JPH05289025A - Optical isolator - Google Patents

Optical isolator

Info

Publication number
JPH05289025A
JPH05289025A JP8729692A JP8729692A JPH05289025A JP H05289025 A JPH05289025 A JP H05289025A JP 8729692 A JP8729692 A JP 8729692A JP 8729692 A JP8729692 A JP 8729692A JP H05289025 A JPH05289025 A JP H05289025A
Authority
JP
Japan
Prior art keywords
optical isolator
permanent magnet
neodymium
faraday
iron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8729692A
Other languages
Japanese (ja)
Other versions
JP3198391B2 (en
Inventor
Yoichi Honda
洋一 本田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokin Corp filed Critical Tokin Corp
Priority to JP08729692A priority Critical patent/JP3198391B2/en
Publication of JPH05289025A publication Critical patent/JPH05289025A/en
Application granted granted Critical
Publication of JP3198391B2 publication Critical patent/JP3198391B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To provide the optical isolator which can assure an always stable isolation value in a practicable environmental temp. change range regardless of the influence of a change in environmental temp. on a Faraday rotating angle. CONSTITUTION:The dependency of the residual magnetic flux density of the neodymium-iron-boron magnet which is a permanent magnet for magnetic field impression of the conventional optical isolator and is expressed by chemical formula Nd2Fe14B on the environmental temp. changes as shown in Fig. when the neodymium (Nd) is partly substd. with disprosium (Dy). The optical isolator is constituted by using the neodymium-dysprsium-iron-boron magnet expressed by chemical formula (Nd1-yDyy)2Fe14B (where 0.1<=Y<=0.5) as the permanent magnet for magnetic field impression in accordance with the substitution and using the cadmium-manganese-tellurium single crystal expressed by chemical formula Cd1-xMnxTe (where 0.1<=X<=0.5) as the Faraday element.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は化学式Cd1-X MnX
e(但し、0.1≦X≦0.5)で示されるカドミウム
・マンガン・テルル単結晶をファラデー回転子とし、磁
界印加用の永久磁石を用いた光アイソレータに関する。
The present invention relates to the chemical formula Cd 1-X Mn X T
The present invention relates to an optical isolator that uses a cadmium-manganese-tellurium single crystal represented by e (where 0.1≤X≤0.5) as a Faraday rotator and uses a permanent magnet for applying a magnetic field.

【0002】[0002]

【従来の技術】従来、例えば光通信,光計測,光磁気記
録等を行う光学的装置(システム)の光源には、そのコ
ヒーレント性から半導体レーザや気体レーザが使用され
ることが多い。これらのレーザから出射された光の一部
がレーザ自体に帰還されると、波長の揺らぎやノイズを
発生する。そこで、この帰還光を阻止するためにファラ
デー回転(磁界中での非相反旋光能)角,即ち、45度
を生ずるファラデー素子を使用した光アイソレータが実
用化されている。
2. Description of the Related Art Conventionally, a semiconductor laser or a gas laser is often used as a light source of an optical device (system) for optical communication, optical measurement, magneto-optical recording, etc. due to its coherence. When part of the light emitted from these lasers is returned to the lasers themselves, wavelength fluctuations and noise are generated. Therefore, an optical isolator using a Faraday element that produces a Faraday rotation (non-reciprocal optical rotation in a magnetic field) angle, that is, 45 degrees, has been put into practical use in order to block this return light.

【0003】ファラデー素子には光源の波長により異な
った材料が採用されている。例えば、波長1.2〜1.
6[μm]においてはファラデー回転能が大きい磁性ガ
ーネット(成分中に鉄を含むガーネット)単結晶が用い
られ、それより短い波長においては鉛ガラスやテルビウ
ム・ガリウム・ガーネット単結晶等が使用されている。
このうち、磁性ガーネットはファラデー回転能が大き
く、ファラデー素子とした場合、素子の厚みが数百μm
程度と薄いので、小型のアイソレータ用とすることが可
能になる。しかし、磁性ガーネットは1μm以下の波長
では光吸収があるので、1μm以下の波長の光には使用
できない。
Different materials are used for the Faraday element depending on the wavelength of the light source. For example, wavelengths 1.2 to 1.
At 6 [μm], a magnetic garnet (garnet containing iron in the component) single crystal with a large Faraday rotation ability is used, and at shorter wavelengths, lead glass or terbium-gallium-garnet single crystal is used. ..
Of these, magnetic garnet has a large Faraday rotation capability, and when it is used as a Faraday element, the element thickness is several hundred μm.
Since it is thin, it can be used for small isolator. However, since magnetic garnet absorbs light at a wavelength of 1 μm or less, it cannot be used for light having a wavelength of 1 μm or less.

【0004】一方、1μm以下の波長、例えばヘリウム
・ネオンレーザの発振波長である0.633μmや可視
光半導体レーザと呼ばれる半導体レーザの発振波長であ
る0.65〜0.85[μm]の光については、その波
長で光吸収の無い鉛ガラス,テルビウム・ガリウム・ガ
ーネット単結晶が使用されていたが、これらの材料はフ
ァラデー回転能がそれ程大きくなく、その素子長が数c
mと大きくなってしまうので、可視光アイソレータの小
型化に寄与するには困難があった。
On the other hand, with respect to light having a wavelength of 1 μm or less, for example, 0.633 μm which is an oscillation wavelength of a helium-neon laser or 0.65 to 0.85 [μm] which is an oscillation wavelength of a semiconductor laser called a visible light semiconductor laser. Used lead glass or terbium gallium garnet single crystal that does not absorb light at that wavelength, but these materials do not have a large Faraday rotation capability and their element length is a few c.
Therefore, it is difficult to contribute to miniaturization of the visible light isolator.

