光セ
ンサとしては、負荷装置の筐体の最適な位置に防水機構
の光透過性の窓を設けCdS光導電素子やフォトトラン
ジスタ等を配置している。また、二次電池の自己放電に
対する対策としては、設置直前に出荷された新しい二次
電池を使用したり、充電器を用いて使用前に二次電池を
充電したり、設置後に太陽電池によって充電されるのを
待って現地調整するなどの対策がとられている。
All of these practical examples are devices in which a solar cell, a secondary battery, a circuit section, and a load device are arranged in an optimal structural location and electrically connected. Therefore, in order to simplify the design of load devices such as lights and signs, there is no technical idea of separating the DC power supply unit into a versatile power supply unit. Also, there is no need for an external output terminal. As an optical sensor for determining the sunshine, a CdS photoconductive element, a phototransistor, or the like is provided at an optimal position of the housing of the load device by providing a light-transmissive window of a waterproof mechanism. Also, as a measure against self-discharge of the secondary battery, use a new secondary battery shipped immediately before installation, charge the secondary battery with a charger before use, or charge it with a solar cell after installation. Measures are being taken, such as waiting for this to be done and making local adjustments.

【0004】[0004]

【発明が解決しようとする課題】第1の課題は日照判別
の方法である。汎用の太陽電池式電源ユニットに従来技
術を応用することは、防水機構がコスト高であり、光セ
ンサの消費電流が大きく、また負荷装置が確定しないた
め困難である。
The first problem is a method for determining the sunshine. It is difficult to apply the conventional technology to a general-purpose solar battery power supply unit because the waterproof mechanism is expensive, the current consumption of the optical sensor is large, and the load device is not fixed.

【0005】第2の課題は二次電池の放電である。二次
電池を容器内に一体化しているため充電が困難である。
とくに汎用性のある電源ユニットは在庫され易く、完全
に自己放電した場合、電源ユニット販売時点での性能確
認や、装置設置後の動作確認ができない。また、太陽電
池による充電には、たとえば、1200mAhの電池容
量のニカド電池と最大動作電流100mAの太陽電池を
用いた電源ユニットの場合、40℃で8ヶ月保存すると
電池容量はほぼ0になり、満充電にするには、晴天日に
太陽電池の面を屋外に水平に並べて夏で約3日必要と
し、冬では約1週間必要とする。人工光源は設備と場所
と電力コストの点で実用性が低く、二次電池と直結した
急速充電用の別端子は、急速充電端子の短絡による焼損
や、外部出力端子との混同による故障や焼損が発生す
る。
The second problem is the discharge of the secondary battery. Charging is difficult because the secondary battery is integrated in the container.
In particular, a versatile power supply unit is easily stocked, and if it is completely self-discharged, it is not possible to confirm the performance at the time of selling the power supply unit or the operation after installing the device. For charging with a solar battery, for example, in the case of a power supply unit using a NiCd battery with a battery capacity of 1200 mAh and a solar battery with a maximum operating current of 100 mA, the battery capacity becomes almost 0 when stored at 40 ° C for 8 months. It takes about 3 days in summer to arrange the solar cells horizontally on a sunny day and about 1 week in winter to charge the battery. The artificial light source is low in practicality in terms of equipment, location, and power cost, and the separate terminal for quick charging directly connected to the secondary battery has a burnout due to a short circuit of the quick charging terminal and a failure or burnout due to confusion with the external output terminal. Occurs.

【0006】本発明は上記課題を解決するもので、日照
判別や外部出力端子からの充電が可能な、汎用性の高い
太陽電池式電源ユニットを提供することを目的としてい
る。
The present invention has been made to solve the above-mentioned problems, and an object of the present invention is to provide a highly versatile solar battery type power supply unit capable of sunshine discrimination and charging from an external output terminal.

