JPH0528897Y2 - - Google Patents

Info

Publication number
JPH0528897Y2
JPH0528897Y2 JP4896987U JP4896987U JPH0528897Y2 JP H0528897 Y2 JPH0528897 Y2 JP H0528897Y2 JP 4896987 U JP4896987 U JP 4896987U JP 4896987 U JP4896987 U JP 4896987U JP H0528897 Y2 JPH0528897 Y2 JP H0528897Y2
Authority
JP
Japan
Prior art keywords
phase
cooling air
phase separation
conductor
flow path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP4896987U
Other languages
Japanese (ja)
Other versions
JPS63156525U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP4896987U priority Critical patent/JPH0528897Y2/ja
Publication of JPS63156525U publication Critical patent/JPS63156525U/ja
Application granted granted Critical
Publication of JPH0528897Y2 publication Critical patent/JPH0528897Y2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Gas-Insulated Switchgears (AREA)
  • Installation Of Bus-Bars (AREA)

Description

【考案の詳細な説明】 〔産業上の利用分野〕 この考案は、中間に開閉機器が接続され、発電
機と主変圧器間の電力輸送に用いられる強制風冷
式相分離母線に関するものである。
[Detailed description of the invention] [Industrial application field] This invention relates to a forced air-cooled phase-separated busbar with switching equipment connected in between and used for power transmission between a generator and a main transformer. .

〔従来の技術〕[Conventional technology]

従来、相分離母線は、発電機容量の増大に伴な
い大容量化が進み、その対策として母線内部に冷
却された空気を強制的に流して母線の温度上昇を
制限値以下に抑える方法がとられる。この冷却方
式としては、特公昭56−25853号公報に示された
ように、三相の母線のうちの両端相の母線の外被
と導体間の空間に風を送り、発電機部ないし主変
圧器部に配設された三相間風路ダクトを経て中間
の外被と導体間へ折り返してくる方式がある。ま
た、三相の各相それぞれに外被と導体間の空間に
風を送り、折り返しは各相の中空導体内の空間を
風路とする方式もとられている。また、近年の発
電主回路には、第2図に示すように、発電機1と
主変圧器2を結ぶ相分離母線3の中途に発電機遮
断器4を設置し、高圧側遮断器5の代りに発電機
遮断器4により発電機1の系統への併入・解列を
行うとともに変電所の所内設備用の所内電力を常
に所内変圧器6を介して供給するような回路が使
用されることが多くなつた。従つて相分離母線3
の中途に発電機遮断器4を設置し、かつ、冷却方
式も発電機遮断器4を含めたトータルのものを考
える必要が生じてきた。従来、通常、発電機遮断
器4のような開閉機器は、冷却風路として外被と
導体間の空間があるのみで相分離母線3の中空導
体内の空間に相当する部分がないため、一般に第
3図に示すような構成による冷却方式が採用され
ている。
Conventionally, the capacity of phase-separated buses has increased as generator capacity has increased, and as a countermeasure, a method has been used to force cooled air to flow inside the bus to keep the temperature rise of the bus below a limit value. It will be done. As shown in Japanese Patent Publication No. 56-25853, this cooling method involves blowing air into the space between the conductor and the outer sheath of the busbars at both ends of the three-phase busbars, and There is a method in which the air passes through a three-phase inter-phase air duct installed in the vessel and is folded back between the intermediate jacket and the conductor. Another method is to send air to the space between the outer sheath and the conductor for each of the three phases, and use the space inside the hollow conductor of each phase as the air path when turning. In addition, in recent power generation main circuits, as shown in Fig. 2, a generator breaker 4 is installed midway through the phase separation bus 3 connecting the generator 1 and the main transformer 2, and a generator breaker 4 is installed in the middle of the phase separation bus 3 connecting the generator 1 and the main transformer 2. Instead, a circuit is used in which the generator circuit breaker 4 connects and disconnects the generator 1 to the system, and at the same time always supplies power for the substation's in-house equipment via the in-station transformer 6. A lot of things happened. Therefore, phase separation bus 3
It has become necessary to install the generator circuit breaker 4 in the middle of the process, and to consider a total cooling system that includes the generator circuit breaker 4. Conventionally, switching equipment such as the generator circuit breaker 4 has only a space between the jacket and the conductor as a cooling air path, and there is no space corresponding to the space inside the hollow conductor of the phase separation bus 3, so generally A cooling system with a configuration as shown in FIG. 3 is adopted.

