JPH04265616A - Forced air cooling type phase isolation bus - Google Patents

Forced air cooling type phase isolation bus

Info

Publication number
JPH04265616A
JPH04265616A JP2486191A JP2486191A JPH04265616A JP H04265616 A JPH04265616 A JP H04265616A JP 2486191 A JP2486191 A JP 2486191A JP 2486191 A JP2486191 A JP 2486191A JP H04265616 A JPH04265616 A JP H04265616A
Authority
JP
Japan
Prior art keywords
phase
generator
phase separation
cooling
bus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2486191A
Other languages
Japanese (ja)
Inventor
Tadayasu Hamano
浜野 匡靖
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2486191A priority Critical patent/JPH04265616A/en
Publication of JPH04265616A publication Critical patent/JPH04265616A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02BBOARDS, SUBSTATIONS OR SWITCHING ARRANGEMENTS FOR THE SUPPLY OR DISTRIBUTION OF ELECTRIC POWER
    • H02B1/00Frameworks, boards, panels, desks, casings; Details of substations or switching arrangements
    • H02B1/56Cooling; Ventilation

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Windings For Motors And Generators (AREA)
  • Motor Or Generator Frames (AREA)
  • Motor Or Generator Cooling System (AREA)
  • Installation Of Bus-Bars (AREA)

Abstract

PURPOSE:To realize a high overall cooling efficiency by utilizing the forced cooling construction of an output terminal box of an existing phase isolation bus and a generator and further forcibly cooling a neutral point short-circuit bus box of the generator. CONSTITUTION:An output terminal box 1 of each phase of the three-phase of a generator G is connected to a phase portion corresponding to a neutral point short-circuit bus box 2 of a generator G with a individual duct 4 (or a common duct having sealed partitions between phases). Additionally, a baffle or grid is provided inside a duct 4 of the phase at both the ends, and a damper for regulating the air flow is provided inside the duct 4 of the central phase.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】[発明の目的][Object of the invention]

【0002】0002

【産業上の利用分野】本発明は、強制風冷式相分離母線
に係り、特にその冷却構造の改良に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a forced air-cooled phase separation busbar, and more particularly to an improvement in its cooling structure.

【0003】0003

【従来の技術】近年の電力需要の増大に伴って、発電機
や変圧器においては、より一層の大容量化が進んでおり
、このような発電機の3相各相の出力端子箱と変圧器の
端子箱を個別に接続する相分離主母線としては、強制的
な冷却構造を有する強制風冷式相分離母線が使用されて
いる。すなわち、この強制風冷式相分離母線は、相分離
主母線に冷却装置を接続し、この冷却装置によって強制
的に冷却用気体を循環させることで、相分離主母線及び
発電機の出力端子箱を強制風冷するものである。一般的
には、冷却装置から、両端相の相分離主母線に強制冷却
風を送り込み、この強制冷却風を、発電機の出力端子箱
部で中央相の相分離主母線に集めた後、中央相主母線を
通して、冷却装置に戻すようにしている。この場合、発
電機の出力端子箱には、強制冷却風を中央相に集めるた
めに、特別のリターン風導を設けている。同様に、変圧
器の端子箱側にもリターン風導が設けられ、強制冷却風
を中央相の相分離主母線に集めるようにしている。
[Background Art] With the increase in demand for electricity in recent years, the capacity of generators and transformers has become even larger. A forced air-cooled phase separation bus having a forced cooling structure is used as the phase separation main bus that connects the terminal boxes of the devices individually. In other words, in this forced air cooling type phase separation bus, a cooling device is connected to the phase separation main bus, and cooling gas is forcibly circulated by this cooling device, thereby cooling the phase separation main bus and the output terminal box of the generator. It cools the air with forced air. Generally, forced cooling air is sent from a cooling device to the phase separation main bus of both end phases, and this forced cooling air is collected at the output terminal box of the generator to the phase separation main bus of the central phase, and then It is returned to the cooling device through the phase main bus bar. In this case, the output terminal box of the generator is provided with a special return air guide in order to collect the forced cooling air into the central phase. Similarly, a return air guide is provided on the terminal box side of the transformer to collect forced cooling air to the phase separation main bus of the central phase.