【0007】[0007]

【課題を解決するための手段】本発明は上記目的を達成
するために、二次電池および制御回路を収納した容器と
充電用の薄膜系太陽電池を一体化し、出力制御用半導体
素子を介して上記二次電池に電気接続された外部出力端
子を具備し、上記薄膜系太陽電池に並列接続した調整抵
抗両端の電圧変化を検知することにより一定時間のみ出
力するものである。
In order to achieve the above object, the present invention integrates a container accommodating a secondary battery and a control circuit with a thin film solar cell for charging, and through an output control semiconductor element. An external output terminal electrically connected to the secondary battery is provided, and a voltage change across both ends of the adjustment resistor connected in parallel to the thin film solar cell is detected to output only for a fixed time.

【0008】また本発明は上記目的を達成するために、
二次電池および制御回路を収納した容器と充電用の太陽
電池を一体化し、出力制御用半導体素子を介して上記二
次電池に電気接続された外部出力端子を具備し、上記出
力制御用半導体素子に並列に外部充電用ダイオードを接
続することにより外部出力端子から充電可能なものであ
る。
Further, in order to achieve the above object, the present invention provides
A container for accommodating a secondary battery and a control circuit is integrated with a solar cell for charging, and an external output terminal electrically connected to the secondary battery via an output controlling semiconductor element is provided, and the output controlling semiconductor element is provided. It is possible to charge from the external output terminal by connecting an external charging diode in parallel with.

【0009】[0009]

【作用】日昇日没の屋外照度変化により、調整抵抗を並
列接続した太陽電池の両端電圧が二次電池の電圧以下の
設定した検知電圧になると、ロジックIC等で構成する
日照判別回路により検知し、出力制御用半導体素子がオ
ンまたはオフして外部出力端子からの出力を制御する。
したがって、夜間あるいは昼間のみ外部負荷を動作させ
たり、タイマー回路等の併用により日昇または日没から
の一定時間外部負荷を動作させる。
[Operation] When the voltage across the solar cell in which the adjusting resistor is connected in parallel reaches the set detection voltage equal to or lower than the voltage of the secondary battery due to the change in outdoor illuminance due to the rising and falling of the sun, the sunshine discrimination circuit composed of a logic IC or the like detects it. Then, the output control semiconductor element is turned on or off to control the output from the external output terminal.
Therefore, the external load is operated only at night or in the daytime, or the external load is operated for a certain time from rising sun or sunset by using a timer circuit or the like.

【0010】充電は、外部出力端子と同極性で外部直流
電源あるいは各種電池を接続する。外部出力端子の正極
あるいは負極の一方に接続された出力制御用半導体素子
は逆バイアスされるが、外部充電用ダイオードを通して
電流が流れるため二次電池は充電される。また、出力制
御用半導体素子は外部充電用ダイオードの通常1V以下
の順電圧以上に逆バイアスされる事が無いため破損しな
い。また、この外部充電用ダイオードにより、二次電池
から充電用電源あるいは各種電池への逆流は防止され
る。また、外部負荷が誘導性負荷であっても、この外部
充電用ダイオードにより逆起電力から出力制御用半導体
素子を保護する。
For charging, an external DC power source or various batteries are connected with the same polarity as the external output terminal. The output control semiconductor element connected to one of the positive electrode and the negative electrode of the external output terminal is reverse-biased, but the secondary battery is charged because current flows through the external charging diode. Further, the output control semiconductor element is not reverse-biased beyond the forward voltage of usually 1 V or less of the external charging diode, so that it is not damaged. In addition, the external charging diode prevents backflow from the secondary battery to the charging power source or various batteries. Further, even if the external load is an inductive load, the output control semiconductor element is protected from the counter electromotive force by the external charging diode.