図において、相分離母線3は、外被3a、中空
導体3bからなつている。相分離母線3の中間部
に設置された発電機遮断器4は、外被4aおよび
消弧室兼導体部4bからなつている。主変圧器2
と発電機1はそれぞれ相分離母線3の導体3bと
可とう導体3cで接続されている。また、発電機
遮断器4の消弧室兼導体部4bと相分離母線の導
体3bも可とう導体3cで接続されている。相分
離母線3の両端相の発電機1側にはそれぞれ冷却
風入口7a,7cが、中相の発電機1側には冷却
風出口8が設けられている。冷却風を送り出す冷
却装置10は送風機11とクーラー12からなつ
ている。
In the figure, the phase separation bus 3 consists of a jacket 3a and a hollow conductor 3b. The generator circuit breaker 4 installed in the middle part of the phase separation bus 3 consists of a jacket 4a and an arc-extinguishing chamber/conductor part 4b. Main transformer 2
and the generator 1 are connected by a conductor 3b and a flexible conductor 3c of a phase separation bus 3, respectively. Further, the arc extinguishing chamber/conductor portion 4b of the generator circuit breaker 4 and the conductor 3b of the phase separation bus bar are also connected by a flexible conductor 3c. Cooling air inlets 7a and 7c are provided on both end phase generator 1 sides of the phase separation bus 3, and a cooling air outlet 8 is provided on the middle phase generator 1 side. A cooling device 10 that sends out cooling air includes a blower 11 and a cooler 12.

以上の構成により、冷却装置10の送風機11
によつて送り出された空気はクーラー12によつ
て冷却された後、矢印で示す流れに沿つて発電機
1との接続部近傍である相分離母線3の両端相の
冷却風入口7a,7cに分流されて流入する。そ
して相分離母線3の外被3aと導体3b間の空間
を通り、発電機遮断器4の外被4aと消弧室兼導
体4bの間の空間を通つた後、再び相分離母線3
に流れ、主変圧器2側の端部で折返され中相に集
合した冷却風が上記と同様に反対方向へ流れ、中
相の発電機1側の端部の冷却風出口8より冷却装
置10に戻される。
With the above configuration, the blower 11 of the cooling device 10
After being cooled by a cooler 12, the air sent out by The flow is diverted and flows in. Then, after passing through the space between the outer cover 3a and the conductor 3b of the phase separation bus 3, and passing through the space between the outer cover 4a of the generator circuit breaker 4 and the arc extinguishing chamber/conductor 4b, the phase separation bus 3
The cooling air that is turned back at the end on the main transformer 2 side and collected in the middle phase flows in the opposite direction in the same way as above, and is passed through the cooling air outlet 8 at the end of the middle phase on the generator 1 side to the cooling device 10. will be returned to.

従つて両端相の発電機遮断器4での冷却風の温
度は冷却風入口7a,7cから発電機遮断器4迄
の相分離母線3の発熱により暖められており、入
口部の温度より上昇している。また、中相の発電
機遮断器4では両端相の全長分の発熱により暖め
られた冷却風が風量としては端相の2倍となつ
て、かつ、中相の折返し部から発電機遮断器4迄
の相分離母線3の発熱によりさらに温度上昇した
冷却風が流入することになる。
Therefore, the temperature of the cooling air at the generator circuit breaker 4 of both end phases is warmed by the heat generated by the phase separation bus 3 from the cooling air inlets 7a and 7c to the generator circuit breaker 4, and is higher than the temperature at the inlet. ing. In addition, in the mid-phase generator breaker 4, the cooling air heated by the heat generated over the entire length of both end phases has an air volume twice that of the end phase, and flows from the folded part of the mid-phase to the generator breaker 4. Cooling air whose temperature has further increased due to the heat generation of the phase separation bus 3 up to this point flows in.

