JPH0529039B2 - - Google Patents

Info

Publication number
JPH0529039B2
JPH0529039B2 JP60196468A JP19646885A JPH0529039B2 JP H0529039 B2 JPH0529039 B2 JP H0529039B2 JP 60196468 A JP60196468 A JP 60196468A JP 19646885 A JP19646885 A JP 19646885A JP H0529039 B2 JPH0529039 B2 JP H0529039B2
Authority
JP
Japan
Prior art keywords
compound
butyloxycarbonyl
ascamycin
formula
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60196468A
Other languages
Japanese (ja)
Other versions
JPS6256500A (en
Inventor
Kyoshi Isono
Makoto Ubukata
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
RIKEN Institute of Physical and Chemical Research
Original Assignee
RIKEN Institute of Physical and Chemical Research
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by RIKEN Institute of Physical and Chemical Research filed Critical RIKEN Institute of Physical and Chemical Research
Priority to JP60196468A priority Critical patent/JPS6256500A/en
Publication of JPS6256500A publication Critical patent/JPS6256500A/en
Publication of JPH0529039B2 publication Critical patent/JPH0529039B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/55Design of synthesis routes, e.g. reducing the use of auxiliary or protecting groups

Landscapes

  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Saccharide Compounds (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(技術分野) 本発明は、抗生物質アスカマイシン
(Ascamycin)の合成法に関する。 (発明の背景) 本発明者らは、先に植物に病原菌、特に、キサ
ントモナス(Xanthomonas)属の細菌に対して
抗菌作用を示すアスカマイシンを、ストレプトマ
イセス(Streptomyces)属に属する一菌株
(Streptomyces sp.No.80−H−647)より分離採
取することに成功した(特開昭59−198981号公報
参照)。そして、アスカマイシンは、下記の構造
式を有することが確認された〔ザ・ジヤーナル・
オブ・アンチバイオテツクス(The Journal of
Antibiotics)vol.37、No.6、pp670−672、(1984
年6月)参照〕。 そこで、本発明者らは、アスカマイシンの合成
法を確立し、各種アミノ酸アナログの構造とその
活性相関関係を明らかにすることを目的として、
更に研究を続けた結果、その過程において本発明
を完成したものである。 (発明の目的) 本発明の目的は、アスカマイシンの合成法を提
供することにある。 (発明の構成) 本発明の出発物質は、2−クロロ−9−(2′,
3′−O−イソプロピリデン−5′−O−スルフアモ
イル−β−D−リボフラノシル)アデニン(2)であ
り、例えば次の方法により得ることができる。す
なわち、2,6−ジクロロプリン(A)とβ−D−リ
ボフラノース−1,2,3,5−テトラアセテー
ト(B)から2段階で2−クロロアデノシン(C)を得る
(モンゴメリー(Montgomery)、J.A.ヒユウソン
(Hewson)、K.(1964)、ジヤーナル・オブ・ヘテ
ロサイクリツク・ケミストリー(J.Heterocycle.
Chem.)、、213−214参照)。得られた2−クロ
ロアデノシン(C)を2′,3′−イソプロピリデンアセ
タール体(D)とし、次いで、水素化ナトリウム存在
下、スルフアモイルクロリドを作用させ、出発物
質2を得る(グウ(Gough)、J.C.,ペングリス
−カレデス(Penglis−Caredes),F.,マグイレ
(Maguire),M.H.(1978)ジヤーナル・オブ・メ
デイカル・ケミストリー(J.Med.Chem.)、21
520−525参照。) 以上の工程を示せば、次のとおりである。 得られた出発物質2を、次の工程により処理し
て、目的のアスカマイシン1を得ることができ
る。 すなわち、化合物2を、重炭酸ジ−t−ブチル
(di−t−butyl dicarbonate)と反応させて、
N6−t−ブチルオキシカルボニル体3を得る。
この反応は、NaH、トリメチルシリルクロリド、
n−ブチルリチウム、リチウムジイソプロピルア
ミン、ビス(トリ−n−ブチルスズ)オキサイド
等の存在下で行うことができる。溶媒としては、
ジメチルホルムアミド、ジオキサン、テトラヒド
ロフラン、ベンゼン等を用いることができる。 反応温度、反応時間は、それぞれ、−78〜100
℃、1〜20時間が適当である。 次いで、得られたN6−t−ブチルオキシカル
ボニル体3を、t−ブチルオキシカルボニル−L
−アラニルイミダゾール(t−
butyloxycarbonyl−L−alanylimidazole)とカ
ツプリング反応させて、化合物4を得る。 この反応は、前段の反応(t−ブチルオキシカ
ルボニル化)と同様の条件で反応を行うことがで
きる。 得られた化合物4を、脱保護(脱イソプロピリ
デン及び脱t−ブチルオキシカルボニル)を行つ
て、目的のアスカマイシン1を得る。この反応
は、トリフルオロ酢酸、トリフルオロメタンスル
ホン酸、メタンスルホン酸、HF、HBr/酢酸、
HCl/酢酸、HCOOH、酢酸又はこれらの酸等と
水との混合液を用いて行うことができる。 反応温度、反応時間は、それぞれ、−78〜100
℃、0.5〜20時間が適当である。 以上の工程を示せば、次のとおりである。 以下、本発明を実施例により更に詳しく説明す
るが、本発明はこれらに何ら限定されるものでは
ない。 実施例 1 N6−t−ブチルオキシカルボニル−2−クロ
ロ−9−(2′,3′−O−イソプロピリデン−5′−O
−スルフアモイル−β−D−リボフラノシル)ア
デニン3 化合物236mg(0.0857mmole)を無水DMF0.72
mlに溶解し、無水DMF0.5mlに懸濁した水素化ナ
トリウム(55%)20.6mgに−20℃にて滴下した。 室温にて30分間撹拌し、再び−20℃に冷却し、
無水DMF0.5mlに溶解したジ−t−ブチルオキシ