【0011】[0011]

【実施例】第1の課題である日照判別の方法は、充電用
と光センサを兼用できる薄膜系太陽電池を用いる。薄膜
系太陽電池は、絶縁基板上にP型、N型、あるいはI型
の半導体薄膜による接合を形成し、実用上必要な電圧を
得るパターン形成により、基板上でセルが直列接続され
たデバイス作成を行う。実用的な薄膜系太陽電池はホウ
ケイ酸ガラス基板上に、集電電極と窓材を兼ねるN型C
dS薄膜と、P型CdTe薄膜と、裏面電極のC薄膜等
を、順次に印刷と焼結を繰り返し形成する化合物薄膜太
陽電池を用いる。またプラズマCVDによりシランガス
を分解して、ガラス等の基板上にPIN接合を形成する
水素化アモルファスシリコン太陽電池を用いる。水素化
アモルファスシリコン太陽電池は強い屋外光によりダン
グリングボンド等の欠陥が生成するため、年間約10〜
20%出力が低下しまたリーク電流が増加して日照判別
に必要な低照度での電流電圧特性も変化するので、現状
では化合物薄膜太陽電池の方が優れている。膜厚が約1
0μm以下で直列抵抗の大きい薄膜系太陽電池は、単結
晶シリコンや多結晶シリコン等のバルク半導体の太陽電
池に比べ曲線因子が小さいため、バンドギャップが大き
く開放電圧が大きいにもかかわらず、同じ動作電圧を得
るのにほぼ同じ直列接続セル数で設計する。そのため、
低照度での開放電圧は単結晶シリコンや多結晶シリコン
に比べて高くなる。
EXAMPLE A method for determining the sunshine, which is the first problem, uses a thin-film solar cell that can be used both for charging and as an optical sensor. A thin-film solar cell is a device in which cells are connected in series on a substrate by forming a junction with a P-type, N-type, or I-type semiconductor thin film on an insulating substrate and forming a pattern to obtain a practically necessary voltage. I do. A practical thin-film solar cell is an N-type C that doubles as a collector electrode and window material on a borosilicate glass substrate.
A compound thin film solar cell is used in which the dS thin film, the P-type CdTe thin film, the C thin film of the back electrode, and the like are sequentially formed by repeating printing and sintering. Further, a hydrogenated amorphous silicon solar cell in which a silane gas is decomposed by plasma CVD to form a PIN junction on a substrate such as glass is used. Hydrogenated amorphous silicon solar cells generate defects such as dangling bonds due to strong outdoor light.
The compound thin film solar cell is currently superior because the output decreases by 20%, the leak current increases, and the current-voltage characteristics at low illuminance necessary for sunshine discrimination also change. Film thickness is about 1
Thin-film solar cells with a large series resistance of 0 μm or less have a smaller fill factor than solar cells of bulk semiconductors such as single crystal silicon and polycrystalline silicon, so they have the same operation despite having a large band gap and a large open circuit voltage. Design with approximately the same number of cells connected in series to obtain the voltage. for that reason,
The open circuit voltage at low illuminance is higher than that of single crystal silicon or polycrystalline silicon.

【0012】図1は、日没前後の屋外照度の変化を測定
した結果を示す図である。日没時間の屋外照度はほぼ1
00lxであり、横軸の時間経過に対して対数的な照度
変化を示す。日昇時は経過時間に対し図1とほぼ逆の変
化を示す。図2は、定格6Vの二次電池を充電するよう
設計した、19セル直列接続の薄膜系太陽電池と18セ
ル直列接続の単結晶シリコン太陽電池の、100lxの
屋外照度における電流電圧特性の比較測定結果を示す図
である。斜線は特性ばらつきを示す。多結晶シリコンは
単結晶シリコンとほぼ同じ傾向を示し、いずれも日没時
には既に開放電圧が2.5V以下に低下し、使用するロ
ジックICの検知電圧以下である。二次電池接続前の晴
天時の太陽電池の開放電圧は約13Vになり、耐電圧に
おいて安全なロジックICを用い、その検知電圧は2.
5〜5Vであった。一方、本発明による検知方式の場
合、日照判別の検知電圧は二次電池の電圧以下が必要条
件である。
FIG. 1 is a diagram showing the results of measuring changes in outdoor illuminance before and after sunset. Outdoor illuminance at sunset is almost 1
It is 001x, and shows a logarithmic change in illuminance with the passage of time on the horizontal axis. When the sun rises, the change with time is almost opposite to that shown in Fig. 1. FIG. 2 is a comparative measurement of current-voltage characteristics of a 19-cell series-connected thin-film solar cell and an 18-cell series-connected single-crystal silicon solar cell designed to charge a secondary battery rated at 6 V at an outdoor illuminance of 100 lx. It is a figure which shows a result. Shaded lines indicate characteristic variations. Polycrystalline silicon shows almost the same tendency as single crystal silicon, and in both cases, the open-circuit voltage has already dropped to 2.5 V or less at sunset and is below the detection voltage of the logic IC used. The open-circuit voltage of the solar cell is about 13V during sunny weather before the secondary battery is connected, and the detection voltage is 2.
It was 5-5V. On the other hand, in the case of the detection method according to the present invention, the detection voltage for determining the sunlight is required to be equal to or lower than the voltage of the secondary battery.