【0004】また、変圧器と発電機との接続構成として
は、変圧器の大容量化の方がより進んでいることから、
通常、大容量変圧器1台に対して2台の変圧器が並列に
接続されている。この結果、発電機の中性点短絡母線箱
は、発熱部であるにも関わらず、比較的小容量となるた
め、一般に自冷式とされている。
[0004] Furthermore, as the capacity of transformers is increasing, the connection structure between transformers and generators is increasing.
Usually, two transformers are connected in parallel to one large capacity transformer. As a result, the neutral point short circuit busbar box of the generator has a relatively small capacity even though it is a heat generating part, so it is generally of a self-cooling type.

【0005】[0005]

【発明が解決しようとする課題】ところで、今後予想さ
れる発電機の大容量化に伴い、大容量変圧器1台に対し
て発電機1台の組み合わせで接続されることが予想され
る。この場合、発電機の中性点短絡母線箱における発熱
量は従来より著しく増大してしまう。従って、発電機の
中性点短絡母線箱を自冷式としているだけの従来の強制
風冷式相分離母線においては、もはや、中性点短絡母線
箱の十分な冷却は不可能となり、強制的に冷却する必要
が生じる。しかしながら、このような必要に対し、発電
機の中性点短絡母線箱を、相分離主母線及び発電機の出
力端子箱の強制冷却とは別個に独立して強制冷却するこ
とは、冷却装置の数を増やし、設備全体を大型・複雑化
させることになり、不都合である。また、発電機の出力
端子箱及び変圧器の端子箱に、それぞれ特別のリターン
風導を配置しなければならないため、その分だけ構成部
品の数が増えてしまい、このことも、設備全体の大型・
複雑化の一因となっている。
However, as the capacity of generators is expected to increase in the future, it is expected that one large capacity transformer will be connected to one generator. In this case, the amount of heat generated in the neutral point short-circuited bus box of the generator increases significantly compared to the conventional case. Therefore, in the conventional forced air-cooled phase-separated bus in which the generator's neutral point short circuit bus box is self-cooled, it is no longer possible to sufficiently cool the neutral point short circuit bus box. It becomes necessary to cool it down. However, in response to such needs, it is difficult to forcibly cool the generator's neutral point short-circuit bus box separately and independently from the forced cooling of the phase-separated main bus and the generator's output terminal box. This is inconvenient as it increases the number of devices and makes the entire facility larger and more complex. In addition, special return air guides must be placed in the generator output terminal box and the transformer terminal box, which increases the number of components, which also increases the overall size of the equipment.・
This is a contributing factor to the complexity.

【0006】本発明は、このような従来技術の課題を解
決するために提案されたものであり、その目的は、既存
の相分離主母線及び発電機の出力端子箱の強制冷却構造
を活用して、さらに、発電機の中性点短絡母線箱の強制
冷却を行い、且つ、全体として高い冷却効率を実現する
ことである。そして、このような冷却装置の共用によっ
て、設備全体の小型・簡略化に貢献し得るような、冷却
効率に優れた強制風冷式相分離母線を提供することであ
る。また、リターン風導を省略可能とし、これによって
、設備全体の小型・簡略化に一層貢献することも目的の
一つである。
The present invention was proposed to solve the problems of the prior art, and its purpose is to utilize the existing forced cooling structure of the phase separation main bus and the output terminal box of the generator. Furthermore, the purpose is to perform forced cooling of the neutral point short-circuited bus box of the generator and to achieve high cooling efficiency as a whole. Another object of the present invention is to provide a forced air-cooled phase separation bus bar with excellent cooling efficiency, which can contribute to downsizing and simplifying the entire equipment by sharing such a cooling device. Another purpose is to make it possible to omit the return air guide, thereby further contributing to the downsizing and simplification of the entire facility.