〔考案が解決しようとする問題点〕[Problem that the invention attempts to solve]

従来の強制風冷式相分離母線は以上のように構
成されているので、開閉機器部へ流入する冷却風
は冷却風の入口から開閉機器迄の相分離母線によ
り温度上昇しているので開閉機器にとつて厳しい
条件となつていた。加えて、一般に相分離母線は
発熱部が直接冷却風によつて冷却されるが、SF6
ガス遮断器のような開閉機器のコンタクトなどの
発熱部は、構造上直接冷却風によつて冷却するこ
とができないため、冷却効率が悪く、相分離母線
と比較してより温度の低い冷却風あるいはより風
速の速い冷却風が必要となるケースが多い。従つ
て、これを満足するために、開閉機器を設置した
場合より多くの冷却風量を流す必要が生じ、送風
機、クーラの大容量化を招き、プラントの経済性
を損ねるなどの問題点があつた。
Since the conventional forced air cooling type phase separation bus is configured as described above, the temperature of the cooling air flowing into the switchgear is increased by the phase separation bus from the cooling air inlet to the switchgear. The conditions were harsh for both. In addition, in general, the heat-generating part of a phase-separated busbar is directly cooled by cooling air, but SF 6
Heat-generating parts such as contacts in switching devices such as gas circuit breakers cannot be cooled directly by cooling air due to their structure, so cooling efficiency is poor, and cooling air or cooling air with a lower temperature than the phase separation bus bar is used. In many cases, faster cooling air is required. Therefore, in order to satisfy this requirement, it became necessary to flow a larger amount of cooling air than if switching equipment was installed, which led to the increase in the capacity of the blower and cooler, causing problems such as impairing the economic efficiency of the plant. .

この考案は上記のような問題点を解消するため
になされたもので、中間に開閉機器を設置したも
ので、冷却風量を増大させることなく、低コスト
の冷却装置で各機器の所定の温度上昇値を満足で
きる強制風冷式相分離母線を得ることを目的とす
る。
This idea was made to solve the problems mentioned above, and by installing a switching device in the middle, a low-cost cooling device can be used to raise the specified temperature of each device without increasing the amount of cooling air. The purpose of this study is to obtain a forced air-cooled phase separation bus that satisfies the above values.

〔問題点を解決するための手段〕[Means for solving problems]

この考案に係る強制風冷式相分離母線は、両端
相の開閉機器に近接して冷却風入口を設け、冷却
風入口から両端相の開閉機器および両端相の相分
離母線に通じる第1の流路、中相の相分離母線お
よび開閉機器に通じ第1の流路の復路をなす第2
の流路、この第2の流路からの冷却風を他方の三
相の相分離母線に流す第3の流路とからなつてい
る。
The forced air-cooled phase separation bus according to this invention has a cooling air inlet close to the switching equipment of both end phases, and a first flow from the cooling air inlet to the switching equipment of both end phases and the phase separation bus of both end phases. A second channel, which is connected to the intermediate phase separation bus bar and the switching equipment, and forms the return route of the first channel.
and a third flow path through which the cooling air from the second flow path flows to the other three-phase phase separation bus.

〔作用〕[Effect]

この考案においては、温度上昇の制約が最も厳
しい開閉機器に温度の低い冷却風が流れる。
In this invention, low-temperature cooling air flows to the switching equipment that has the most severe temperature rise restrictions.