【0005】そこで、1991年開催の第15回日本応
用磁気学会における学術講演概要集30aB−7に記載
の如く、このような問題点を解決した(即ち、1μm以
下の波長でも光吸収がなく、しかもファラデー回転能が
大きい)小型可視光アイソレータが提案されている。こ
の小型可視光アイソレータは、化学式Cd1-X MnX
eで示されるカドミウム・マンガン・テルル単結晶をフ
ァラデー素子に用いると共に、化学式Nd2 Fe14Bで
示される残留磁束密度の大きいネオジウム・鉄・硼素磁
石を磁界印加用磁石に用いたものである。
Therefore, as described in the summary of academic lectures 30aB-7 at the 15th Japan Society for Applied Magnetics held in 1991, such a problem was solved (that is, there is no light absorption even at a wavelength of 1 μm or less, Moreover, a small visible light isolator with a large Faraday rotation capability has been proposed. This compact visible light isolator has the chemical formula Cd 1-X Mn X T
The cadmium-manganese-tellurium single crystal represented by e is used for the Faraday element, and the neodymium-iron-boron magnet having a large residual magnetic flux density represented by the chemical formula Nd 2 Fe 14 B is used for the magnetic field applying magnet.

【0006】[0006]

【発明が解決しようとする課題】上述した小型可視光ア
イソレータの場合、ファラデー回転角が45度からずれ
るとアイソレーションの値は図2に示すように変化す
る。又、化学式Cd1-X MnX Te(但し、0.1≦X
≦0.5)で示されるカドミウム・マンガン・テルル単
結晶の波長0.63〜0.85[μm]の帯域でのヴェ
ルデ定数(単位長さ及び単位磁界強度におけるファラデ
ー回転能)は、周囲環境温度によって図3に示すように
変化する。(尚、Cd1-X MnX Teにおける0.1≦
X≦0.5、波長0.63〜0.85[μm]の範囲で
は、ヴェルデ定数の大きさは組成及び波長に依存して変
化するが、ヴェルデ定数の環境温度依存は組成及び波長
に拘らず一定である。)更に、化学式Nd2 Fe14Bで
示されるネオジウム・鉄・硼素磁石の残留磁束密度は周
囲環境温度によって図4に示すように変化する。
In the case of the compact visible light isolator described above, the isolation value changes as shown in FIG. 2 when the Faraday rotation angle deviates from 45 degrees. In addition, the chemical formula Cd 1-X Mn X Te (provided that 0.1 ≦ X
≦ 0.5), the Verdet constant (Faraday rotation ability in unit length and unit magnetic field strength) in the band of wavelength 0.63 to 0.85 [μm] of the cadmium-manganese-tellurium single crystal is The temperature changes as shown in FIG. (In Cd 1-X Mn X Te, 0.1 ≦
In the range of X ≦ 0.5 and wavelength of 0.63 to 0.85 [μm], the magnitude of the Verde constant changes depending on the composition and the wavelength, but the environmental temperature dependence of the Verde constant depends on the composition and the wavelength. It is constant. Further, the residual magnetic flux density of the neodymium / iron / boron magnet represented by the chemical formula Nd 2 Fe 14 B changes as shown in FIG. 4 depending on the ambient temperature.

【0007】これらの図2〜図4から明らかであるよう
に、カドミウム・マンガン・テルル単結晶とネオジウム
・鉄・硼素磁石とをそれぞれファラデー素子と磁界印加
用の永久磁石とに用いた小型可視光アイソレータでは、
例えば基準環境温度を20℃としてファラデー回転角が
45度となるように設定しても、環境温度の変化により
ファラデー回転角が大きく変化する。この為、上述した
小型可視光アイソレータは、−20〜80[℃]の実用
温度範囲において、アイソレーションを29dB程度ま
でにしか保証できないという問題がある。
As is apparent from FIGS. 2 to 4, small visible light using a cadmium-manganese-tellurium single crystal and a neodymium-iron-boron magnet as a Faraday element and a permanent magnet for applying a magnetic field, respectively. In the isolator,
For example, even if the reference environment temperature is set to 20 ° C. and the Faraday rotation angle is set to 45 degrees, the Faraday rotation angle greatly changes due to the change in the environment temperature. Therefore, the small visible light isolator described above has a problem that the isolation can be guaranteed only up to about 29 dB in the practical temperature range of −20 to 80 ° C.

【0008】そこで、本発明の技術的課題は、ファラデ
ー回転角の環境温度による影響に拘らず、常時安定した
アイソレーション値を確保できる光アイソレータを提供
することにある。
Therefore, a technical object of the present invention is to provide an optical isolator capable of always ensuring a stable isolation value regardless of the influence of the Faraday rotation angle by the environmental temperature.

【0009】[0009]

【課題を解決するための手段】本発明によれば、化学式
Cd1-X MnX Te(但し、0.1≦X≦0.5)で示
されるカドミウム・マンガン・テルル単結晶をファラデ
ー回転子として用いると共に、磁界印加用に永久磁石を
用いた光アイソレータにおいて、永久磁石に化学式(N
1-Y DyY 2 Fe14B(但し、0.1≦Y≦0.
5)で示されるネオジウム・ディスプロジウム・鉄・硼
素磁石を用いたことを特徴とする光アイソレータが得ら
れる。
According to the present invention, a cadmium-manganese-tellurium single crystal represented by the chemical formula Cd 1 -X Mn X Te (where 0.1≤X≤0.5) is used as a Faraday rotator. In the optical isolator using a permanent magnet for applying a magnetic field, the chemical formula (N
d 1-Y Dy Y ) 2 Fe 14 B (provided that 0.1 ≦ Y ≦ 0.
An optical isolator characterized by using the neodymium / dysprodium / iron / boron magnet shown in 5) is obtained.

【0010】[0010]

【作用】本発明の光アイソレータは、化学式Nd2 Fe
14Bで示されるネオジウム・鉄・硼素磁石のネオジウム
(Nd)の一部をディスプロジウム(Dy)で置換した
化学式(Nd1-Y DyY 2 Fe14B(但し、0.1≦
Y≦0.5)で示されるネオジウム・ディスプロジウム
・鉄・硼素磁石を磁界印加用の永久磁石として備えたも
のである。
The optical isolator of the present invention has a chemical formula of Nd 2 Fe.
The chemical formula (Nd 1-Y Dy Y ) 2 Fe 14 B (where 0.1 ≦
The neodymium / dysprosium / iron / boron magnet represented by Y ≦ 0.5) is provided as a permanent magnet for applying a magnetic field.

