JPH05291565A - Manufacture of semiconductor device - Google Patents
Manufacture of semiconductor deviceInfo
- Publication number
- JPH05291565A JPH05291565A JP8556392A JP8556392A JPH05291565A JP H05291565 A JPH05291565 A JP H05291565A JP 8556392 A JP8556392 A JP 8556392A JP 8556392 A JP8556392 A JP 8556392A JP H05291565 A JPH05291565 A JP H05291565A
- Authority
- JP
- Japan
- Prior art keywords
- silicon film
- film
- gate insulating
- polycrystalline silicon
- amorphous silicon
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Insulated Gate Type Field-Effect Transistor (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、半導体装置の製造方法
に係り、特に、ゲート絶縁膜の耐圧特性が向上した半導
体装置を短時間で製造する半導体装置の製造方法に関す
る。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing a semiconductor device, and more particularly to a method of manufacturing a semiconductor device in which a semiconductor device having a gate insulating film with improved withstand voltage characteristics is manufactured in a short time.
【0002】[0002]
【従来の技術】従来から、半導体装置のゲート電極は、
一般的に、半導体基板上に形成したゲート絶縁膜を介し
て多結晶シリコン膜を形成した後、当該多結晶シリコン
膜の導電性を向上する目的で、リン等の不純物を導入し
て形成している。しかしながら、前記方法でゲート電極
を形成すると、前記多結晶シリコン膜に導入したリン
が、後の工程で行う熱処理により、前記多結晶シリコン
膜の結晶粒界に偏析し、この偏析したリンが前記ゲート
絶縁膜に入り込んで、当該ゲート絶縁膜側に突出し、当
該ゲート絶縁膜と多結晶シリコン膜との界面での平坦性
を低下させるという問題があった。そして、前記ゲート
絶縁膜のリンが突出した部分で、電界集中が起こり、当
該ゲート絶縁膜の絶縁特性を劣化させるという問題があ
った。また、前記偏析したリンは、前記ゲート絶縁膜と
多結晶シリコン膜との界面で、局部的にリン濃度の高い
部分を形成し、このリンが前記ゲート絶縁膜に入り込
み、当該ゲート絶縁膜中を拡散して突き抜け、この部分
で絶縁破壊を起こすという問題があった。2. Description of the Related Art Conventionally, a gate electrode of a semiconductor device has been
Generally, after forming a polycrystalline silicon film through a gate insulating film formed on a semiconductor substrate, the polycrystalline silicon film is formed by introducing impurities such as phosphorus for the purpose of improving conductivity of the polycrystalline silicon film. There is. However, when the gate electrode is formed by the above method, the phosphorus introduced into the polycrystalline silicon film is segregated at the grain boundaries of the polycrystalline silicon film by the heat treatment performed in a later step, and the segregated phosphorus is the gate. There is a problem that the insulating film enters the insulating film and protrudes toward the gate insulating film side to reduce the flatness at the interface between the gate insulating film and the polycrystalline silicon film. Then, there is a problem that electric field concentration occurs in a portion of the gate insulating film where the phosphorus is projected, and the insulating characteristics of the gate insulating film are deteriorated. Further, the segregated phosphorus locally forms a portion having a high phosphorus concentration at the interface between the gate insulating film and the polycrystalline silicon film, and this phosphorus enters the gate insulating film to cause the inside of the gate insulating film. There was a problem that it diffused and penetrated, causing dielectric breakdown at this part.
【0003】ここで、前記リン等の不純物は、後の工程
で行う熱処理により、前記多結晶シリコン膜の結晶粒界
に偏析するが、当該多結晶シリコン膜は、非晶質シリコ
ン膜を固相で結晶化させて形成した多結晶シリコン膜よ
り結晶粒径が小さいため、相対的に結晶粒界の存在数が
多くなる。従って、多結晶シリコン膜では、リンの偏析
数が多くなり、その分、前記ゲート絶縁膜へのリンの入
り込みが増加してしまう。Here, the impurities such as phosphorus segregate at the crystal grain boundaries of the polycrystalline silicon film by a heat treatment performed in a later step. The polycrystalline silicon film is an amorphous silicon film in a solid phase. Since the crystal grain size is smaller than that of the polycrystalline silicon film formed by crystallization in (3), the number of crystal grain boundaries is relatively large. Therefore, in the polycrystalline silicon film, the segregation number of phosphorus increases, and the amount of phosphorus entering the gate insulating film increases accordingly.