〔実施例〕〔Example〕

第1図はこの考案の一実施例を示し、図におい
て、全体構成は第3図と同様であるので、第3図
との相異点のみについて説明する。9a,9bは
冷却風入口で、相分離母線3の両端相の発電機遮
断器4に近接して設けられている。両端相の冷却
風入口9a,9bより発電機1側の部分にはブツ
シング14が設けられており、冷却風の発電機1
側への流れを阻止している。中相と両端相を連結
して設けられた相間ダクト15は両端相より折返
された冷却風を再度中相より両端相へ戻すための
もので、図示されていないダンパにより3相の冷
却風量がバランスするように調整可能になつてい
る。相分離母線3の発電機1側の端部は外被3a
と導体3b間の空間を流れてきた冷却風が導体3
bの中空部を通つて折返すことができるよう導体
3bの端部は開口している。各相からの冷却風の
出口13が設けられており、導体3bの発電機遮
断器4側の端部は閉じられていて、出口13より
冷却風は流出することになる。
FIG. 1 shows an embodiment of this invention, and since the overall configuration in the figure is the same as that in FIG. 3, only the differences from FIG. 3 will be explained. Reference numerals 9a and 9b are cooling air inlets, which are provided close to the generator circuit breakers 4 at both end phases of the phase separation bus 3. A bushing 14 is provided in a portion closer to the generator 1 than the cooling air inlets 9a and 9b of both end phases, and
Blocking the flow to the side. The interphase duct 15, which is provided by connecting the middle phase and both end phases, is used to return the cooling air turned back from both end phases from the middle phase to both end phases. It is adjustable for balance. The end of the phase separation bus 3 on the generator 1 side is covered with a jacket 3a.
The cooling air flowing through the space between conductor 3b and conductor 3b
The end of the conductor 3b is open so that it can be folded back through the hollow part of the conductor 3b. An outlet 13 for cooling air from each phase is provided, and the end of the conductor 3b on the generator circuit breaker 4 side is closed, so that the cooling air flows out from the outlet 13.

以上の構成により、冷却装置10の送風機1
1、クーラー12を通つた冷却風は、矢印で示す
流れに沿つて発電機遮断器4近傍の両端相に設け
られた冷却風入口9a,9bに分流されて相分離
母線3へ流入する。流入した冷却風は両端相の相
分離母線3の外被3aと導体3b間の空間を通つ
てすぐに発電機遮断器4の外被4aと消弧室兼導
体4bの間の空間および主変圧器2側の両端相の
外被3aと導体3b間の空間でなる第1の流路2
1に流れる。その後、主変圧器2側の端部で折返
され、中相の導体3bと外被3a間および中相の
外被4aと消弧室兼導体4b間でなる第2の流路
22に冷却風が上記と同様に流れた後、第3の流
路23、すなわち、発電機1側の中相から相間ダ
クト15のところで冷却風は両端相の外被3aと
導体3b間の空間へも三相の風量がバランスする
ように流入し、発電機1側端部で導体3bの内部
へ折返される。そのあと冷却風出口13より流出
した後、再び冷却装置10に戻される。
With the above configuration, the blower 1 of the cooling device 10
1. The cooling air that has passed through the cooler 12 is divided into cooling air inlets 9a and 9b provided at both end phases near the generator circuit breaker 4 along the flow shown by the arrow, and flows into the phase separation bus 3. The inflowing cooling air passes through the space between the sheath 3a of the phase separation bus 3 of both end phases and the conductor 3b, and immediately flows into the space between the sheath 4a of the generator circuit breaker 4 and the arc extinguishing chamber/conductor 4b and the main transformer. A first flow path 2 consisting of a space between the outer sheath 3a and the conductor 3b at both end phases on the vessel 2 side
Flows to 1. After that, it is folded back at the end on the main transformer 2 side, and the cooling air flows into the second flow path 22 between the middle phase conductor 3b and the jacket 3a and between the middle phase jacket 4a and the arc extinguishing chamber/conductor 4b. After flowing in the same manner as above, the cooling air flows from the third flow path 23, that is, from the middle phase on the generator 1 side to the interphase duct 15, into the space between the outer sheath 3a and the conductor 3b of both end phases as well. The air flows in such a way that the air volume is balanced, and is turned back into the inside of the conductor 3b at the end on the generator 1 side. After that, the air flows out from the cooling air outlet 13 and is returned to the cooling device 10 again.