【0007】[発明の構成][Configuration of the invention]

【0008】[0008]

【課題を解決するための手段】本発明の強制風冷式相分
離母線は、並列に設けられた3相の個別の出力端子箱と
、並列配置の3相部を一括に収納してなる中性点短絡母
線箱とを備えた発電機と、端子箱を備えた変圧器と、発
電機の3相各相の出力端子箱と変圧器の端子箱を個別に
接続する3相の相分離主母線、及び、送風口を介して相
分離主母線内に冷却用気体を送り込み、吸入口を介して
相分離主母線内から冷却用気体を回収することで、相分
離主母線の強制風冷を行う冷却装置を有する強制風冷式
相分離母線において、発電機の3相各相の出力端子箱と
発電機の中性点短絡母線箱の対応する相部とが、個別の
ダクトまたは相間に密封仕切りを有する共通のダクトで
連結されることを特徴としている。
[Means for Solving the Problems] The forced air-cooled phase separation busbar of the present invention has a central structure in which three-phase individual output terminal boxes arranged in parallel and three-phase parts arranged in parallel are collectively housed. A generator with a short-circuited bus box, a transformer with a terminal box, and a three-phase phase-separated main that connects the output terminal box of each of the three phases of the generator and the terminal box of the transformer individually. Forced air cooling of the phase separation main bus is achieved by sending cooling gas into the phase separation main bus through the bus and the air outlet, and recovering the cooling gas from within the phase separation main bus through the suction port. In a forced air-cooled phase separation bus with a cooling device, the output terminal box of each of the three phases of the generator and the corresponding phase part of the generator's neutral point short circuit bus box are sealed in individual ducts or between the phases. They are characterized by being connected by a common duct with partitions.

【0009】この場合、両端相の個別ダクトの内部また
は共通ダクトの両端相部の内部に、相分離主母線の内部
または発電機の出力端子箱の内部に地絡が発生した場合
のアーク移行を防止する、バッフル或いはグリッドを備
えることが望ましい。
In this case, arc migration in the case where a ground fault occurs inside the individual ducts of both end phases or inside the end phase portions of the common duct, inside the phase separation main bus bar or inside the output terminal box of the generator is detected. Preferably, a baffle or grid is provided to prevent this.

【0010】また、中央相の個別ダクトの内部または共
通ダクトの中央相部の内部に、風量を調整するダンパー
を備えることが望ましい。
[0010] Furthermore, it is desirable to provide a damper for adjusting the air volume inside the individual ducts of the central phase or inside the central phase section of the common duct.

【0011】さらに、冷却装置の送風口が、両端相の相
分離主母線に接続され、且つ、冷却装置の吸入口が、中
央相の相分離主母線に接続されることが望ましい。
Furthermore, it is preferable that the air outlet of the cooling device be connected to the phase separation main bus of both end phases, and that the suction port of the cooling device be connected to the phase separation main bus of the central phase.

【0012】0012

【作用】以上のような構成を有する本発明の強制風冷式
相分離母線において、冷却装置から送風された冷却用気
体は、まず、両端相の相分離主母線に流れ込み、この両
端相の相分離主母線を強制風冷する。次に、冷却用気体
は、発電機の両端相の出力端子箱にそれぞれ流れ込み、
両端相の出力端ブッシング接続部を強制風冷する。続い
て、冷却用気体は、ダクトを通って、発電機の中性点短
絡母線箱の両端相部に入り、中性点短絡母線箱内を中央
部に向かって流れ、中性点ブッシング接続部と中性点短
絡母線を強制風冷する。この後、冷却用気体は、中性点
短絡母線箱の中央部から、ダクトを通って、発電機の中
央相の出力端子箱に流れ込み、中央相の出力端ブッシン
グ接続部を強制風冷し、さらに、中央相の相分離主母線
に流れ込み、この中央相の相分離主母線を強制風冷し、
最終的に、冷却装置内に戻る。
[Operation] In the forced air cooling type phase separation bus of the present invention having the above-described configuration, the cooling gas blown from the cooling device first flows into the phase separation main bus of both end phases, and the phase separation bus of the both end phases is separated. Forced air cooling is applied to the main separation bus. Next, the cooling gas flows into the output terminal boxes of both end phases of the generator, respectively.
Forced air cooling is applied to the output end bushing connections of both end phases. The cooling gas then passes through the duct and enters both end phases of the generator's neutral shorting bus box, flows through the neutral shorting bus box toward the center, and flows through the neutral bushing connection. Forced air cooling is applied to the short-circuited busbar at the neutral point. After this, the cooling gas flows from the central part of the neutral short circuit bus box through the duct to the output terminal box of the central phase of the generator to force-air-cool the output end bushing connection of the central phase, Furthermore, it flows into the phase separation main bus of the central phase, and this central phase phase separation main bus is forcedly cooled.
Finally, it returns to the cooling device.