【0011】[0011]

【実施例】以下に実施例を挙げ、本発明の光アイソレー
タについて、図面を参照して詳細に説明する。
The optical isolator of the present invention will be described in detail below with reference to the accompanying drawings.

【0012】最初に、本発明の光アイソレータの概要を
簡単に説明する。本発明では従来の光アイソレータの磁
界印加用の永久磁石であって、化学式Nd2 Fe14Bで
示されるネオジウム・鉄・硼素磁石のネオジウム(N
d)の一部をディスプロジウム(Dy)で置換すると、
その残留磁束密度の環境温度依存が図1に示すように変
化することに着目し、このような化学式(Nd1-Y Dy
Y 2 Fe14B(但し、0.1≦Y≦0.5)で示され
るネオジウム・ディスプロジウム・鉄・硼素磁石を磁界
印加用の永久磁石として光アイソレータに備えている。
First, the outline of the optical isolator of the present invention will be briefly described. In the present invention, a conventional magnet for applying a magnetic field to an optical isolator, which is a neodymium / iron / boron magnet neodymium (N) represented by the chemical formula Nd 2 Fe 14 B, is used.
When a part of d) is replaced with dysprosium (Dy),
Paying attention to the fact that the environmental temperature dependence of the residual magnetic flux density changes as shown in FIG. 1, such a chemical formula (Nd 1 -Y Dy
The optical isolator is provided with a neodymium / dysprosium / iron / boron magnet represented by Y ) 2 Fe 14 B (provided that 0.1 ≦ Y ≦ 0.5) as a permanent magnet for applying a magnetic field.

【0013】又、本発明の光アイソレータの場合も、化
学式Cd1-X MnX Te(但し、0.1≦X≦0.5)
で示されるカドミウム・マンガン・テルル単結晶をファ
ラデー素子として備えている。このような光アイソレー
タは、ネオジウム・ディスプロジウム・鉄・硼素磁石を
磁界印加用の永久磁石に用いているので、例えば基準環
境温度20℃でファラデー回転角が45度となるように
設定した後、環境温度が変化してもファラデー回転角の
環境温度による影響に拘らず、アイソレーション値が常
時安定する。
Also in the case of the optical isolator of the present invention, the chemical formula Cd 1-X Mn X Te (where 0.1≤X≤0.5)
A cadmium-manganese-tellurium single crystal represented by is provided as a Faraday element. Since such an optical isolator uses a neodymium / dysprodium / iron / boron magnet as a permanent magnet for applying a magnetic field, for example, after setting the Faraday rotation angle to be 45 degrees at a reference environmental temperature of 20 ° C., Even if the environmental temperature changes, the isolation value is always stable regardless of the influence of the environmental temperature on the Faraday rotation angle.

【0014】以下は幾つかの実施例及び比較例を挙げ、
本発明の光アイソレータを具体的に説明する。尚、各実
施例及び各比較例に係る光アイソレータおいては、表1
に記す−20〜80[℃]の実用温度範囲におけるアイ
ソレーション値の測定結果を参照する。
The following are some examples and comparative examples,
The optical isolator of the present invention will be specifically described. The optical isolators according to the examples and the comparative examples are shown in Table 1.
The measurement result of the isolation value in the practical temperature range of −20 to 80 ° C. described below is referred to.

【0015】[0015]

【表1】 [Table 1]

【0016】(実施例1)実施例1ではCd0.9 Mn
0.1 Teなる組成のカドミウム・マンガン・テルル単結
晶をファラデー素子とし、磁界印加用の永久磁石に(N
0.9 Dy0.1 2Fe14Bなる組成のネオジウム・デ
ィスプロジウム・鉄・硼素磁石を用いて、それぞれ波長
0.633,0.67,0.78,0.85[μm]用
の4種の光アイソレータを組み立てた。各光アイソレー
タ共、Mn濃度xは0.1であり、Dy濃度yは0.1
である。尚、ここでは波長によりヴェルデ定数が異なる
ため、それぞれのファラデー素子の厚さを変化させ、全
て20℃の温度でファラデー回転角が丁度45度となる
ように設定した。
(Example 1) In Example 1, Cd 0.9 Mn
A cadmium-manganese-tellurium single crystal having a composition of 0.1 Te was used as a Faraday element and was used as a permanent magnet for applying a magnetic field (N
Using a neodymium-dysprodium-iron-boron magnet having a composition of d 0.9 Dy 0.1 ) 2 Fe 14 B, four types for wavelengths of 0.633, 0.67, 0.78 and 0.85 [μm] are prepared. An optical isolator was assembled. Each optical isolator has a Mn concentration x of 0.1 and a Dy concentration y of 0.1.
Is. Here, since the Verdet constant differs depending on the wavelength, the thickness of each Faraday element was changed, and the Faraday rotation angle was set to just 45 degrees at a temperature of 20 ° C.

【0017】これら4種の光アイソレータの−20〜8
0[℃]の温度範囲でのアイソレーション値は、何れも
表1に示す如く、最低でも41dB以上となった。この
41dBという値は、ファラデー素子のヴェルデ定数と
永久磁石の残留磁束密度の温度依存から予想された値と
程良く一致した。
-20 to 8 of these four types of optical isolators
As shown in Table 1, the isolation values in the temperature range of 0 [° C.] were at least 41 dB or more. This value of 41 dB was in good agreement with the value expected from the temperature dependence of the Verdet constant of the Faraday element and the residual magnetic flux density of the permanent magnet.