【0004】そこで、前記多結晶シリコン膜に代えて、
非晶質シリコン膜を形成し、これに熱処理を行い当該非
晶質シリコン膜を結晶化させた後、リン等の不純物を導
入する方法、あるいは、リンが導入された非晶質シリコ
ン膜を形成した後、これに熱処理を行い前記リンが導入
された非晶質シリコン膜を結晶化する方法等により、結
晶粒径が大きい多結晶シリコン膜を形成して、その結晶
粒界を減らし、前記リンの偏析数を減少して、電界の集
中を抑制する方法が存在する。Therefore, instead of the polycrystalline silicon film,
A method of forming an amorphous silicon film, subjecting the amorphous silicon film to heat treatment to crystallize the amorphous silicon film, and then introducing impurities such as phosphorus, or forming an amorphous silicon film into which phosphorus is introduced After that, a polycrystalline silicon film having a large crystal grain size is formed by, for example, a method of crystallizing the amorphous silicon film into which the phosphorus is introduced by subjecting it to a heat treatment and reducing the crystal grain boundaries, There is a method of suppressing the concentration of the electric field by reducing the number of segregation of.
【0005】[0005]
【発明が解決しようとする課題】しかしながら、前記非
晶質シリコン膜を結晶化させて形成した多結晶シリコン
膜は、その結晶粒径が大きい反面、当該非晶質シリコン
膜は、低温で形成されるため、非常に成膜速度が遅く、
半導体装置の生産性を著しく低下させるという問題があ
った。However, while the polycrystalline silicon film formed by crystallizing the amorphous silicon film has a large crystal grain size, the amorphous silicon film is formed at a low temperature. Therefore, the film formation speed is very slow,
There has been a problem that the productivity of semiconductor devices is significantly reduced.
【0006】本発明は、このような問題を解決すること
を課題とするものであり、ゲート絶縁膜の耐圧特性が向
上した半導体装置を短時間で製造する半導体装置の製造
方法を提供することを目的とする。An object of the present invention is to solve such a problem, and it is an object of the present invention to provide a semiconductor device manufacturing method for manufacturing a semiconductor device in which a gate insulating film has improved withstand voltage characteristics in a short time. To aim.
【0007】[0007]
【課題を解決するための手段】この目的を達成するため
に、本発明は、半導体基板上に、ゲート絶縁膜を介して
ゲート電極を形成する半導体装置の製造方法において、
前記半導体基板上に形成されたゲート絶縁膜上に、非晶
質シリコン膜を形成する第1工程と、前記非晶質シリコ
ン膜上に、多結晶シリコン膜を形成する第2工程と、前
記非晶質シリコン膜及び多結晶シリコン膜に、不純物を
導入する第3工程と、を含むことを特徴とする半導体装
置の製造方法を提供するものである。In order to achieve this object, the present invention provides a method for manufacturing a semiconductor device in which a gate electrode is formed on a semiconductor substrate via a gate insulating film,
A first step of forming an amorphous silicon film on the gate insulating film formed on the semiconductor substrate; a second step of forming a polycrystalline silicon film on the amorphous silicon film; A third aspect of the present invention provides a method for manufacturing a semiconductor device, including a third step of introducing impurities into a crystalline silicon film and a polycrystalline silicon film.
【0008】そして、半導体基板上に、ゲート絶縁膜を
介してゲート電極を形成する半導体装置の製造方法にお
いて、前記半導体基板上に形成されたゲート絶縁膜上
に、不純物を導入しながら非晶質シリコン膜を堆積し、
不純物が導入された非晶質シリコン膜を形成する第1工
程と、前記不純物が導入された非晶質シリコン膜上に、
不純物を導入しながら多結晶シリコン膜を堆積し、不純
物が導入された多結晶シリコン膜を形成する第2工程
と、を含むことを特徴とする半導体装置の製造方法を提
供するものである。Then, in a method of manufacturing a semiconductor device in which a gate electrode is formed on a semiconductor substrate via a gate insulating film, an amorphous substance is introduced while introducing impurities onto the gate insulating film formed on the semiconductor substrate. Deposit a silicon film,
A first step of forming an amorphous silicon film in which impurities are introduced, and a step of forming an amorphous silicon film in which the impurities are introduced,
A second step of depositing a polycrystalline silicon film while introducing impurities to form a polycrystalline silicon film having impurities introduced therein, the present invention provides a method for manufacturing a semiconductor device.