【0013】二次電池の電圧として、単セルの電圧が
1.2Vのニカド電池やニッケル水素二次電池、2Vの
鉛蓄電池、3Vのリチウム二次電池の最小公倍数は6V
であり、二次電池の互換性と回路素子の性能から、太陽
電池式電源ユニットの電圧は6Vが最適である。接続後
の太陽電池の動作電圧は、二次電池と逆流防止ダイオー
ドの順電圧の和となるため通常6V以上であり、過放電
状態でも夜と認識しないためには、ロジックICの検知
電圧の上限は5Vである。
As the voltage of the secondary battery, the minimum common multiple of a NiCd battery having a single cell voltage of 1.2V, a nickel hydrogen secondary battery, a lead storage battery of 2V, and a lithium secondary battery of 3V is 6V.
From the compatibility of the secondary battery and the performance of the circuit element, the voltage of the solar battery type power supply unit is optimally 6V. The operating voltage of the solar cell after connection is usually 6 V or more because it is the sum of the forward voltage of the secondary battery and the backflow prevention diode, and the upper limit of the detection voltage of the logic IC is not recognized even in the overdischarged state at night. Is 5V.

【0014】ロジックICの検知電圧を4Vに設定した
場合、図2において、薄膜系太陽電池に並列にたとえば
50kオームの調整抵抗を接続した場合、一点鎖線と電
流電圧特性の交差部分は約4Vであり検知することが可
能である。さらに、開放電圧で検知する場合に比べてば
らつきが1/6と大幅に縮小できる。調整抵抗に流れる
電流は0.2mA以下であり、充電時には無視できるほ
ど高抵抗である。
When the detection voltage of the logic IC is set to 4V, and in FIG. 2, when the adjustment resistor of, for example, 50k ohm is connected in parallel to the thin film solar cell, the intersection of the alternate long and short dash line and the current-voltage characteristic is about 4V. Yes It is possible to detect. Further, the variation can be greatly reduced to 1/6 as compared with the case where the open circuit voltage is detected. The current flowing through the adjusting resistor is 0.2 mA or less, which is so high that it can be ignored during charging.

【0015】第2の課題である二次電池の自己放電につ
いては、本発明は出力用の外部出力端子から充電するこ
とにより上記課題を解決し、汎用性が高く便利な太陽電
池式電源ユニットを提供するものである。
With respect to the self-discharge of the secondary battery which is the second problem, the present invention solves the above problem by charging from the external output terminal for output, and provides a solar battery type power supply unit which is versatile and convenient. Is provided.

【0016】外部端子からの充電方法は、トランジスタ
ー等の出力制御用半導体素子と並列に、しかも出力時と
正負が逆になる方向に外部充電用ダイオードを接続する
ことにより実現する。外部充電用ダイオードとしては、
シリコンダイオードのほか電圧損失の少ないショットキ
ーダイオードを少なくとも1個用い、充電電流が定格を
越える可能性のある場合はダイオードと直列に許容損失
の大きい電流制限用抵抗を接続する。日照判別、点滅出
力、出力端子の短絡保護などの機能には出力制御用半導
体素子をスイッチとして使う必要があり外部出力端子か
らの充電を阻害する。一方、二次電池の自己放電以外に
ベース電流等が消費され、充電機能がさらに必要とな
る。
The charging method from the external terminal is realized by connecting an external charging diode in parallel with the output controlling semiconductor element such as a transistor and in a direction in which the positive and negative sides are opposite to those at the time of output. As an external charging diode,
In addition to silicon diodes, use at least one Schottky diode with low voltage loss, and if the charging current may exceed the rating, connect a current limiting resistor with large allowable loss in series with the diode. It is necessary to use the output control semiconductor element as a switch for functions such as sunshine discrimination, blinking output, and short-circuit protection of the output terminal, which impedes charging from the external output terminal. On the other hand, in addition to self-discharge of the secondary battery, the base current and the like are consumed, and the charging function is further required.