【0013】このように、本発明においては、発電機の
3相各相の出力端子箱と中性点短絡母線箱の対応する相
部とをダクトで連結すると共に、冷却装置との接続関係
を限定するという簡単な構成の改良により、既存の相分
離主母線及び発電機の出力端子箱の強制冷却構造を活用
して、相分離主母線と発電機の出力端子箱及び中性点短
絡母線箱の全体を、一つの冷却系統によって効率よく冷
却することができる。また、発電機の中性点短絡母線箱
の強制冷却を、相分離主母線と発電機の出力端子箱の強
制冷却と別個に独立して行った場合に比べて、冷却装置
の数を低減でき、設備全体を小型・簡略化することがで
きるため、極めて好都合である。
As described above, in the present invention, the output terminal boxes of each of the three phases of the generator and the corresponding phase portions of the neutral point short circuit bus box are connected by ducts, and the connection relationship with the cooling device is By improving the simple structure of limiting, the existing forced cooling structure of the phase-separated main bus and generator output terminal box can be utilized to cool the phase-separated main bus, generator output terminal box, and neutral point short-circuit bus box. can be efficiently cooled by one cooling system. Additionally, the number of cooling devices can be reduced compared to the case where the forced cooling of the generator's neutral point short-circuit bus box is performed separately from the forced cooling of the phase-separated main bus and the generator's output terminal box. This is extremely advantageous because the entire equipment can be made smaller and simpler.

【0014】さらに、両端相の個別ダクトの内部または
共通ダクトの両端相部の内部に、バッフル或いはグリッ
ドを設ければ、相分離主母線の内部または発電機の出力
端子箱の内部に地絡が発生した場合に、このバッフル或
いはグリッドによって、アーク移行を防止することがで
きるため、発電機の巻線の1相短絡事故を防止すること
ができる。
Furthermore, if a baffle or grid is provided inside the individual ducts of both end phases or inside the end phase portions of a common duct, a ground fault can be prevented inside the phase separation main bus or inside the output terminal box of the generator. If this occurs, the baffle or grid can prevent arc migration, thereby preventing one-phase short-circuiting of the windings of the generator.

【0015】また、冷却装置を発電機と主変圧器の中間
に配置する場合、一般的には、発電機側の母線長さが短
くなるように配置するが、このままでは、発電機側に冷
却空気の大半が流れてしまい、発電機側の相分離主母線
と変圧器側の主母線の冷却特性のバランスをとることが
不可能となる。これに対し、中央相の個別ダクトの内部
または共通ダクトの中央相部の内部に、風量を調整する
ダンパーを設けることにより、風量を発電機側と変圧器
側にほぼ均等に分流させることができ、従って発電機側
の相分離主母線と変圧器側の相分離主母線の冷却特性の
バランスをとることができる。
[0015] Furthermore, when placing a cooling device between the generator and the main transformer, it is generally placed so that the busbar length on the generator side is shortened. Most of the air flows out, making it impossible to balance the cooling characteristics of the phase-separated main bus on the generator side and the main bus on the transformer side. On the other hand, by installing a damper to adjust the air volume inside the individual ducts of the central phase or inside the central phase section of the common duct, the air volume can be divided almost equally between the generator side and the transformer side. Therefore, it is possible to balance the cooling characteristics of the phase-separated main bus on the generator side and the phase-separated main bus on the transformer side.

【0016】[0016]

【実施例】以下に、本発明による強制風冷式相分離母線
の一実施例(第1実施例)について、図1乃至図4を参
照して具体的に説明する。なお、図1は、強制風冷式相
分離母線の全体構成を示す概略側面図、図2は、図1に
おける発電機の出力端子箱と中性点短絡母線箱及び冷却
装置の詳細を示す側面図、図3は、図2のX矢視図、図
4は、図2のY矢視図である。
[Embodiment] An embodiment (first embodiment) of a forced air-cooled phase separation bus bar according to the present invention will be described in detail below with reference to FIGS. 1 to 4. Note that FIG. 1 is a schematic side view showing the overall configuration of a forced air-cooled phase separation bus, and FIG. 2 is a side view showing details of the generator output terminal box, neutral point short circuit bus box, and cooling device in FIG. 3 are views in the direction of the X arrow in FIG. 2, and FIG. 4 is a view in the direction of the Y arrow in FIG.