【0009】[0009]
【作用】請求項1記載の発明によれば、前記ゲート絶縁
膜上に、非晶質シリコン膜、多結晶シリコン膜を順に形
成した後、前記両シリコン膜に、導電性を向上するため
の不純物を導入することで、ゲート絶縁膜の耐圧特性が
向上した半導体装置を短時間で製造することができる。According to the first aspect of the present invention, after the amorphous silicon film and the polycrystalline silicon film are sequentially formed on the gate insulating film, impurities for improving conductivity are formed on the both silicon films. By introducing the above, it is possible to manufacture a semiconductor device in which the breakdown voltage characteristic of the gate insulating film is improved in a short time.
【0010】即ち、前記非晶質シリコン膜は、後の工程
で行う熱処理で結晶化して、多結晶シリコン膜となる
が、この非晶質シリコン膜を結晶化させて得た多結晶シ
リコン膜の結晶粒径は、通常の多結晶シリコン膜の結晶
粒径より大きくなる。従って、前記ゲート絶縁膜上に
は、導電性が向上し且つ結晶粒径の大きい多結晶シリコ
ン膜を形成することができる。そして、結晶粒径が大き
い多結晶シリコン膜は、結晶粒界の存在する割合が少な
いため、前記不純物が当該結晶粒界に偏析する割合を少
なくすることができる。このため、前記不純物が前記ゲ
ート絶縁膜に及ぼす悪影響を抑制することができる。そ
して、前記不純物による悪影響は、主に前記ゲート絶縁
膜と多結晶シリコン膜との界面で発生するため、前記非
晶質シリコン膜は、ゲート絶縁膜を保護可能な膜厚で形
成すればよい。従って、成膜速度が遅い非晶質シリコン
膜の膜厚を従来より薄くすることができるため、前記ゲ
ート電極の形成時間を大幅に短縮することができる。That is, the amorphous silicon film is crystallized by a heat treatment performed in a later step to form a polycrystalline silicon film. The polycrystalline silicon film obtained by crystallizing the amorphous silicon film is The crystal grain size is larger than that of a normal polycrystalline silicon film. Therefore, a polycrystalline silicon film having improved conductivity and a large crystal grain size can be formed on the gate insulating film. Since the polycrystalline silicon film having a large crystal grain size has a small proportion of crystal grain boundaries, it is possible to reduce the proportion of the impurities segregated at the crystal grain boundaries. Therefore, it is possible to suppress the adverse effect of the impurities on the gate insulating film. Since the adverse effect of the impurities mainly occurs at the interface between the gate insulating film and the polycrystalline silicon film, the amorphous silicon film may be formed to have a film thickness capable of protecting the gate insulating film. Therefore, the film thickness of the amorphous silicon film, which has a low film formation rate, can be made thinner than in the past, so that the time for forming the gate electrode can be significantly shortened.
【0011】そして、請求項2記載の発明によれば、前
記ゲート絶縁膜上に、不純物を導入しながら非晶質シリ
コン膜を堆積して、不純物が導入された非晶質シリコン
膜を形成した上に、不純物を導入しながら多結晶シリコ
ン膜を堆積し、不純物が導入された多結晶シリコン膜を
形成することで、ゲート絶縁膜の耐圧特性が向上した半
導体装置を短時間で製造することができる。According to the second aspect of the present invention, an amorphous silicon film is deposited on the gate insulating film while introducing impurities to form an impurity-doped amorphous silicon film. By depositing a polycrystalline silicon film while introducing impurities and forming a polycrystalline silicon film into which impurities are introduced, a semiconductor device with improved withstand voltage characteristics of a gate insulating film can be manufactured in a short time. it can.