【0017】図3は、夜間に自動的に点滅出力を出し出
力制御回路を内蔵した、本発明による実施例の太陽電池
式電源ユニットの回路構成図である。
FIG. 3 is a circuit diagram of a solar battery type power supply unit according to an embodiment of the present invention, which automatically outputs a blinking output at night and has a built-in output control circuit.

【0018】図3において、充電用の太陽電池1と二次
電池2が逆流防止ダイオード3を介して接続され、太陽
電池1と並列接続した調整抵抗4の両端電圧をロジック
IC等で検知して日没を検出する日照判別回路5が接続
されている。太陽電池1の受光面が所定の暗さになる
と、日照判別回路5からのロジック信号を受けて点滅出
力回路6が発振し、そのベース電流により出力トランジ
スタ等の出力制御用半導体素子7がオンオフする。この
時、出力制御用半導体素子7と直列に接続された外部出
力端子8,9に所定の電力が供給される。出力制御用半
導体素子7と並列に接続された外部充電用ダイオード1
0を設けたことにより、外部負荷を接続しない時には、
二次電池の充電電圧より高い電圧設定で定電流設定され
た外部直流電源を、この外部出力端子8,9と同極性に
接続して充電する。この時、出力制御用半導体素子7は
逆バイアスされるが最大電圧は約1V以下におさえられ
る。充電電流を制限するために、外部充電用ダイオード
10に直列抵抗を接続したり、FETを用いた定電流回
路を接続することも可能である。また、電流容量を大き
くしたり電圧低下を少なくするため、複数のダイオード
を並列接続して用いることも可能である。図3の実施例
では、出力制御用半導体素子7としてNPNトランジス
ターを用いたため、負極側の外部出力端子9にコレクタ
ーを接続したが、PNPトランジスターの場合は正極側
の外部端子8にエミッターを接続し外部充電用ダイオー
ド10の向きも反対になる。外部充電用ダイオード10
はショットキーダイオード等の電圧損失が少なく許容電
流が太陽電池の短絡電流以上のダイオードを選択する。
二次電池2としてニカド電池やニッケル水素蓄電池等を
複数個直列接続した場合、太陽電池の発電電流に上限が
あるためその約2.5倍〜10倍以上の電流容量を選択
することにより、図3の実施例のように充電制御回路な
しで用いることができる。
In FIG. 3, a solar battery 1 for charging and a secondary battery 2 are connected via a backflow prevention diode 3, and the voltage across the adjusting resistor 4 connected in parallel with the solar battery 1 is detected by a logic IC or the like. A sunshine discrimination circuit 5 for detecting sunset is connected. When the light receiving surface of the solar cell 1 becomes a predetermined darkness, the blinking output circuit 6 oscillates in response to the logic signal from the sunshine discrimination circuit 5, and the base current turns on / off the output control semiconductor element 7 such as an output transistor. .. At this time, predetermined power is supplied to the external output terminals 8 and 9 connected in series with the output control semiconductor element 7. External charging diode 1 connected in parallel with the output control semiconductor element 7
By setting 0, when an external load is not connected,
An external DC power source, which is set to a constant current with a voltage setting higher than the charging voltage of the secondary battery, is connected to the same polarity as the external output terminals 8 and 9 and charged. At this time, the output control semiconductor element 7 is reverse biased, but the maximum voltage is suppressed to about 1 V or less. In order to limit the charging current, it is possible to connect a series resistor to the external charging diode 10 or connect a constant current circuit using an FET. Further, in order to increase the current capacity and reduce the voltage drop, it is possible to use a plurality of diodes connected in parallel. In the embodiment of FIG. 3, since the NPN transistor is used as the output control semiconductor element 7, the collector is connected to the external output terminal 9 on the negative electrode side, but in the case of the PNP transistor, the emitter is connected to the external terminal 8 on the positive electrode side. The direction of the external charging diode 10 is also opposite. External charging diode 10
Selects a diode such as a Schottky diode that has a small voltage loss and an allowable current that is greater than the short-circuit current of the solar cell.
When a plurality of Ni-Cd batteries, nickel-hydrogen storage batteries, etc. are connected in series as the secondary battery 2, there is an upper limit to the generated current of the solar cell, so by selecting a current capacity that is approximately 2.5 times to 10 times that It can be used without a charge control circuit as in the third embodiment.