−ジカーボネート21.6μを滴下した。−20℃から
徐々に0℃まで2時間かけて温度を上昇させた。
反応液に酢酸エチルを加え、10%クエン酸、飽和
食塩水にて順次洗浄し、無水硫酸ナトリウムにて
乾燥し、減圧濃縮して、シリカゲルTLCを用い
て精製し、化合物38.1mg(収率80%)を得た。 〔化合物3の物理的性質〕 質量分析(SIMS): 521(MH)+ 1 H−NMR:δCDC l3 TMS8.12(1H,S, C8−H) 6.17(1H,d,J=3Hz,C1′−H) 5.31(1H,dd,J=3Hz,J=6.7Hz,C2′−H) 5.07(1H,dd,J=4Hz,J=6.7Hz,C3′−H) 4.57(1H,m,C4′−H) 4.39(2H,m,C5′−H) UV:λnax(MeOH) 255(11000sh) 273(18200 ) 280(16100sh) 実施例 2 N6−t−ブチルオキシカルボニル−2−クロ
ロ−9−〔5′−O−(N−t−ブチルオキシカルボ
ニル−L−アラニル)スルフアモイル−β−D−
リボフラノシル〕アデニン4 化合物337mg(0.0667mmole)を無水DMF0.72
mlに溶解し、無水DMF0.5mlに懸濁した水素化ナ
トリウム(55%)5.8mgに−20℃で加えた。室温
で10分間、−20℃で20分間撹拌した。反応液に、
t−ブチルオキシアラニン15mg及びN,N′−カ
ルボニルジイミダゾール13mgを無水DMFに溶解
し、室温で30分間反応させた溶液を−20℃で滴下
した。−20℃から室温まで6時間かけて徐々に温
度を上昇させながら反応させた。反応液に酢酸エ
チルを加え、10%クエン酸、飽和食塩水にて順次
洗浄し、無水硫酸ナトリウムにて乾燥し、減圧濃
縮して、シリカゲルTLCを用いて精製し、化合
物438mg(収率86%)を得た。 〔化合物4の物理的性質〕 m.p.:152〜160℃(分解) 質量分析(SIMS): 714(M+Na)+ 1 H−NMR:δCDC l3 TMS8.54(1H,S, C8−H) 6.31(1H,d,J=3Hz,C1′−H) 5.28(1H,dd,J=3Hz,J=6.3Hz,C2′−H) 5.05(1H,dd,J=2Hz,J=6.3Hz,C3′−H) 4.57(1H,m,C4′−H) 4.33,4.23(2H,各dd,C5′−H) 4.0(1H,m,
TECHNICAL FIELD The present invention relates to a method for synthesizing the antibiotic ascamycin. (Background of the Invention) The present inventors previously discovered that ascamycin, which has an antibacterial effect against plant pathogenic bacteria, particularly bacteria of the genus sp. No. 80-H-647) (see JP-A-59-198981). Ascamycin was confirmed to have the following structural formula [The Journal
The Journal of Antibiotics
Antibiotics) vol.37, No.6, pp670-672, (1984
(June)). Therefore, the present inventors established a method for synthesizing ascamycin and clarified the structures of various amino acid analogs and their activity relationships.
As a result of further research, the present invention was completed in the process. (Object of the invention) An object of the present invention is to provide a method for synthesizing ascamycin. (Structure of the Invention) The starting material of the present invention is 2-chloro-9-(2',
3'-O-isopropylidene-5'-O-sulfamoyl-β-D-ribofuranosyl)adenine (2), which can be obtained, for example, by the following method. That is, 2-chloroadenosine (C) is obtained in two steps from 2,6-dichloropurine (A) and β-D-ribofuranose-1,2,3,5-tetraacetate (B) (Montgomery). , J.A. Hewson, K. (1964), Journal of Heterocyclic Chemistry (J.Heterocycle.
Chem.), 1 , 213-214). The obtained 2-chloroadenosine (C) is converted into a 2',3'-isopropylidene acetal (D), and then treated with sulfamoyl chloride in the presence of sodium hydride to obtain starting material 2 (Gu( Gough, JC, Penglis-Caredes, F., Maguire, MH (1978) Journal of Medical Chemistry (J.Med.Chem.), 21 .
See 520-525. ) The above process is as follows. The obtained starting material 2 can be processed through the following steps to obtain the desired ascamycin 1. That is, by reacting compound 2 with di-t-butyl dicarbonate,
N 6 -t-butyloxycarbonyl compound 3 is obtained.
This reaction involves NaH, trimethylsilyl chloride,
It can be carried out in the presence of n-butyllithium, lithium diisopropylamine, bis(tri-n-butyltin) oxide, or the like. As a solvent,
Dimethylformamide, dioxane, tetrahydrofuran, benzene, etc. can be used. The reaction temperature and reaction time are −78 to 100, respectively.