【0017】まず、図1及び図2に示すように、発電機
Gの下部には出力端子箱1及び中性点短絡用母線箱2が
並べて設けられており、出力端子箱1は、その片側にて
相分離主母線3を介して変圧器Tの端子箱30に接続さ
れている。また、図中の符号4は、出力端子箱1と中性
点短絡用母線箱2とを連結する第1乃至第3のダクトで
ある。そして、図1に示すように、相分離主母線3は、
第4、第5のダクト5,6によって冷却装置7の送風口
8及び吸入口9にそれぞれ接続されている。この場合、
図1の視点からは、第4、第5のダクト5,6は、重な
っており、また、冷却装置7の送風口8及び吸入口9も
重なっているため、図中においては、これらの符号を併
記している。なお、図1中の符号12は、第4のダクト
5と冷却装置7の送風口8とを接続する接続ブーツであ
り、13は、第5のダクト6と冷却装置7の吸入口9と
を接続する接続ブーツである。これらの接続ブーツ12
,13も、この視点においては重なっているため、図中
においては、これらの符号を併記している。また、31
は、変圧器Tの端子箱30に設けられた、変圧器側のリ
ターン風導である。
First, as shown in FIGS. 1 and 2, an output terminal box 1 and a neutral point shorting bus box 2 are arranged side by side at the bottom of the generator G, and the output terminal box 1 is connected to one side of the The terminal box 30 of the transformer T is connected to the terminal box 30 of the transformer T via the phase-separated main bus 3. Further, reference numeral 4 in the figure indicates first to third ducts that connect the output terminal box 1 and the neutral point shorting bus box 2. As shown in FIG. 1, the phase separation main bus 3 is
The fourth and fifth ducts 5 and 6 are connected to an air outlet 8 and an inlet 9 of the cooling device 7, respectively. in this case,
From the perspective of FIG. 1, the fourth and fifth ducts 5 and 6 overlap, and the air outlet 8 and intake port 9 of the cooling device 7 also overlap, so these symbols are used in the figure. is also listed. Note that 12 in FIG. 1 is a connection boot that connects the fourth duct 5 and the air outlet 8 of the cooling device 7, and 13 is a connection boot that connects the fifth duct 6 and the intake port 9 of the cooling device 7. It is a connection boot that connects. These connecting boots 12
, 13 also overlap in this viewpoint, so these symbols are also shown in the figure. Also, 31
is a return air guide provided in the terminal box 30 of the transformer T on the transformer side.

【0018】より詳細には、図4に示すように、発電機
Gの3相の出力端子箱1A〜1Cは、その片側にて3相
の相分離主母線3A〜3Cに個別に接続されている。そ
して、本発明に従って、3相各相の出力端子箱1A〜1
Cと中性点短絡母線箱2の対応する各相部とは、第1乃
至第3のダクト4A〜4Cにて連結されている。また、
両端相の第1、第3のダクト4A,4Cの内部には、バ
ッフル或いはグリッド10が設けられている。さらに、
中央相の第2のダクト4Bの内部には、風量を調整する
ダンパー11が設けられている。
More specifically, as shown in FIG. 4, the three-phase output terminal boxes 1A to 1C of the generator G are individually connected to the three-phase phase-separated main buses 3A to 3C on one side thereof. There is. According to the present invention, output terminal boxes 1A to 1 for each of the three phases are provided.
C and each corresponding phase portion of the neutral point short circuit bus box 2 are connected through first to third ducts 4A to 4C. Also,
A baffle or grid 10 is provided inside the first and third ducts 4A and 4C at both ends. moreover,
A damper 11 for adjusting the air volume is provided inside the second duct 4B of the central phase.

【0019】なお、冷却装置7の送風口8は、第4のダ
クト5によって両端相の相分離主母線3A,3Cに接続
されており、また、冷却装置の吸入口9は、第5のダク
ト6によって中央相の相分離主母線3Bに接続されてい
る。さらに、本実施例の冷却装置7は、冷却用気体とし
て冷却空気を送風するようになっている。
Note that the air outlet 8 of the cooling device 7 is connected to the phase separation main busbars 3A, 3C of both end phases through a fourth duct 5, and the inlet 9 of the cooling device 6 to the phase separation main bus 3B of the central phase. Furthermore, the cooling device 7 of this embodiment is configured to blow cooling air as a cooling gas.