【0018】(実施例2)実施例2ではCd0.9 Mn
0.1 Teなる組成のカドミウム・マンガン・テルル単結
晶をファラデー素子とし、磁界印加用の永久磁石に(N
0.7 Dy0.3 2Fe14Bなる組成のネオジウム・デ
ィスプロジウム・鉄・硼素磁石を用いて、それぞれ波長
0.633,0.67,0.78,0.85[μm]用
の4種の光アイソレータを組み立てた。各光アイソレー
タ共、Mn濃度xは0.1であり、Dy濃度yは0.3
である。ここでも波長によりヴェルデ定数が異なるた
め、それぞれのファラデー素子の厚さを変化させ、全て
20℃の温度でファラデー回転角が丁度45度となるよ
うに設定した。
(Example 2) In Example 2, Cd 0.9 Mn
A cadmium-manganese-tellurium single crystal having a composition of 0.1 Te was used as a Faraday element and was used as a permanent magnet for applying a magnetic field (N
d 0.7 Dy 0.3 ) 2 Fe 14 B having a composition of neodymium-dysprodium-iron-boron magnet was used for four types of wavelengths of 0.633, 0.67, 0.78 and 0.85 [μm], respectively. An optical isolator was assembled. Each optical isolator has a Mn concentration x of 0.1 and a Dy concentration y of 0.3.
Is. Since the Verdet constant also varies depending on the wavelength, the thickness of each Faraday element was changed so that the Faraday rotation angle was set to just 45 degrees at a temperature of 20 ° C.

【0019】これら4種の光アイソレータの−20〜8
0[℃]の温度範囲でのアイソレーション値は、何れも
表1に示す如く、最低でも43dB以上となった。又、
この43dBという値も、ファラデー素子のヴェルデ定
数と永久磁石の残留磁束密度の温度依存から予想された
値と程良く一致した。
-20 to 8 of these four types of optical isolators
As shown in Table 1, the isolation values in the temperature range of 0 [° C.] were at least 43 dB or more. or,
This value of 43 dB was in good agreement with the value expected from the temperature dependence of the Verdet constant of the Faraday element and the residual magnetic flux density of the permanent magnet.

【0020】(実施例3)実施例3ではCd0.9 Mn
0.1 Teなる組成のカドミウム・マンガン・テルル単結
晶をファラデー素子とし、磁界印加用の永久磁石に(N
0.5 Dy0.5 2Fe14Bなる組成のネオジウム・デ
ィスプロジウム・鉄・硼素磁石を用いて、それぞれ波長
0.633,0.67,0.78,0.85[μm]用
の4種の光アイソレータを組み立てた。各光アイソレー
タ共、Mn濃度xは0.1であり、Dy濃度yは0.5
である。ここでも波長によりヴェルデ定数が異なるた
め、それぞれのファラデー素子の厚さを変化させ、全て
20℃の温度でファラデー回転角が丁度45度となるよ
うに設定した。
Example 3 In Example 3, Cd 0.9 Mn
A cadmium-manganese-tellurium single crystal having a composition of 0.1 Te was used as a Faraday element and was used as a permanent magnet for applying a magnetic field (N
Using a neodymium-dysprodium-iron-boron magnet having a composition of d 0.5 Dy 0.5 ) 2 Fe 14 B, four types for wavelengths of 0.633, 0.67, 0.78, 0.85 [μm] are prepared. An optical isolator was assembled. Each optical isolator has a Mn concentration x of 0.1 and a Dy concentration y of 0.5.
Is. Since the Verdet constant also varies depending on the wavelength, the thickness of each Faraday element was changed so that the Faraday rotation angle was set to just 45 degrees at a temperature of 20 ° C.

【0021】これら4種の光アイソレータの−20〜8
0[℃]の温度範囲でのアイソレーション値は、何れも
表1に示す如く、最低でも40dB以上となった。又、
この40dBという値も、ファラデー素子のヴェルデ定
数と永久磁石の残留磁束密度の温度依存から予想された
値と程良く一致した。
-20 to 8 of these four types of optical isolators
As shown in Table 1, the isolation values in the temperature range of 0 [° C] were at least 40 dB or more. or,
This value of 40 dB was also in good agreement with the value expected from the temperature dependence of the Verdet constant of the Faraday element and the residual magnetic flux density of the permanent magnet.

【0022】(比較例1)比較例1ではCd0.9 Mn
0.1 Teなる組成のカドミウム・マンガン・テルル単結
晶をファラデー素子とし、磁界印加用の永久磁石にNd
2 Fe14Bなる組成のネオジウム・鉄・硼素磁石を用い
て、それぞれ波長0.633,0.67,0.78,
0.85[μm]用の4種の光アイソレータを組み立て
た。各光アイソレータ共、Mn濃度xは0.1であり、
Dy濃度yは0である。ここでも波長によりヴェルデ定
数が異なるため、それぞれのファラデー素子の厚さを変
化させ、20℃の温度でファラデー回転角が丁度45度
となるように設定した。
Comparative Example 1 In Comparative Example 1, Cd 0.9 Mn
A cadmium-manganese-tellurium single crystal with a composition of 0.1 Te is used as a Faraday element, and Nd is used as a permanent magnet for applying a magnetic field.
Using a neodymium / iron / boron magnet having a composition of 2 Fe 14 B, wavelengths of 0.633, 0.67, 0.78,
Four types of optical isolators for 0.85 [μm] were assembled. In each optical isolator, the Mn concentration x is 0.1,
The Dy concentration y is 0. Since the Verdet constant also varies depending on the wavelength, the thickness of each Faraday element was changed so that the Faraday rotation angle was set to just 45 degrees at a temperature of 20 ° C.

【0023】これら4種の光アイソレータの−20〜8
0[℃]の温度範囲でのアイソレーション値は、何れも
表1に示す如く最低で29dB以上であり、上記した実
施例1,2,3の場合に比べて劣っていた。又、この2
9dBという値も、ファラデー素子のヴェルデ定数と永
久磁石の残留磁束密度の温度依存から予想された値と程
良く一致した。
-20 to 8 of these four types of optical isolators
The isolation values in the temperature range of 0 [° C.] were 29 dB or more at the minimum as shown in Table 1, which was inferior to the cases of Examples 1, 2 and 3 described above. Also, this 2
The value of 9 dB was also in good agreement with the value expected from the temperature dependence of the Verdet constant of the Faraday element and the residual magnetic flux density of the permanent magnet.