【0012】即ち、前記非晶質シリコン膜は、後の工程
で行う熱処理により結晶化して、不純物が導入された多
結晶シリコン膜となるが、この多結晶シリコン膜の結晶
粒径は、通常の多結晶シリコン膜の結晶粒径より大きく
なる。従って、前記ゲート絶縁膜上には、導電性が向上
し且つ結晶粒径の大きい多結晶シリコン膜を形成するこ
とができる。そして、結晶粒径が大きい多結晶シリコン
膜は、結晶粒界の存在する割合が少ないため、前記不純
物が当該結晶粒界に偏析する割合を少なくすることがで
き、当該不純物が前記ゲート絶縁膜に及ぼす悪影響を抑
制することができる。そして、前記不純物による悪影響
は、主に前記ゲート絶縁膜と多結晶シリコン膜との界面
で発生するため、前記非晶質シリコン膜は、ゲート絶縁
膜を保護可能な膜厚で形成すればよい。従って、成膜速
度が遅い非晶質シリコン膜の膜厚を従来より薄くするこ
とができるため、前記ゲート電極の形成時間を大幅に短
縮することができる。That is, the amorphous silicon film is crystallized by a heat treatment performed in a later step to become a polycrystalline silicon film into which impurities are introduced. The crystal grain size of this polycrystalline silicon film is the usual one. It becomes larger than the crystal grain size of the polycrystalline silicon film. Therefore, a polycrystalline silicon film having improved conductivity and a large crystal grain size can be formed on the gate insulating film. Since the polycrystalline silicon film having a large crystal grain size has a small proportion of crystal grain boundaries, the proportion of the impurities segregated in the crystal grain boundaries can be reduced, and the impurities can be contained in the gate insulating film. It is possible to suppress adverse effects. Since the adverse effect of the impurities mainly occurs at the interface between the gate insulating film and the polycrystalline silicon film, the amorphous silicon film may be formed to have a film thickness capable of protecting the gate insulating film. Therefore, the film thickness of the amorphous silicon film, which has a low film formation rate, can be made thinner than in the past, so that the time for forming the gate electrode can be significantly shortened.
【0013】[0013]
【実施例】次に、本発明に係る実施例について、図面を
参照して説明する。図1ないし図4は、本発明の実施例
に係る半導体装置の製造工程の一部を示す断面図であ
る。図1に示す工程では、半導体基板1上に、成膜ガス
としてO2 を用い、成膜温度=950℃程度で、膜厚=
150Å程度のゲート絶縁膜2を形成する。Embodiments of the present invention will now be described with reference to the drawings. 1 to 4 are sectional views showing a part of a manufacturing process of a semiconductor device according to an embodiment of the present invention. In the step shown in FIG. 1, O 2 is used as a film forming gas on the semiconductor substrate 1, the film forming temperature is about 950 ° C., and the film thickness =
The gate insulating film 2 of about 150 Å is formed.
【0014】次いで、図2に示す工程では、図1に示す
工程で得たゲート絶縁膜2上に、成膜ガスとしてSi2
H6 (ジシランガス)を用い、成膜温度=480℃程
度、炉内圧力=0.03Torrの条件で、減圧CVD
(Chemical Vapor Depositio
n)を行い、膜厚=500Å程度の非晶質シリコン膜3
を形成する。Next, in the step shown in FIG. 2, Si 2 is used as a film forming gas on the gate insulating film 2 obtained in the step shown in FIG.
Using H 6 (disilane gas), low pressure CVD under the conditions of film forming temperature = 480 ° C. and furnace pressure = 0.03 Torr.
(Chemical Vapor Deposition
n), and the amorphous silicon film 3 with a film thickness of about 500 Å
To form.
【0015】次に、図3に示す工程では、図2に示す工
程で得た非晶質シリコン膜3上に、成膜ガスとしてSi
2 H6 (ジシランガス)を用い、成膜温度=620℃程
度、炉内圧力=0.03Torrの条件で、減圧CVD
(Chemical Vapor Depositio
n)を行い、膜厚=3500Å程度の多結晶シリコン膜
4を形成する。次いで、前記多結晶シリコン膜4及び非
晶質シリコン膜3に、不純物導入ガスとして、POCl
3 を用い、温度=850℃程度で、リン(P)を導入す
る。Next, in the step shown in FIG. 3, Si is used as a film forming gas on the amorphous silicon film 3 obtained in the step shown in FIG.
2 H 6 (disilane gas) is used and the low pressure CVD is performed under the conditions of film formation temperature = 620 ° C. and furnace pressure = 0.03 Torr.
(Chemical Vapor Deposition
n) is performed to form a polycrystalline silicon film 4 having a film thickness of about 3500Å. Then, the polycrystalline silicon film 4 and the amorphous silicon film 3 are filled with POCl 3 as an impurity introducing gas.