【0020】以上のような構成を有する本実施例におい
ては、冷却装置7を運転することにより、図1に示すよ
うに、冷却装置7にて強制冷却風20が生成され、この
強制冷却風20が、冷却装置7の送風口8から第4のダ
クト5を介して相分離主母線3に流れ込み、これを強制
風冷した後、発電機Gの出力端子箱1に流れ込み、これ
を強制風冷する。この強制冷却風20は、次に、第1乃
至第3のダクト4を介して発電機Gの中性点短絡箱2に
流れ込み、これを強制風冷する。この強制冷却風20は
、中性点短絡箱2内でリターン側の強制冷却風となり、
第1乃至第3のダクト4を介して、再び発電機Gの出力
端子箱1に戻され、これを強制風冷する。さらに、強制
冷却風21は、再び相分離主母線3に流れ込み、これを
強制風冷した後、最終的に、第5のダクト6を介して、
吸入口9から冷却装置7内に戻る。
In this embodiment having the above configuration, by operating the cooling device 7, forced cooling air 20 is generated in the cooling device 7 as shown in FIG. flows from the air outlet 8 of the cooling device 7 through the fourth duct 5 to the phase separation main bus 3, where it is forced air cooled, and then flows into the output terminal box 1 of the generator G where it is forced air cooled. do. This forced cooling air 20 then flows into the neutral point shorting box 2 of the generator G via the first to third ducts 4 and cools it with forced air. This forced cooling air 20 becomes forced cooling air on the return side within the neutral point short circuit box 2,
The air is returned to the output terminal box 1 of the generator G via the first to third ducts 4, where it is cooled by forced air. Furthermore, the forced cooling air 21 flows into the phase separation main bus bar 3 again, and after cooling it with forced air, finally passes through the fifth duct 6,
It returns to the inside of the cooling device 7 through the suction port 9.

【0021】より詳細に説明するならば、冷却装置7内
の冷却空気(冷却用気体)は、図1に示すように、まず
、その送風口8から、強制冷却風20として送り出され
、分流して、図4に示すような強制冷却風20A,20
Cとなる。これらの強制冷却風20A,20Cは、第4
のダクト5を介して、両端相の相分離主母線3A,3C
に流れ込み、この両端相の相分離主母線3A,3Cを強
制風冷する。図4に示すように、強制冷却風20A,2
0Cは、次に、発電機Gの両端相の出力端子箱1A,1
Cにそれぞれ流れ込み、両端相の出力端ブッシング接続
部を強制風冷する。これらの強制冷却風20A,20C
は、続いて、発電機Gの両端相の出力端子箱1A,1C
にそれぞれ流れ込み、両端相の出力端ブッシング接続部
を強制風冷する。これらの強制冷却風20A,20Cは
、さらに、両端相の第1、第3のダクト4A,4Cを介
して、発電機Gの中性点短絡母線箱2の両端相部から中
性点短絡母線箱2に入る。強制冷却風20A,20Cは
、中性点短絡母線箱2内で両端相部から中央に流れて、
中性点ブッシング接続部と中性点短絡母線を強制風冷す
る。
To explain in more detail, the cooling air (cooling gas) in the cooling device 7 is first sent out from the air outlet 8 as forced cooling air 20, as shown in FIG. Then, the forced cooling air 20A, 20 as shown in FIG.
It becomes C. These forced cooling air 20A, 20C are
The phase separation main busbars 3A, 3C of both end phases are connected through the duct 5 of
The phase separation main busbars 3A and 3C of both end phases are forcedly cooled by air. As shown in Fig. 4, forced cooling air 20A, 2
0C is then connected to the output terminal boxes 1A, 1 at both ends of the generator G.
C, and the output end bushing connections of both end phases are forcedly cooled. These forced cooling air 20A, 20C
Then, the output terminal boxes 1A and 1C of both end phases of the generator G
The air flows into the output end bushings of both ends, and the output end bushing connections of both ends are forcedly cooled. These forced cooling air 20A, 20C are further transmitted from both end phase parts of the neutral point short circuit bus box 2 of the generator G to the neutral point short circuit bus line through the first and third ducts 4A, 4C of both end phases. Go into box 2. The forced cooling air 20A, 20C flows from both end phases to the center within the neutral point short circuit busbar box 2,
Forced air cooling is applied to the neutral point bushing connection and the neutral point shorted bus.