【0019】外部出力端子に、LEDを複数個接続した
標識灯等の負荷装置を接続した場合は、夜間にLEDが
自動点滅し視認性の高い標識灯として機能する。点滅出
力回路6の代わりに、連続してベース電流を供給する出
力回路を用いた場合、LEDが連続点灯する消火栓表示
灯や夜間照明等に用いることができる。また、タイマー
回路を日照判別とともに動作させ、日没後5時間だけ標
識灯を点灯させたり、日昇時に5分間だけポンプを動作
させて灌水したりする用途に応用できる。
When a load device such as a marker lamp having a plurality of LEDs connected thereto is connected to the external output terminal, the LEDs automatically blink at night to function as a highly visible marker lamp. When an output circuit that continuously supplies a base current is used instead of the blinking output circuit 6, it can be used for a fire hydrant indicator light in which LEDs are continuously lit, night lighting, or the like. Further, the timer circuit is operated together with the sunshine determination, and the indicator light is turned on for 5 hours after sunset, or the pump is operated for 5 minutes at the time of rising sun to apply water.

【0020】このように出力制御用半導体素子7を持つ
ことにより、間欠出力、センサやタイマー等による制御
ができ、太陽電池電源に必要な省電力機能を持たせるこ
とが可能である。
By having the semiconductor element 7 for output control in this way, it is possible to perform intermittent output, control by a sensor, a timer, etc., and to provide the solar cell power source with the power saving function required.

【0021】図4と図5は本発明による実施例である、
太陽電池式電源ユニットの外観斜視図である。図4は前
面である太陽電池側から見た外観斜視図で、図5は裏面
の外部出力端子側から見た外観斜視図である。図4と図
5において、太陽電池モジュール11の取り付け枠12
は、外部出力端子13と14を設けた容器15に、取付
ビス16を用いて固定され一体化されている。容器15
の内部には、図3の代表的実施例の回路図で示した、出
力制御用半導体素子を持つ制御回路基板と二次電池が収
納され電気接続されている。また容器15の外側には、
金具等を取り付けるためのタッピング孔17が設けられ
ている。内蔵の二次電池の過充電による水素ガスの発生
を逃がし、結露を防止するため、容器15は半密閉の防
滴構造にする。
4 and 5 show an embodiment according to the present invention,
It is an appearance perspective view of a solar cell type power supply unit. FIG. 4 is an external perspective view seen from the front side of the solar cell, and FIG. 5 is an external perspective view seen from the back side of the external output terminal. 4 and 5, the mounting frame 12 of the solar cell module 11
Is fixed to and integrated with the container 15 provided with the external output terminals 13 and 14 by using mounting screws 16. Container 15
A control circuit board having a semiconductor element for output control shown in the circuit diagram of the representative embodiment of FIG. 3 and a secondary battery are housed and electrically connected to the inside of the. Also, on the outside of the container 15,
A tapping hole 17 is provided for attaching a metal fitting or the like. The container 15 has a semi-sealed drip-proof structure in order to prevent generation of hydrogen gas due to overcharge of the built-in secondary battery and prevent dew condensation.