°C for 1 to 20 hours is appropriate. Next, the obtained N 6 -t-butyloxycarbonyl compound 3 was converted into t-butyloxycarbonyl-L
-alanylimidazole (t-
butyloxycarbonyl-L-alanylimidazole) to obtain compound 4. This reaction can be carried out under the same conditions as the previous reaction (t-butyloxycarbonylation). The obtained compound 4 is deprotected (removal of isopropylidene and t-butyloxycarbonyl) to obtain the target ascamycin 1. This reaction includes trifluoroacetic acid, trifluoromethanesulfonic acid, methanesulfonic acid, HF, HBr/acetic acid,
This can be carried out using HCl/acetic acid, HCOOH, acetic acid, or a mixture of these acids and water. The reaction temperature and reaction time are −78 to 100, respectively.
°C for 0.5 to 20 hours is appropriate. The above steps are as follows. EXAMPLES Hereinafter, the present invention will be explained in more detail with reference to Examples, but the present invention is not limited thereto. Example 1 N 6 -t-butyloxycarbonyl-2-chloro-9-(2',3'-O-isopropylidene-5'-O
-Sulfamoyl-β-D-ribofuranosyl)adenine 3 Compound 236 mg (0.0857 mmole) was added to anhydrous DMF 0.72
ml and added dropwise to 20.6 mg of sodium hydride (55%) suspended in 0.5 ml of anhydrous DMF at -20°C. Stir at room temperature for 30 minutes, cool again to -20°C,
21.6μ of di-t-butyloxy-dicarbonate dissolved in 0.5ml of anhydrous DMF were added dropwise. The temperature was gradually raised from -20°C to 0°C over 2 hours.
Ethyl acetate was added to the reaction solution, washed sequentially with 10% citric acid and saturated brine, dried over anhydrous sodium sulfate, concentrated under reduced pressure, and purified using silica gel TLC to obtain a compound of 38.1 mg (yield: 80 %) was obtained. [Physical properties of compound 3] Mass spectrometry (SIMS): m / z 521 (MH) + 1 H-NMR: δ CDC l3 TMS 8.12 (1H, S, C8-H) 6.17 (1H, d, J = 3Hz , C1'-H) 5.31 (1H, dd, J=3Hz, J=6.7Hz, C2'-H) 5.07 (1H, dd, J=4Hz, J=6.7Hz, C3'-H) 4.57 (1H, m, C4'-H) 4.39 (2H, m, C5'-H) UV: λ nax (MeOH) 255 (11000sh) 273 (18200 ) 280 (16100sh) Example 2 N 6 -t-butyloxycarbonyl-2 -Chloro-9-[5'-O-(N-t-butyloxycarbonyl-L-alanyl)sulfamoyl-β-D-
Ribofuranosyl]adenine 4 Compound 337mg (0.0667mmole) in anhydrous DMF 0.72
ml and added at -20°C to 5.8 mg of sodium hydride (55%) suspended in 0.5 ml of anhydrous DMF. Stirred at room temperature for 10 minutes and at -20°C for 20 minutes. In the reaction solution,
A solution in which 15 mg of t-butyloxyalanine and 13 mg of N,N'-carbonyldiimidazole were dissolved in anhydrous DMF and reacted at room temperature for 30 minutes was added dropwise at -20°C. The reaction was carried out while gradually increasing the temperature from -20°C to room temperature over 6 hours. Ethyl acetate was added to the reaction solution, washed sequentially with 10% citric acid and saturated brine, dried over anhydrous sodium sulfate, concentrated under reduced pressure, and purified using silica gel TLC to obtain 438 mg of the compound (yield 86%). ) was obtained. [Physical properties of compound 4] mp: 152-160℃ (decomposition) Mass spectrometry (SIMS): m / z 714 (M+Na) + 1 H-NMR: δ CDC l3 TMS 8.54 (1H, S, C8-H) 6.31 (1H, d, J=3Hz, C1'-H) 5.28 (1H, dd, J=3Hz, J=6.3Hz, C2'-H) 5.05 (1H, dd, J=2Hz, J=6.3Hz, C3'-H) 4.57 (1H, m, C4'-H) 4.33, 4.23 (2H, each dd, C5'-H) 4.0 (1H, m,