3 , and phosphorus (P) is introduced at a temperature of about 850 ° C.
【0016】次いで、図4に示す工程では、図3に示す
工程で得たPが導入された多結晶シリコン膜4及び非晶
質シリコン膜3、及び、前記ゲート絶縁膜2をパターニ
ングし、半導体基板1上に、ゲート絶縁膜2を介してゲ
ート電極5を形成した。その後、所望の工程を行い 、
半導体装置を完成するが、前記所望の工程で行われる熱
処理により、前記Pが導入された非晶質シリコン膜が結
晶化し、Pが導入された多結晶シリコン膜となる。ここ
で、非晶質シリコン膜3を結晶化して得た多結晶シリコ
ン膜は、通常の多結晶シリコン膜に比べ、結晶粒径が大
きい。従って、通常の多結晶シリコン膜より結晶粒界の
存在する割合を減少している。Next, in the step shown in FIG. 4, the polycrystalline silicon film 4 and the amorphous silicon film 3 into which P obtained in the step shown in FIG. 3 is introduced, and the gate insulating film 2 are patterned to form a semiconductor. The gate electrode 5 was formed on the substrate 1 via the gate insulating film 2. Then perform the desired steps,
Although the semiconductor device is completed, the amorphous silicon film into which P is introduced is crystallized by the heat treatment performed in the desired step, and becomes a polycrystalline silicon film into which P is introduced. Here, the crystal grain size of the polycrystalline silicon film obtained by crystallizing the amorphous silicon film 3 is larger than that of a normal polycrystalline silicon film. Therefore, the ratio of the existence of crystal grain boundaries is reduced as compared with the usual polycrystalline silicon film.
【0017】次に、ゲート電極の全てを非晶質シリコン
膜で形成する場合(従来品1)の形成時間と、本実施例
により得たゲート電極(発明品)の形成時間について、
比較を行った。この結果を図5に示す。図5より、発明
品は、150分間で、膜厚が4000Åのゲート電極を
形成できるのに対し、従来品1では、同じ膜厚のゲート
電極を形成するのに800分間かかることが判る。これ
より、発明品は、従来品に比べ、製造時間を著しく短縮
できることが立証された。Next, regarding the formation time when the entire gate electrode is formed of an amorphous silicon film (conventional product 1) and the formation time of the gate electrode (invention product) obtained in this embodiment,
A comparison was made. The result is shown in FIG. From FIG. 5, it can be seen that the invention product can form a gate electrode having a film thickness of 4000 Å in 150 minutes, whereas the conventional product 1 takes 800 minutes to form a gate electrode having the same film thickness. From this, it was proved that the invention product can significantly reduce the manufacturing time as compared with the conventional product.
【0018】次に、通常の方法で形成した多結晶シリコ
ン膜に、不純物を導入して形成したゲート電極を有する
従来の半導体装置(従来品2)を製造した。尚、この従
来の半導体装置は、ゲート電極の形成方法が異なる以外
は、前記実施例に準じて製造した。次いで、前記発明品
のゲート絶縁膜2の耐圧分布(耐圧特性)と、従来品2
のゲート絶縁膜の耐圧特性との比較を行った。発明品の
耐圧分布を図6に、従来品2の耐圧分布を図7に示す。Next, a conventional semiconductor device (conventional product 2) having a gate electrode formed by introducing impurities into a polycrystalline silicon film formed by a usual method was manufactured. The conventional semiconductor device was manufactured according to the above-described example except that the method of forming the gate electrode was different. Next, the breakdown voltage distribution (breakdown voltage characteristic) of the gate insulating film 2 of the invention product and the conventional product 2
Comparison was made with the withstand voltage characteristics of the gate insulating film. The breakdown voltage distribution of the invention product is shown in FIG. 6, and the breakdown voltage distribution of the conventional product 2 is shown in FIG.
【0019】図6及び図7から、発明品は、従来品2に
比べ、耐圧特性が向上したことが立証された。尚、本実
施例では、非晶質シリコン膜3及び多結晶シリコン膜4
を形成した後に、当該両シリコン膜3及び4に不純物を
導入したが、これに限らず、非晶質シリコン膜3を形成
する際に、例えば、PH3 等の不純物導入用ガスを混入
し、不純物を導入しながら非晶質シリコン膜3を堆積し
て、不純物が導入された非晶質シリコン膜を形成しても
よい。そして、同様に、前記不純物が導入された非晶質
シリコン膜上に、不純物が導入された多結晶シリコン膜
を形成してもよい。From FIG. 6 and FIG. 7, it is proved that the invention product has improved withstand voltage characteristics as compared with the conventional product 2. In this embodiment, the amorphous silicon film 3 and the polycrystalline silicon film 4 are used.