【0022】そして、強制冷却風20A,20Cは、中
性点短絡母線箱2の中央部で合流して、リターン側の強
制冷却風21となり、続いて、中央相の第2のダクト4
Bを介して、発電機Gの中央相の出力端子箱1Bに流れ
込み、中央相の出力端ブッシング接続部を強制風冷する
。強制冷却風21は、さらに、中央相の相分離主母線3
Bに流れ込み、中央相の相分離主母線3Bを強制風冷し
た後、最終的に、第5のダクト6を介し、吸入口9を経
て冷却装置7内に戻る。
[0022] The forced cooling air 20A and 20C merge at the center of the neutral point short circuit bus box 2 to become the forced cooling air 21 on the return side, and then pass through the second duct 4 of the central phase.
B, it flows into the output terminal box 1B of the central phase of the generator G, and cools the output end bushing connection part of the central phase with forced air. The forced cooling air 21 further passes through the phase separation main bus 3 of the central phase.
After flowing into B and cooling the central phase phase separation main bus 3B with forced air, it finally returns to the cooling device 7 via the fifth duct 6 and the suction port 9.

【0023】また、変圧器T側における強制冷却風の流
れは、両端相の相分離主母線3A,3Cから、変圧器T
の端子30及びリターン風導31を経て、中央相の相分
離主母線3Bに集められるという経路をたどる。
In addition, the forced cooling air flow on the transformer T side flows from the phase separation main buses 3A and 3C of both end phases to the transformer T.
through the terminal 30 and the return wind guide 31, and is collected at the phase separation main bus 3B of the central phase.

【0024】以上のように、本実施例は、既存の相分離
主母線及び発電機の出力端子箱の強制冷却構造に加えて
、発電機Gの3相各相の出力端子箱1A〜1Cと中性点
短絡母線箱2の対応する相部とを第1乃至第3のダクト
4A〜4Cによって連結することにより、相分離主母線
3A〜3Cと発電機Gの出力端子箱1A〜1C及び中性
点短絡母線箱2を、一つの冷却系統によって効率よく冷
却することが可能となっている。また、発電機Gの中性
点短絡母線箱2の強制冷却を、相分離主母線3A〜3C
と発電機Gの出力端子箱1A〜1Cの強制冷却と別個に
独立して行った場合に比べて、冷却装置7の数を低減で
き、設備全体を小型・簡略化することができるため、極
めて好都合である。
As described above, in addition to the existing forced cooling structure for the phase-separated main bus and the output terminal box of the generator, this embodiment has the output terminal boxes 1A to 1C for each of the three phases of the generator G. By connecting the corresponding phase parts of the neutral point shorting bus box 2 through the first to third ducts 4A to 4C, the phase separation main buses 3A to 3C and the output terminal boxes 1A to 1C of the generator G and the middle It is possible to efficiently cool the short-circuited bus box 2 with one cooling system. In addition, the forced cooling of the neutral point short-circuit bus box 2 of the generator G is
Compared to the case where the forced cooling of the output terminal boxes 1A to 1C of the generator G and the output terminal boxes 1A to 1C of the generator G are performed separately and independently, the number of cooling devices 7 can be reduced, and the entire equipment can be made smaller and simpler. It's convenient.

【0025】さらに、本実施例においては、図4に示す
ように、両端相の出力端子箱1A,1Cと中性点短絡母
線箱2の両端相部とを連結する第1、第3のダクト4A
,4C内に、バッフル或いはグリッド10が設けられて
いるため、相分離主母線3A〜3Cまたは発電機Gの出
力端子箱1A〜1C内部に地絡が発生した場合には、こ
のバッフル或いはグリッド10によって、アーク移行を
防止し、発電機Gの巻線の1相短絡事故を防止すること
ができるという利点もある。
Furthermore, in the present embodiment, as shown in FIG. 4A
, 4C is provided with a baffle or grid 10, so if a ground fault occurs inside the phase separation main buses 3A to 3C or the output terminal boxes 1A to 1C of the generator G, this baffle or grid 10 This also has the advantage of preventing arc migration and preventing one-phase short circuit accidents in the windings of the generator G.