以上により、冷却風入口9a,9b部から発電
機遮断器4までの距離がほとんどなくなるため、
両端相の発電機遮断器部にはほとんど温度上昇の
ない冷却風が、また、中相の発電機遮断器部につ
いても従来のものよりも端相での冷却風の温度上
昇の低下分スライドして、低温の冷却風が流れる
ことになる。
As a result of the above, the distance from the cooling air inlets 9a, 9b to the generator circuit breaker 4 is almost reduced.
The cooling air flows to the generator circuit breakers at both end phases with almost no temperature rise, and the middle phase generator circuit breakers also slide by the reduction in temperature rise of the cooling air at the end phases compared to conventional systems. As a result, low-temperature cooling air flows.

また、発電機遮断器4と発電機1間の相分離母
線3の冷却についても、各相の外被3aと導体3
b間の空間と導体3b内の空間の双方を冷却する
ので、効率的な冷却ができ、冷却風路の中間点付
近の比較的温度の高い冷却風でも十分に温度上昇
限度以下に抑えることが可能である。
Also, regarding the cooling of the phase separation bus 3 between the generator breaker 4 and the generator 1, the jacket 3a of each phase and the conductor 3
Since both the space between the conductor 3b and the space inside the conductor 3b are cooled, efficient cooling is possible, and even relatively high temperature cooling air near the midpoint of the cooling air path can be sufficiently suppressed to below the temperature rise limit. It is possible.

〔考案の効果〕[Effect of idea]

以上のように、この考案によれば、冷却風の入
口を開閉機器に近接して設けたことにより、開閉
機器部へ流入する冷却風の温度上昇を極力低くで
き、温度上昇値の制約上もつとも厳しい開閉機器
部を効率よく冷却できるため、冷却風をむやみに
増加させることなく、低コストの冷却装置で対処
可能となる。
As described above, according to this invention, by providing the cooling air inlet close to the opening/closing equipment, the temperature rise of the cooling air flowing into the opening/closing equipment can be kept as low as possible, and even if Since it is possible to efficiently cool the harsh opening/closing equipment section, it can be handled with a low-cost cooling device without unnecessarily increasing the amount of cooling air.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの考案の一実施例の概略縦断面図、
第2図は従来の相分離母線の結線図、第3図は従
来の強制風冷式相分離母線の概略縦断面図であ
る。 3……相分離母線、3a……外被、3b……導
体、4……発電機遮断器(開閉機器)、9a,9
b……冷却風入口、15……相間ダクト、21,
22,23……第1,第2,第3の流路。なお、
各図中、同一符号は同一又は相当部分を示す。
FIG. 1 is a schematic longitudinal sectional view of an embodiment of this invention.
FIG. 2 is a wiring diagram of a conventional phase separation bus, and FIG. 3 is a schematic vertical cross-sectional view of a conventional forced air-cooled phase separation bus. 3...Phase separation bus bar, 3a...Sheath, 3b...Conductor, 4...Generator circuit breaker (switching equipment), 9a, 9
b...Cooling air inlet, 15...Interphase duct, 21,
22, 23...first, second, and third flow paths. In addition,
In each figure, the same reference numerals indicate the same or corresponding parts.