Impurities were introduced into both the silicon films 3 and 4 after the formation of, but not limited to this, when forming the amorphous silicon film 3, for example, an impurity introduction gas such as PH 3 is mixed, The amorphous silicon film 3 may be deposited while introducing impurities to form an amorphous silicon film into which impurities are introduced. Then, similarly, a polycrystalline silicon film having impurities introduced therein may be formed on the amorphous silicon film having impurities introduced therein.
【0020】また、本実施例では、非晶質シリコン膜3
及び多結晶シリコン膜4の形成に、Si2 H6 を用いた
が、これに限らず、前記両シリコン膜3及び4の形成を
行うことができれば、他の成膜ガスを使用してもよい。
そして、本実施例では、非晶質シリコン膜3及び多結晶
シリコン膜4の導電性を向上させる不純物として、Pを
導入したが、これに限らず、B等、前記両シリコン膜3
及び4の導電性を向上することができる不純物であれ
ば、他の不純物を導入してもよい。Further, in this embodiment, the amorphous silicon film 3 is used.
Further, Si 2 H 6 was used for forming the polycrystalline silicon film 4, but the present invention is not limited to this, and another film forming gas may be used as long as the both silicon films 3 and 4 can be formed. ..
Then, in the present embodiment, P was introduced as an impurity for improving the conductivity of the amorphous silicon film 3 and the polycrystalline silicon film 4, but the present invention is not limited to this.
Other impurities may be introduced as long as they are impurities that can improve the conductivity of Nos. 4 and 4.
【0021】また、非晶質シリコン膜3及び多結晶シリ
コン膜4への不純物の導入方法は、拡散法、イオン注入
法等、所望により決定してよい。The method of introducing impurities into the amorphous silicon film 3 and the polycrystalline silicon film 4 may be determined by a diffusion method, an ion implantation method, or the like as desired.
【0022】[0022]
【発明の効果】以上説明したように、請求項1記載の発
明によれば、ゲート絶縁膜上に、非晶質シリコン膜、多
結晶シリコン膜を順に形成した後、前記両シリコン膜
に、導電性を向上するための不純物を導入することで、
後の工程で行う熱処理により、前記非晶質シリコン膜が
結晶化して、前記ゲート絶縁膜と接触面に、導電性が向
上し且つ結晶粒径の大きい多結晶シリコン膜を形成する
ことができる。この結晶粒径が大きい多結晶シリコン膜
は、結晶粒界の存在する割合が少ないため、前記不純物
が偏析する割合が少ない。従って、前記不純物が前記ゲ
ート絶縁膜に及ぼす悪影響を抑制することができる。そ
して、前記不純物による悪影響は、主に前記ゲート絶縁
膜と多結晶シリコン膜との界面で発生するため、前記非
晶質シリコン膜は、ゲート絶縁膜を保護可能な膜厚で形
成すればよい。従って、成膜速度が遅い非晶質シリコン
膜の膜厚を従来より薄くすることができるため、前記ゲ
ート電極の形成時間を大幅に短縮することができる。こ
の結果、ゲート絶縁膜の耐圧特性が向上した半導体装置
を短時間で製造することができる。As described above, according to the first aspect of the invention, after the amorphous silicon film and the polycrystalline silicon film are sequentially formed on the gate insulating film, the two silicon films are electrically conductive. By introducing impurities to improve the
By the heat treatment performed in a later step, the amorphous silicon film is crystallized, and a polycrystalline silicon film having improved conductivity and a large crystal grain size can be formed on the contact surface with the gate insulating film. Since the polycrystalline silicon film having a large crystal grain size has a small proportion of crystal grain boundaries, the proportion of segregation of the impurities is small. Therefore, the adverse effect of the impurities on the gate insulating film can be suppressed. Since the adverse effect of the impurities mainly occurs at the interface between the gate insulating film and the polycrystalline silicon film, the amorphous silicon film may be formed to have a film thickness capable of protecting the gate insulating film. Therefore, the film thickness of the amorphous silicon film, which has a low film formation rate, can be made thinner than in the conventional case, and thus the time for forming the gate electrode can be significantly shortened. As a result, a semiconductor device in which the gate insulating film has improved breakdown voltage characteristics can be manufactured in a short time.