【0022】[0022]

【発明の効果】本発明によれば、光センサのための特別
な防水透光窓を設けることなく、低消費電流で正確な日
照判別機能を持った、二次電池と制御回路を内蔵する汎
用性の高い太陽電池式電源ユニットが実現する。
According to the present invention, a general-purpose built-in secondary battery and a control circuit having a precise sunshine discrimination function with low current consumption without providing a special waterproof translucent window for an optical sensor. A highly efficient solar cell type power supply unit is realized.

【0023】また本発明によれば、外部出力端子を外部
充電用端子としてそのまま使え、二次電池が自己放電し
ても外部から急速充電が可能であり、外部負荷が誘導性
負荷であっても安全な、二次電池と制御回路を内蔵する
汎用性が高く使い易い太陽電池式電源ユニットが実現す
る。
Further, according to the present invention, the external output terminal can be used as it is as an external charging terminal so that the secondary battery can be rapidly charged externally even if the secondary battery self-discharges, and the external load is an inductive load. A safe, versatile and easy-to-use solar battery type power supply unit with a built-in secondary battery and control circuit is realized.

【図面の簡単な説明】[Brief description of drawings]

【図1】日没前後の経過時間に対する屋外照度の変化を
測定した結果を示す図
FIG. 1 is a diagram showing a result of measuring a change in outdoor illuminance with respect to elapsed time before and after sunset.

【図2】100lxの屋外照度における、太陽電池の電
流電圧特性の比較測定結果を示す図
FIG. 2 is a diagram showing comparative measurement results of current-voltage characteristics of solar cells in an outdoor illuminance of 100 lx.

【図3】本発明による実施例である太陽電池式電源ユニ
ットの回路構成図
FIG. 3 is a circuit configuration diagram of a solar battery type power supply unit that is an embodiment according to the present invention.

【図4】本発明による実施例である太陽電池式電源ユニ
ットの前面外観斜視図
FIG. 4 is a front external perspective view of a solar battery type power supply unit according to an embodiment of the present invention.

【図5】本発明による実施例である太陽電池式電源ユニ
ットの裏面外観斜視図
FIG. 5 is a rear perspective view of a solar battery type power supply unit according to an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 太陽電池 2 二次電池 3 逆流防止ダイオード 4 調整抵抗 5 日照判別回路 6 点滅出力回路 7 出力制御用半導体素子 8,9 外部出力端子 10 外部充電用ダイオード 11 太陽電池モジュール 12 枠 13,14 外部出力端子 15 容器 16 取付ビス 17 タッピング孔 1 Solar Battery 2 Secondary Battery 3 Backflow Prevention Diode 4 Adjustment Resistor 5 Sunshine Discrimination Circuit 6 Flashing Output Circuit 7 Output Control Semiconductor Device 8, 9 External Output Terminal 10 External Charging Diode 11 Solar Cell Module 12 Frame 13, 14 External Output Terminal 15 Container 16 Mounting screw 17 Tapping hole