【0024】(実施例4)実施例4ではCd0.7 Mn
0.3 Teなる組成のカドミウム・マンガン・テルル単結
晶をファラデー素子とし、磁界印加用の永久磁石に(N
0.9 Dy0.1 2Fe14Bなる組成のネオジウム・デ
ィスプロジウム・鉄・硼素磁石を用いて、それぞれ波長
0.633,0.67,0.78,0.85[μm]用
の4種の光アイソレータを組み立てた。各光アイソレー
タ共、Mn濃度xは0.3であり、Dy濃度yは0.1
である。ここでも波長によりヴェルデ定数が異なるた
め、それぞれのファラデー素子の厚さを変化させ、全て
20℃の温度でファラデー回転角が丁度45度となるよ
うに設定した。
Example 4 In Example 4, Cd 0.7 Mn was used.
A cadmium-manganese-tellurium single crystal with a composition of 0.3 Te is used as a Faraday element and is used as a permanent magnet for applying a magnetic field (N
Using a neodymium-dysprodium-iron-boron magnet having a composition of d 0.9 Dy 0.1 ) 2 Fe 14 B, four types for wavelengths of 0.633, 0.67, 0.78 and 0.85 [μm] are prepared. An optical isolator was assembled. In each optical isolator, the Mn concentration x is 0.3 and the Dy concentration y is 0.1.
Is. Since the Verdet constant also varies depending on the wavelength, the thickness of each Faraday element was changed so that the Faraday rotation angle was set to just 45 degrees at a temperature of 20 ° C.

【0025】これら4種の光アイソレータの−20〜8
0[℃]の温度範囲でのアイソレーション値は、何れも
表1に示す如く、最低でも41dB以上となった。又、
この41dBという値も、ファラデー素子のヴェルデ定
数と永久磁石の残留磁束密度の温度依存から予想された
値と程良く一致した。
-20 to 8 of these four types of optical isolators
As shown in Table 1, the isolation values in the temperature range of 0 [° C.] were at least 41 dB or more. or,
The value of 41 dB was also in good agreement with the value expected from the temperature dependence of the Verdet constant of the Faraday element and the residual magnetic flux density of the permanent magnet.

【0026】(実施例5)実施例5ではCd0.7 Mn
0.3 Teなる組成のカドミウム・マンガン・テルル単結
晶をファラデー素子とし、磁界印加用の永久磁石に(N
0.7 Dy0.3 2Fe14Bなる組成のネオジウム・デ
ィスプロジウム・鉄・硼素磁石を用いて、それぞれ波長
0.633,0.67,0.78,0.85[μm]用
の4種の光アイソレータを組み立てた。各光アイソレー
タ共、Mn濃度xは0.3であり、Dy濃度yは0.3
である。ここでも波長によりヴェルデ定数が異なるた
め、それぞれのファラデー素子の厚さを変化させ、全て
20℃の温度でファラデー回転角が丁度45度となるよ
うに設定した。
Example 5 In Example 5, Cd 0.7 Mn
A cadmium-manganese-tellurium single crystal with a composition of 0.3 Te is used as a Faraday element and is used as a permanent magnet for applying a magnetic field (N
d 0.7 Dy 0.3 ) 2 Fe 14 B having a composition of neodymium-dysprodium-iron-boron magnet was used for four types of wavelengths of 0.633, 0.67, 0.78 and 0.85 [μm], respectively. An optical isolator was assembled. In each optical isolator, the Mn concentration x is 0.3 and the Dy concentration y is 0.3.
Is. Since the Verdet constant also varies depending on the wavelength, the thickness of each Faraday element was changed so that the Faraday rotation angle was set to just 45 degrees at a temperature of 20 ° C.

【0027】これら4種の光アイソレータの−20〜8
0[℃]の温度範囲でのアイソレーション値も何れも表
1に示す如く、最低でも43dB以上となった。又、こ
の43dBという値も、ファラデー素子のヴェルデ定数
と永久磁石の残留磁束密度の温度依存から予想された値
と程良く一致した。
-20 to 8 of these four types of optical isolators
As shown in Table 1, the isolation values in the temperature range of 0 [° C.] were at least 43 dB or more. Also, this value of 43 dB was in good agreement with the value expected from the temperature dependence of the Verdet constant of the Faraday element and the residual magnetic flux density of the permanent magnet.

【0028】(実施例6)実施例6ではCd0.7 Mn
0.3 Teなる組成のカドミウム・マンガン・テルル単結
晶をファラデー素子とし、磁界印加用の永久磁石に(N
0.5 Dy0.5 2Fe14Bなる組成のネオジウム・デ
ィスプロジウム・鉄・硼素磁石を用いて、それぞれ波長
0.633,0.67,0.78,0.85[μm]用
の4種の光アイソレータを組み立てた。各光アイソレー
タ共、Mn濃度xは0.3であり、Dy濃度yは0.5
である。ここでも波長によりヴェルデ定数が異なるた
め、それぞれのファラデー素子の厚さを変化させ、全て
20℃の温度でファラデー回転角が丁度45度となるよ
うに設定した。
(Example 6) In Example 6, Cd 0.7 Mn
A cadmium-manganese-tellurium single crystal with a composition of 0.3 Te is used as a Faraday element and is used as a permanent magnet for applying a magnetic field (N
Using a neodymium-dysprodium-iron-boron magnet having a composition of d 0.5 Dy 0.5 ) 2 Fe 14 B, four types for wavelengths of 0.633, 0.67, 0.78, 0.85 [μm] are prepared. An optical isolator was assembled. In each optical isolator, the Mn concentration x is 0.3 and the Dy concentration y is 0.5.
Is. Since the Verdet constant also varies depending on the wavelength, the thickness of each Faraday element was changed so that the Faraday rotation angle was set to just 45 degrees at a temperature of 20 ° C.

【0029】これら4種の光アイソレータの−20〜8
0[℃]の温度範囲でのアイソレーション値も何れも表
1に示す如く、最低でも40dB以上となった。又、こ
の40dBという値も、ファラデー素子のヴェルデ定数
と永久磁石の残留磁束密度の温度依存から予想された値
と程良く一致した。
-20 to 8 of these four types of optical isolators
As shown in Table 1, the isolation values in the temperature range of 0 [° C.] were at least 40 dB or more. Also, this value of 40 dB was in good agreement with the value expected from the temperature dependence of the Verdet constant of the Faraday element and the residual magnetic flux density of the permanent magnet.