【0023】そして、請求項2記載の発明によれば、前
記ゲート絶縁膜上に、不純物を導入しながら非晶質シリ
コン膜を堆積して、不純物が導入された非晶質シリコン
膜を形成した上に、不純物を導入しながら多結晶シリコ
ン膜を堆積し、不純物が導入された多結晶シリコン膜を
形成することで、後の工程で行う熱処理により、前記不
純物が導入された非晶質シリコン膜が結晶化して、前記
ゲート絶縁膜と接触面に、導電性が向上し且つ結晶粒径
の大きい多結晶シリコン膜を形成することができる。こ
のため、前記不純物が前記ゲート絶縁膜に及ぼす悪影響
を抑制することができる。そして、前記不純物による悪
影響は、主に前記ゲート絶縁膜と多結晶シリコン膜との
界面で発生するため、前記非晶質シリコン膜は、ゲート
絶縁膜を保護可能な膜厚で形成すればよい。従って、成
膜速度が遅い非晶質シリコン膜の膜厚を従来より薄くす
ることができるため、前記ゲート電極の形成時間を大幅
に短縮することができる。この結果、ゲート絶縁膜の耐
圧特性が向上した半導体装置を短時間で製造することが
できる。According to the second aspect of the invention, an amorphous silicon film is deposited on the gate insulating film while introducing impurities to form an impurity-doped amorphous silicon film. By depositing a polycrystalline silicon film while introducing impurities, and forming a polycrystalline silicon film into which impurities are introduced, the amorphous silicon film into which the impurities are introduced by heat treatment performed in a later step. Can be crystallized, and a polycrystalline silicon film having improved conductivity and a large crystal grain size can be formed on the contact surface with the gate insulating film. Therefore, it is possible to suppress the adverse effect of the impurities on the gate insulating film. Since the adverse effect of the impurities mainly occurs at the interface between the gate insulating film and the polycrystalline silicon film, the amorphous silicon film may be formed to have a film thickness capable of protecting the gate insulating film. Therefore, the film thickness of the amorphous silicon film, which has a low film formation rate, can be made thinner than in the conventional case, and thus the time for forming the gate electrode can be significantly shortened. As a result, a semiconductor device in which the gate insulating film has improved breakdown voltage characteristics can be manufactured in a short time.
【図1】本発明の実施例に係る半導体装置の製造工程の
一部を示す断面図である。FIG. 1 is a sectional view showing a part of a manufacturing process of a semiconductor device according to an embodiment of the invention.
【図2】本発明の実施例に係る半導体装置の製造工程の
一部を示す断面図である。FIG. 2 is a sectional view showing a part of the manufacturing process of the semiconductor device according to the embodiment of the invention.
【図3】本発明の実施例に係る半導体装置の製造工程の
一部を示す断面図である。FIG. 3 is a sectional view showing a part of the manufacturing process of the semiconductor device according to the example of the invention.
【図4】本発明の実施例に係る半導体装置の製造工程の
一部を示す断面図である。FIG. 4 is a sectional view showing a part of the manufacturing process of the semiconductor device according to the embodiment of the invention.
【図5】本発明の実施例に係る半導体装置のゲート電極
の形成時間と従来品1のゲート電極の形成時間を示す図
である。FIG. 5 is a diagram showing a gate electrode forming time of a semiconductor device according to an example of the present invention and a gate electrode forming time of a conventional product 1.
【図6】本発明の実施例に係る半導体装置におけるゲー
ト絶縁膜の耐圧分布を示す図である。FIG. 6 is a diagram showing a breakdown voltage distribution of a gate insulating film in a semiconductor device according to an example of the present invention.
【図7】従来品1のゲート絶縁膜の耐圧分布を示す図で
ある。FIG. 7 is a diagram showing a breakdown voltage distribution of a gate insulating film of Conventional product 1.