〔(1)の物理的性質〕[Physical properties of (1)]

〔α〕20 D+2.34°(C=1、H2O) UVスペクトル:νnax 263nm(ε12270)1 H−NMRスペクトル:δD 2 O
1.27,d,J=7.0Hz,(−CH3). 3.65,q(
[α] 20 D +2.34° (C=1, H 2 O) UV spectrum: ν nax 263 nm (ε12270) 1 H-NMR spectrum: δ D 2 O
1.27, d, J=7.0Hz, (-CH 3 ). 3.65, q(

【式】)13 C−NMRスペクトル:δD2O 17.380(−CH3), 52.206([Formula]) 13 C-NMR spectrum: δ D2O 17.380 (-CH 3 ), 52.206 (

【式】), 177.226(C=0) 以上の性質及び高速液体クロマトグラフイーに
おける保持時間は、標品のアスカマイシンと一致
した。
[Formula]), 177.226 (C=0) The above properties and retention time in high performance liquid chromatography were consistent with standard ascamycin.

【特許請求の範囲】[Claims]

1 一般式ROSO3M(式中Rは炭素数6〜22のア
ルキル基又はアルキルフエニル基であり、Mは窒
素原子を少なくとも1個以上有する陽イオンであ
る)で示されるアニオン性界面活性剤の共存下、
15℃以下でゲル電気泳動を行うことを特徴とする
生体膜蛋白質の分離精製法。
1 Anionic surfactant represented by the general formula ROSO 3 M (wherein R is an alkyl group or alkylphenyl group having 6 to 22 carbon atoms, and M is a cation having at least one nitrogen atom) Under the coexistence of
A method for separating and purifying biological membrane proteins, which is characterized by performing gel electrophoresis at 15°C or lower.