【0030】(比較例2)比較例2ではCd0.7 Mn
0.3 Teなる組成のカドミウム・マンガン・テルル単結
晶をファラデー素子とし、磁界印加用の永久磁石にNd
2 Fe14Bなる組成のネオジウム・鉄・硼素磁石を用い
て、それぞれ波長0.633,0.67,0.78,
0.85[μm]用の4種の光アイソレータを組み立て
た。各光アイソレータ共、Mn濃度xは0.3であり、
Dy濃度yは0である。ここでも波長によりヴェルデ定
数が異なるため、それぞれのファラデー素子の厚さを変
化させ、全て20℃の温度でファラデー回転角が丁度4
5度となるように設定した。
Comparative Example 2 In Comparative Example 2, Cd 0.7 Mn
A cadmium-manganese-tellurium single crystal with a composition of 0.3 Te was used as a Faraday element, and Nd was used as a permanent magnet for applying a magnetic field.
Using a neodymium / iron / boron magnet having a composition of 2 Fe 14 B, wavelengths of 0.633, 0.67, 0.78,
Four types of optical isolators for 0.85 [μm] were assembled. In each optical isolator, the Mn concentration x is 0.3,
The Dy concentration y is 0. Again, since the Verdet constant varies depending on the wavelength, the thickness of each Faraday element is changed so that the Faraday rotation angle is exactly 4 at a temperature of 20 ° C.
It was set to be 5 degrees.

【0031】これら4種の光アイソレータの−20〜8
0[℃]の温度範囲でのアイソレーション値は、何れも
表1に示す如く最低で29dB以上であり、上記した実
施例4,5,6に比べて劣っていた。この29dBとい
う値も、ファラデー素子のヴェルデ定数と永久磁石の残
留磁束密度の温度依存から予想された値と程良く一致し
た。
-20 to 8 of these four types of optical isolators
The isolation values in the temperature range of 0 [° C.] were 29 dB or more at the minimum as shown in Table 1, which was inferior to those of Examples 4, 5 and 6 described above. This value of 29 dB was also in good agreement with the value expected from the temperature dependence of the Verdet constant of the Faraday element and the residual magnetic flux density of the permanent magnet.

【0032】(実施例7)実施例7ではCd0.5 Mn
0.5 Teなる組成のカドミウム・マンガン・テルル単結
晶をファラデー素子とし、磁界印加用の永久磁石に(N
0.9 Dy0.1 2Fe14Bなる組成のネオジウム・デ
ィスプロジウム・鉄・硼素磁石を用いて、それぞれ波長
0.633,0.67,0.78,0.85[μm]用
の4種の光アイソレータを組み立てた。各光アイソレー
タ共、Mn濃度xは0.5であり、Dy濃度yは0.1
である。ここでも波長によりヴェルデ定数が異なるた
め、それぞれのファラデー素子の厚さを変化させ、全て
20℃の温度でファラデー回転角が丁度45度となるよ
うに設定した。
Example 7 In Example 7, Cd 0.5 Mn
A cadmium-manganese-tellurium single crystal having a composition of 0.5 Te is used as a Faraday element and is used as a permanent magnet for applying a magnetic field (N
Using a neodymium-dysprodium-iron-boron magnet having a composition of d 0.9 Dy 0.1 ) 2 Fe 14 B, four types for wavelengths of 0.633, 0.67, 0.78 and 0.85 [μm] are prepared. An optical isolator was assembled. Each optical isolator has a Mn concentration x of 0.5 and a Dy concentration y of 0.1.
Is. Since the Verdet constant also varies depending on the wavelength, the thickness of each Faraday element was changed so that the Faraday rotation angle was set to just 45 degrees at a temperature of 20 ° C.

【0033】これら4種の光アイソレータの−20〜8
0[℃]の温度範囲でのアイソレーション値も何れも表
1に示す如く、最低でも41dB以上となった。又、こ
の41dBという値も、ファラデー素子のヴェルデ定数
と永久磁石の残留磁束密度の温度依存から予想された値
と程良く一致した。
-20 to 8 of these four types of optical isolators
As shown in Table 1, the isolation values in the temperature range of 0 [° C.] were at least 41 dB or more. Also, this value of 41 dB was in good agreement with the value expected from the temperature dependence of the Verdet constant of the Faraday element and the residual magnetic flux density of the permanent magnet.

【0034】(実施例8)実施例8ではCd0.5 Mn
0.5 Teなる組成のカドミウム・マンガン・テルル単結
晶をファラデー素子とし、磁界印加用の永久磁石に(N
0.7 Dy0.3 2Fe14Bなる組成のネオジウム・デ
ィスプロジウム・鉄・硼素磁石を用いて、それぞれ波長
0.633,0.67,0.78,0.85[μm]用
の4種の光アイソレータを組み立てた。各光アイソレー
タ共、Mn濃度xは0.5であり、Dy濃度yは0.3
である。ここでも波長によりヴェルデ定数が異なるた
め、それぞれのファラデー素子の厚さを変化させ、全て
20℃の温度でファラデー回転角が丁度45度となるよ
うに設定した。
Example 8 In Example 8, Cd 0.5 Mn was used.
A cadmium-manganese-tellurium single crystal having a composition of 0.5 Te is used as a Faraday element and is used as a permanent magnet for applying a magnetic field (N
d 0.7 Dy 0.3 ) 2 Fe 14 B having a composition of neodymium-dysprodium-iron-boron magnet was used for four types of wavelengths of 0.633, 0.67, 0.78 and 0.85 [μm], respectively. An optical isolator was assembled. In each optical isolator, the Mn concentration x is 0.5 and the Dy concentration y is 0.3.
Is. Since the Verdet constant also varies depending on the wavelength, the thickness of each Faraday element was changed so that the Faraday rotation angle was set to just 45 degrees at a temperature of 20 ° C.