1 半導体基板 2 ゲート絶縁膜 3 非晶質シリコン膜 4 多結晶シリコン膜 5 ゲート電極 1 semiconductor substrate 2 gate insulating film 3 amorphous silicon film 4 polycrystalline silicon film 5 gate electrode
Claims (2)
ゲート電極を形成する半導体装置の製造方法において、 前記半導体基板上に形成されたゲート絶縁膜上に、非晶
質シリコン膜を形成する第1工程と、前記非晶質シリコ
ン膜上に、多結晶シリコン膜を形成する第2工程と、前
記非晶質シリコン膜及び多結晶シリコン膜に、不純物を
導入する第3工程と、を含むことを特徴とする半導体装
置の製造方法。1. A method of manufacturing a semiconductor device, wherein a gate electrode is formed on a semiconductor substrate via a gate insulating film, wherein an amorphous silicon film is formed on the gate insulating film formed on the semiconductor substrate. The method includes a first step, a second step of forming a polycrystalline silicon film on the amorphous silicon film, and a third step of introducing impurities into the amorphous silicon film and the polycrystalline silicon film. A method of manufacturing a semiconductor device, comprising:
ゲート電極を形成する半導体装置の製造方法において、 前記半導体基板上に形成されたゲート絶縁膜上に、不純
物を導入しながら非晶質シリコン膜を堆積し、不純物が
導入された非晶質シリコン膜を形成する第1工程と、前
記不純物が導入された非晶質シリコン膜上に、不純物を
導入しながら多結晶シリコン膜を堆積し、不純物が導入
された多結晶シリコン膜を形成する第2工程と、を含む
ことを特徴とする半導体装置の製造方法。2. A method of manufacturing a semiconductor device, wherein a gate electrode is formed on a semiconductor substrate via a gate insulating film, wherein the gate insulating film formed on the semiconductor substrate is amorphous while introducing impurities. A first step of depositing a silicon film to form an amorphous silicon film doped with impurities, and a polycrystalline silicon film is deposited on the amorphous silicon film doped with impurities while introducing impurities. And a second step of forming a polycrystalline silicon film into which impurities are introduced.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8556392A JPH05291565A (en) | 1992-04-07 | 1992-04-07 | Manufacture of semiconductor device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8556392A JPH05291565A (en) | 1992-04-07 | 1992-04-07 | Manufacture of semiconductor device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH05291565A true JPH05291565A (en) | 1993-11-05 |
Family
ID=13862284
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP8556392A Pending JPH05291565A (en) | 1992-04-07 | 1992-04-07 | Manufacture of semiconductor device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH05291565A (en) |
-
1992
- 1992-04-07 JP JP8556392A patent/JPH05291565A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5242855A (en) | Method of fabricating a polycrystalline silicon film having a reduced resistivity | |
US7528424B2 (en) | Integrated circuitry | |
JPS6310573A (en) | Manufacture of semiconductor device | |
JP3402380B2 (en) | Semiconductor circuit and manufacturing method thereof | |
KR970006723B1 (en) | Formation of polycrystalline silicon thin films with large grain | |
JP3316027B2 (en) | Method for manufacturing insulated gate field effect semiconductor device | |
JPH04286336A (en) | Manufacture of semiconductor device | |
JPH0738062A (en) | Manufacture of semiconductor device | |
JPH09139360A (en) | Metal wiring formation of semiconductor element | |
JPH05291565A (en) | Manufacture of semiconductor device | |
JP3379754B2 (en) | Semiconductor structure for reducing contact resistance and method of forming the same | |
KR19980024337A (en) | Method for manufacturing a silicon thin film conductive element | |
JPS62124736A (en) | Silicon thin-film and manufacture thereof | |
KR100472855B1 (en) | Polycrystalline silicon thin film manufacturing method of semiconductor device | |
JP3064363B2 (en) | Method of forming Si thin film | |
JPH03132078A (en) | Semiconductor device and its manufacture | |
JP2880892B2 (en) | Method for manufacturing semiconductor device | |
JPH03200319A (en) | Formation of poly-crystalline silicon | |
JP2635086B2 (en) | Method for manufacturing semiconductor device | |
JPH04311038A (en) | Manufacturing method of thin film transistor | |
JP3361310B2 (en) | Method for manufacturing insulated gate field effect semiconductor device | |
JPH05291173A (en) | Manufacture of semiconductor device | |
KR100217913B1 (en) | Forming method for polysilicon layer of semiconductor device | |
JPH0536911A (en) | Three-dimensional circuit element and manufacture thereof | |
JPH11176959A (en) | Manufacture of semiconductor device |