Claims (1)

(式中、Bocは、t−ブチルオキシカルボニル基
を示す。) で示される化合物を得、該化合物をt−ブチルオ
キシカルボニル−L−アラニルイミダゾールと反
応させて、構造式: (式中、Bocは、前記に同じ。) で示される化合物を得、該化合物を酸で処理する
ことを特徴とする、構造式: で示されるアスカマイシン(Ascamycin)の合
成法。
(In the formula, Boc represents a t-butyloxycarbonyl group.) A compound represented by the formula is obtained, and the compound is reacted with t-butyloxycarbonyl-L-alanylimidazole to give the structural formula: (In the formula, Boc is the same as above.) A structural formula characterized by obtaining a compound represented by the following and treating the compound with an acid: Synthesis method of ascamycin shown in
JP60196468A 1985-09-05 1985-09-05 Synthesis of ascamycin Granted JPS6256500A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60196468A JPS6256500A (en) 1985-09-05 1985-09-05 Synthesis of ascamycin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60196468A JPS6256500A (en) 1985-09-05 1985-09-05 Synthesis of ascamycin

Publications (2)

Publication Number Publication Date
JPS6256500A JPS6256500A (en) 1987-03-12
JPH0529039B2 true JPH0529039B2 (en) 1993-04-28

Family

ID=16358302

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60196468A Granted JPS6256500A (en) 1985-09-05 1985-09-05 Synthesis of ascamycin

Country Status (1)

Country Link
JP (1) JPS6256500A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5824657A (en) * 1997-03-18 1998-10-20 Cubist Pharmaceuticals, Inc. Aminoacyl sulfamides for the treatment of hyperproliferative disorders

Also Published As

Publication number Publication date
JPS6256500A (en) 1987-03-12

Similar Documents

Publication Publication Date Title
CN102256988A (en) Process for the synthesis of l-fucosyl dl- or oligosaccharides and novel 2,3,4 tribenzyl-fucosyl derivatives intermediates thereof
JPH0313239B2 (en)
Castro-Pichel et al. A facile synthesis of ascamycin and related analogues
JPH07206856A (en) Mass production of 2',3'-didehydro-3'-deoxythymidine (d4t) using 5-methyluridine
EP0287353A2 (en) Chiral synthesis of anthracyclines from substituted anthraquinones
Knapp et al. Synthesis of protected aminocyclohexanediols
JP3029806B2 (en) Glycosidation of colchicine derivative and product thereof
JPH0529039B2 (en)
EP0350292B1 (en) Process for preparing 2'-deoxy-beta-adenosine
JPS5896098A (en) Erythromycin a derivative
KR20080079833A (en) Methods for the stereoselective preparation and separation of tri-o-acetyl-5-deoxy-beta;-d-ribofuranose
JPH08217788A (en) Production of 1-n-ethylsisomicin
US4098993A (en) Semi-synthetic 4-ureido-oleandomycin derivatives
JPS5936914B2 (en) Cephalosporin analogs
KR100322355B1 (en) Anomerofluororibosylamine
KR100393913B1 (en) Method for producing di 4-thiadiene from 5-methyluridine
JPH0529240B2 (en)
JP3194581B2 (en) Gibberellin separation method
JPH06135988A (en) Nucleotide derivative
KR101259648B1 (en) A manufacturing process of 2′,2′-difluoronucloside and intermediate
IE912762A1 (en) Process for the preparation of deoxynucleosides
JPH07165785A (en) Preparation of 3'-fluoropyrimidine nucleoside
JPH02292295A (en) Preparation of etoposide
JP2666160B2 (en) 5-O-pyrimidyl-2,3-dideoxy-1-thiofuranoside derivative, method for producing the same and use
JP2007137843A (en) Method for producing ribofuranose compound and purine nucleoside compound