【0035】これら4種の光アイソレータの−20〜8
0[℃]の温度範囲でのアイソレーション値も何れも表
1に示す如く、最低でも43dB以上となった。又、こ
の43dBという値も、ファラデー素子のヴェルデ定数
と永久磁石の残留磁束密度の温度依存から予想された値
と程良く一致した。
-20 to 8 of these four types of optical isolators
As shown in Table 1, the isolation values in the temperature range of 0 [° C.] were at least 43 dB or more. Also, this value of 43 dB was in good agreement with the value expected from the temperature dependence of the Verdet constant of the Faraday element and the residual magnetic flux density of the permanent magnet.

【0036】(実施例9)実施例9ではCd0.5 Mn
0.5 Teなる組成のカドミウム・マンガン・テルル単結
晶をファラデー素子とし、磁界印加用の永久磁石に(N
0.5 Dy0.5 2Fe14Bなる組成のネオジウム・デ
ィスプロジウム・鉄・硼素磁石を用いて、それぞれ波長
0.633,0.67,0.78,0.85[μm]用
の4種の光アイソレータを組み立てた。各光アイソレー
タ共、Mn濃度xは0.5であり、Dy濃度yは0.5
である。ここでも波長によりヴェルデ定数が異なるた
め、それぞれのファラデー素子の厚さを変化させ、全て
20℃の温度でファラデー回転角が丁度45度となるよ
うに設定した。
(Example 9) In Example 9, Cd 0.5 Mn
A cadmium-manganese-tellurium single crystal having a composition of 0.5 Te is used as a Faraday element and is used as a permanent magnet for applying a magnetic field (N
Using a neodymium-dysprodium-iron-boron magnet having a composition of d 0.5 Dy 0.5 ) 2 Fe 14 B, four types for wavelengths of 0.633, 0.67, 0.78, 0.85 [μm] are prepared. An optical isolator was assembled. For each optical isolator, the Mn concentration x is 0.5 and the Dy concentration y is 0.5.
Is. Since the Verdet constant also varies depending on the wavelength, the thickness of each Faraday element was changed so that the Faraday rotation angle was set to just 45 degrees at a temperature of 20 ° C.

【0037】これら4種の光アイソレータの−20〜8
0[℃]の温度範囲でのアイソレーション値も何れも表
1に示す如く、最低でも40dB以上となった。又、こ
の40dBという値も、ファラデー素子のヴェルデ定数
と永久磁石の残留磁束密度の温度依存から予想された値
と程良く一致した。
-20 to 8 of these four types of optical isolators
As shown in Table 1, the isolation values in the temperature range of 0 [° C.] were at least 40 dB or more. Also, this value of 40 dB was in good agreement with the value expected from the temperature dependence of the Verdet constant of the Faraday element and the residual magnetic flux density of the permanent magnet.

【0038】(比較例3)比較例3ではCd0.5 Mn
0.5 Teなる組成のカドミウム・マンガン・テルル単結
晶をファラデー素子とし、磁界印加用の永久磁石にNd
2 Fe14Bなる組成ネオジウム・鉄・硼素磁石を用い
て、それぞれ波長0.633,0.67,0.78,
0.85[μm]用の4種の光アイソレータを組み立て
た。各光アイソレータ共、Mn濃度xは0.5であり、
Dy濃度yは0である。ここでも波長によりヴェルデ定
数が異なるため、それぞれのファラデー素子の厚さを変
化させ、全て20℃の温度でファラデー回転角が丁度4
5度となるように設定した。
Comparative Example 3 In Comparative Example 3, Cd 0.5 Mn was used.
Cadmium-manganese-tellurium single crystal with a composition of 0.5 Te is used as a Faraday element, and Nd is used as a permanent magnet for applying a magnetic field.
2 Fe 14 B having a composition of neodymium / iron / boron magnet, wavelengths of 0.633, 0.67, 0.78,
Four types of optical isolators for 0.85 [μm] were assembled. For each optical isolator, the Mn concentration x is 0.5,
The Dy concentration y is 0. Again, since the Verdet constant varies depending on the wavelength, the thickness of each Faraday element is changed so that the Faraday rotation angle is exactly 4 at a temperature of 20 ° C.
It was set to be 5 degrees.

【0039】これら4種の光アイソレータの−20〜8
0[℃]の温度範囲でのアイソレーション値は、何れも
表1に示す如く最低で29dB以上であり、上記した実
施例7,8,9に比べて劣っていた。この29dBとい
う値も、ファラデー素子のヴェルデ定数と永久磁石の残
留磁束密度の温度依存から予想された値と程良く一致し
た。
-20 to 8 of these four types of optical isolators
As shown in Table 1, the isolation values in the temperature range of 0 [° C.] were all at least 29 dB or more, which was inferior to those of Examples 7, 8 and 9 described above. This value of 29 dB was also in good agreement with the value expected from the temperature dependence of the Verdet constant of the Faraday element and the residual magnetic flux density of the permanent magnet.

【0040】以上の各実施例(1〜9)と各比較例(1
〜3)とを比較すれば、各比較例の光アイソレータが−
20〜80[℃]の温度範囲で29dB以上のアイソレ
ーション値であるのに対し、各実施例の光アイソレータ
では何れも40dB以上のアイソレーション値となって
いるので、各実施例の光アイソレータは環境温度の変化
に拘らず安定したアイソレーションを得られることが判
る。
Each of the above Examples (1 to 9) and each Comparative Example (1
~ 3), the optical isolator of each comparative example is
While the isolation value is 29 dB or more in the temperature range of 20 to 80 [° C.], the optical isolator of each example has an isolation value of 40 dB or more. It can be seen that stable isolation can be obtained regardless of changes in environmental temperature.