Claims (1)

【実用新案登録請求の範囲】 (1) 三相の相分離母線の中間にそれぞれ設置され
た開閉機器と、 両端相の前記開閉機器に近接してそれぞれ設
けられた冷却風入口と、 この冷却風入口から両端相の前記開閉機器お
よび両端相の前記相分離母線に通じる第1の流
路と、 中相の前記相分離母線および中相の前記開閉
機器に通じ前記第1の流路の復路をなす第2の
流路と、 前記開閉機器を含まない三相の前記相分離母
線の残余部分の相毎に外被と導体との間を往路
とし、前記導体内を復路とし、前記第2の流路
を経た冷却風が流れる第3の流路と、 この第3の流路の終端となる前記導体の内部
から前記外被の外部に通じる冷却風出口と を備えてなる強制風冷式相分離母線。 (2) 中相と両端相の相分離母線間を相間ダクトに
より連通した第3の流路を備えた実用新案登録
請求の範囲第1項記載の強制風冷式相分離母
線。
[Scope of Claim for Utility Model Registration] (1) Switching equipment installed in the middle of three-phase phase separation busbars, cooling air inlets installed close to the switching equipment on both end phases, and this cooling air. a first flow path leading from the inlet to the switching devices of both end phases and the phase separation bus of both end phases; and a return path of the first flow path leading from the inlet to the phase separation bus of the middle phase and the switching device of the middle phase. and a second flow path between the jacket and the conductor for each phase of the remaining portion of the three-phase phase separation bus bar not including the switching equipment, and a return path within the conductor; A forced air cooling phase comprising a third flow path through which the cooling air passes through the flow path, and a cooling air outlet that connects from the inside of the conductor to the outside of the jacket, which is the end of the third flow path. Separate busbar. (2) A forced air-cooled phase separation bus bar according to claim 1 of the utility model registration claim, which is provided with a third flow path that communicates between the phase separation bus bars of the middle phase and both end phases through an interphase duct.
JP4896987U 1987-04-02 1987-04-02 Expired - Lifetime JPH0528897Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4896987U JPH0528897Y2 (en) 1987-04-02 1987-04-02

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4896987U JPH0528897Y2 (en) 1987-04-02 1987-04-02

Publications (2)

Publication Number Publication Date
JPS63156525U JPS63156525U (en) 1988-10-13
JPH0528897Y2 true JPH0528897Y2 (en) 1993-07-26

Family

ID=30870993

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4896987U Expired - Lifetime JPH0528897Y2 (en) 1987-04-02 1987-04-02

Country Status (1)

Country Link
JP (1) JPH0528897Y2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2787854B2 (en) * 1991-06-06 1998-08-20 三菱電機株式会社 Forced air-cooled phase separation bus

Also Published As

Publication number Publication date
JPS63156525U (en) 1988-10-13

Similar Documents

Publication Publication Date Title
AU2004202881A1 (en) Gas segregator barrier for electrical switching apparatus
JPH0528897Y2 (en)
JP2003189430A (en) Gas insulated switchgear
US6034861A (en) Four-pole to three-pole bussing for a network protector
US2878300A (en) Bus structure
JPH0528896Y2 (en)
JP2787854B2 (en) Forced air-cooled phase separation bus
US20200375063A1 (en) Low-voltage switching device having a defined cooling arrangement
JPH11355923A (en) Gas-insulated switchgear
JP2535103B2 (en) Gas insulated switchgear
JPH04275011A (en) Forced-air-cooled isolated phase bus-bar
JPS631527Y2 (en)
JPH01122306A (en) Gas-insulated switching device
CA1246699A (en) Bus duct cooling system
JPH04304105A (en) Gas-insulated switchgear
JPH04265616A (en) Forced air cooling type phase isolation bus
JP2001008337A (en) Main circuit opening/closing device
JPH07107630A (en) Gas insulated switchgear
JPS5812511A (en) Gas insulated switching device
JP2001177996A (en) Transmission/transformation system
TW200406963A (en) An interrupting arrangement for a set of busbars in a metal-clad substation
JPS58116006A (en) Gas insulating opening and closing device
JPS60102804A (en) Plural buss type closed switchboard
JPS5923169B2 (en) Substation equipment
JPH09107618A (en) Forcedly air-cooled type phase separation bus