───────────────────────────────────────────────────── フロントページの続き (72)発明者 室園 幹夫 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Mikio Murozono 1006 Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Industrial Co., Ltd.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】二次電池および制御回路を収納した容器と
充電用の薄膜系太陽電池を一体化し、出力制御用半導体
素子を介して上記二次電池に電気接続された外部出力端
子を具備し、上記薄膜系太陽電池に並列接続した調整抵
抗両端の電圧変化を検知することにより一定時間のみ出
力することを特徴とする太陽電池式電源ユニット。
1. A container accommodating a secondary battery and a control circuit is integrated with a thin film solar cell for charging, and an external output terminal electrically connected to the secondary battery via a semiconductor element for output control is provided. A solar cell type power supply unit characterized by outputting a voltage for a fixed time by detecting a voltage change across both ends of an adjusting resistor connected in parallel to the thin film solar cell.
【請求項2】定格電圧6Vの二次電池を用い、5V以下
の検知電圧のロジックICにより調整抵抗の両端電圧を
検知することを特徴とする請求項1記載の太陽電池式電
源ユニット。
2. The solar battery type power supply unit according to claim 1, wherein a secondary battery having a rated voltage of 6 V is used and the voltage across the adjusting resistor is detected by a logic IC having a detection voltage of 5 V or less.
【請求項3】二次電池および制御回路を収納した容器と
充電用の太陽電池を一体化し、出力制御用半導体素子を
介して上記二次電池に電気接続された外部出力端子を具
備し、上記出力制御用半導体素子に並列に外部充電用ダ
イオードを接続することにより外部出力端子から充電可
能なことを特徴とする太陽電池式電源ユニット。
3. A container accommodating a secondary battery and a control circuit is integrated with a solar cell for charging, and an external output terminal electrically connected to the secondary battery via a semiconductor element for output control is provided. A solar battery type power supply unit characterized in that it can be charged from an external output terminal by connecting an external charging diode in parallel with the output control semiconductor element.
JP4092537A 1992-04-13 1992-04-13 Solar power unit Expired - Lifetime JP2697472B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4092537A JP2697472B2 (en) 1992-04-13 1992-04-13 Solar power unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4092537A JP2697472B2 (en) 1992-04-13 1992-04-13 Solar power unit

Publications (2)

Publication Number Publication Date
JPH05292681A true JPH05292681A (en) 1993-11-05
JP2697472B2 JP2697472B2 (en) 1998-01-14

Family

ID=14057124

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4092537A Expired - Lifetime JP2697472B2 (en) 1992-04-13 1992-04-13 Solar power unit

Country Status (1)

Country Link
JP (1) JP2697472B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5226873B2 (en) * 2009-08-24 2013-07-03 三菱電機株式会社 Power conditioner for photovoltaic power generation
WO2015133450A1 (en) * 2014-03-03 2015-09-11 株式会社岡村製作所 Storage device and storage system
JP2015166525A (en) * 2014-03-03 2015-09-24 株式会社岡村製作所 storage system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5226873B2 (en) * 2009-08-24 2013-07-03 三菱電機株式会社 Power conditioner for photovoltaic power generation
WO2015133450A1 (en) * 2014-03-03 2015-09-11 株式会社岡村製作所 Storage device and storage system
JP2015166525A (en) * 2014-03-03 2015-09-24 株式会社岡村製作所 storage system

Also Published As

Publication number Publication date
JP2697472B2 (en) 1998-01-14

Similar Documents

Publication Publication Date Title
US4314198A (en) Solar power source for a lighting system
US4384317A (en) Solar powered lighting system
US4441143A (en) Photo voltaic lighting for outdoor telephone booth
US3979656A (en) Battery charging circuit
US8358099B2 (en) Modular electric power system with a renewable energy power generating apparatus
JP2011155820A (en) Solar battery power supply and charging method of secondary battery using solar battery
JP2964859B2 (en) Solar cell equipment
EP4032180A1 (en) An apparatus, method and article for maximizing solar charge current through the use of split wire(s) in a solar array with solar panels connected in the combination of series and parallel
US6114830A (en) Infrared remote controller using solar rechargeable capacitor
JPH05159885A (en) Lighting system by solar battery
JP2697472B2 (en) Solar power unit
JP3485445B2 (en) Solar powered power supply
JP5495217B1 (en) Overcharge prevention circuit, overdischarge prevention circuit, storage battery control device, independent power supply system and battery pack
JP4977805B1 (en) Stand-alone power supply
CN212970200U (en) LED photovoltaic street lamp control system
WO2005034303A1 (en) Portable charger having built-in secondary lithium battery
JPH08308144A (en) Portable battery with battery charger
JP3522802B2 (en) Overcharge prevention circuit for solar battery storage battery
JP3043213B2 (en) Equipment applied to solar cells
CN215773645U (en) Lighting lamp
CN110138068B (en) Light energy acquisition device and system
WO2005086542A1 (en) Lighting equipment
CN201830514U (en) Solar controller
CN209805489U (en) light energy collecting device and system
WO1995026067A1 (en) Solar power supply unit for battery operated devices