【0041】[0041]

【発明の効果】以上に説明した如く、本発明によれば、
環境温度の実用温度変化に対して影響を受け難く、その
実用温度変化範囲で常時安定したアイソレーションを確
保できると共に、小型化に寄与し得る可視光アイソレー
タが実現される。
As described above, according to the present invention,
A visible light isolator that is hardly affected by a change in environmental temperature due to practical temperature, can always secure stable isolation in the practical temperature change range, and can contribute to miniaturization is realized.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の光アイソレータが備える磁界印加用の
永久磁石であって、化学式(Nd1-Y DyY 2 Fe14
B(但し、0.1≦Y≦0.5)で示されるネオジウム
・ディスプロジウム・鉄・硼素磁石における残留磁束密
度の環境温度依存を示す図である。
FIG. 1 is a permanent magnet for magnetic field application provided in the optical isolator of the present invention, which has a chemical formula (Nd 1 -Y Dy Y ) 2 Fe 14.
It is a figure which shows the environmental temperature dependence of the residual magnetic flux density in the neodymium-disprodium-iron-boron magnet shown by B (however, 0.1 <= Y <= 0.5).

【図2】従来の光アイソレータにおけるファラデー回転
角の45度からのずれによるアイソレーション値の変化
を示す図である。
FIG. 2 is a diagram showing a change in isolation value due to a deviation of a Faraday rotation angle from 45 degrees in a conventional optical isolator.

【図3】本発明又は従来の光アイソレータが備えるファ
ラデー回転子であって、化学式Cd1-X MnX Te(但
し、0.1≦X≦0.5)で示されるカドミウム・マン
ガン・テルル単結晶の波長0.63〜0.85[μm]
の範囲でのヴェルデ定数の環境温度依存を示す図であ
る。
FIG. 3 shows a Faraday rotator included in the optical isolator of the present invention or a conventional optical isolator, which is a cadmium-manganese-tellurium single crystal represented by the chemical formula Cd 1-X Mn X Te (where 0.1 ≦ X ≦ 0.5). Crystal wavelength 0.63 to 0.85 [μm]
It is a figure which shows the environmental temperature dependence of the Verde constant in the range of.

【図4】従来の光アイソレータが備える磁界印加用の永
久磁石であって、化学式(Nd2 Fe14B)で示される
ネオジウム・鉄・硼素磁石における残留磁束密度の環境
温度依存を示す図である。
FIG. 4 is a diagram showing the environmental temperature dependence of the residual magnetic flux density in a neodymium / iron / boron magnet represented by a chemical formula (Nd 2 Fe 14 B), which is a permanent magnet for applying a magnetic field included in a conventional optical isolator. ..

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 化学式Cd1-X MnX Te(但し、0.
1≦X≦0.5)で示されるカドミウム・マンガン・テ
ルル単結晶をファラデー回転子として用いると共に、磁
界印加用に永久磁石を用いた光アイソレータにおいて、
前記永久磁石に化学式(Nd1-Y DyY 2 Fe14
(但し、0.1≦Y≦0.5)で示されるネオジウム・
ディスプロジウム・鉄・硼素磁石を用いたことを特徴と
する光アイソレータ。
1. The chemical formula Cd 1-X Mn X Te (provided that 0.
An optical isolator using a cadmium-manganese-tellurium single crystal represented by 1 ≦ X ≦ 0.5) as a Faraday rotator and a permanent magnet for applying a magnetic field,
The permanent magnet has the chemical formula (Nd 1-Y Dy Y ) 2 Fe 14 B
(However, 0.1 ≦ Y ≦ 0.5) Neodymium
An optical isolator characterized by using dysprodium / iron / boron magnets.
JP08729692A 1992-04-08 1992-04-08 Optical isolator Expired - Fee Related JP3198391B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP08729692A JP3198391B2 (en) 1992-04-08 1992-04-08 Optical isolator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP08729692A JP3198391B2 (en) 1992-04-08 1992-04-08 Optical isolator

Publications (2)

Publication Number Publication Date
JPH05289025A true JPH05289025A (en) 1993-11-05
JP3198391B2 JP3198391B2 (en) 2001-08-13

Family

ID=13910861

Family Applications (1)

Application Number Title Priority Date Filing Date
JP08729692A Expired - Fee Related JP3198391B2 (en) 1992-04-08 1992-04-08 Optical isolator

Country Status (1)

Country Link
JP (1) JP3198391B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104280901A (en) * 2013-07-12 2015-01-14 信越化学工业株式会社 Optical isolator

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104280901A (en) * 2013-07-12 2015-01-14 信越化学工业株式会社 Optical isolator
JP2015018145A (en) * 2013-07-12 2015-01-29 信越化学工業株式会社 Optical isolator
US9429778B2 (en) 2013-07-12 2016-08-30 Shin-Etsu Chemical Co., Ltd. Optical isolator for a wavelength band of 600-800 nm

Also Published As

Publication number Publication date
JP3198391B2 (en) 2001-08-13

Similar Documents

Publication Publication Date Title
Lacklison et al. Garnets with high magnetooptic figures of merit in the visible region
US5898516A (en) Faraday rotator having a rectangular shaped hysteresis
US5801875A (en) Article comprising a magneto-optic material having low magnetic moment
JPH05289025A (en) Optical isolator
US6031654A (en) Low magnet-saturation bismuth-substituted rare-earth iron garnet single crystal film
JPS62186220A (en) Optical isolator
US3516726A (en) Optical devices with zero linear magnetic birefringence
JPS59147320A (en) Optical non-reciprocal element
JPH0756115A (en) Optical isolator
RU2769483C1 (en) Terahertz insulator
JPH11305177A (en) Magneto-optical garnet
JPH06281885A (en) Optical isolator
Matsuda et al. Magnetless Faraday rotator of (BiY) 3Fe5O12 waveguide with stripe magnetic domains
WO2021256256A1 (en) Magnetic circuit, faraday rotator, and magneto-optic device
JPH07104224A (en) Nonreciprocity optical device
JPH04247423A (en) Optical isolator
JP2000298247A (en) Optical isolator and irreversible phase reciprocal component
JP2916995B2 (en) Magnetic garnet for optical devices
JP2003257737A (en) Method for magnetization
JP2000105355A (en) Optical isolator and manufacture thereof
JPH0369847B2 (en)
JPH0634926A (en) Faraday rotor
JPH11101954A (en) Optical isolator
JPH0450120A (en) Magnetic optical material
JP2001209006A (en) Optical isolator

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20010516

LAPS Cancellation because of no payment of annual fees