【0026】加えて、冷却装置7を、発電機G側の母線
長さが短くなるように配置した場合でも、本実施例にお
いては、中央相の出力端子箱1Bと中性点短絡母線箱2
の中央相部とを連結する第2のダクト4Bの内部に、風
量を調整するダンパー11が設けられているため、風量
を発電機G側と変圧器T側にほぼ均等に分流させること
ができる。従って、発電機G側の相分離主母線と変圧器
T側の相分離主母線の冷却特性のバランスをとることが
でき、全体として、極めて効率的な冷却を行うことがで
きる。
In addition, even if the cooling device 7 is arranged so that the busbar length on the generator G side is shortened, in this embodiment, the central phase output terminal box 1B and the neutral point short circuit busbar box 2
Since a damper 11 that adjusts the air volume is provided inside the second duct 4B that connects the central phase part of the generator, the air volume can be divided almost equally to the generator G side and the transformer T side. . Therefore, the cooling characteristics of the phase-separated main bus on the generator G side and the phase-separated main bus on the transformer T side can be balanced, and extremely efficient cooling can be achieved as a whole.

【0027】図5は、本発明による強制風冷式相分離母
線の他の実施例(第2実施例)を示す正面図である。こ
の実施例は、発電機Gの3相各相の出力端子箱1A〜1
Cと発電機Gの中性点短絡母線箱2の対応する相部とを
連結する第1乃至第3のダクト4A〜4Cをコ字形状と
し、この第1乃至第3のダクト4A〜4Cを、出力端子
箱1A〜1Cと中性点短絡母線箱2の下側に配置したも
のである。この実施例においては、前記実施例に比べて
、出力端子箱と中性点短絡母線箱との組み立て上の作業
性を格段に向上できるという利点が得られる。
FIG. 5 is a front view showing another embodiment (second embodiment) of the forced air-cooled phase separation bus bar according to the present invention. In this embodiment, output terminal boxes 1A to 1 for each of the three phases of the generator G are used.
The first to third ducts 4A to 4C connecting C and the corresponding phase part of the neutral short circuit bus box 2 of the generator G are U-shaped, and the first to third ducts 4A to 4C are , are arranged below the output terminal boxes 1A to 1C and the neutral point short circuit bus box 2. This embodiment has the advantage that the workability in assembling the output terminal box and the neutral point short circuit bus box can be significantly improved compared to the previous embodiment.

【0028】図6は、本発明による強制風冷式相分離母
線のさらに他の実施例(第3実施例)を示す図である。 この実施例は、コ字形状とした第1、第3のダクト4A
,4Cを、両端相の出力端子箱1A,1Cと中性点短絡
母線箱2の側面に配置したものであり、前記第2実施例
と同様に、作業性を格段に向上できるという効果が得ら
れる。
FIG. 6 is a diagram showing still another embodiment (third embodiment) of the forced air-cooled phase separation bus according to the present invention. In this embodiment, the first and third ducts 4A are U-shaped.
, 4C are arranged on the sides of the output terminal boxes 1A, 1C of both end phases and the neutral point short circuit bus box 2, and as in the second embodiment, the effect of significantly improving workability is obtained. It will be done.

【0029】なお、本発明は、前記各実施例に限定され
るものではなく、発電機の出力端子箱と中性点短絡母線
箱とを連結するダクトの構成及び形状は自由に変更可能
であり、各部の具体的な接続方法は、自由に選択可能で
ある。すなわち、前記各実施例においては、3相分割形
の個別のダクトを使用したが、これに限らず、例えば、
相間にアルミニウム板などの密封仕切りを有する3相一
体形の共通のダクトを使用することも可能である。また
、冷却装置の冷却用気体は、空気に限定されるものでは
なく、他の気体を使用することも可能である。
Note that the present invention is not limited to the above embodiments, and the configuration and shape of the duct that connects the output terminal box of the generator and the neutral point short circuit bus box can be freely changed. , the specific connection method of each part can be freely selected. That is, in each of the above embodiments, separate three-phase ducts were used, but the invention is not limited to this, and for example,
It is also possible to use a three-phase integral common duct with a sealed partition, such as an aluminum plate, between the phases. Further, the cooling gas of the cooling device is not limited to air, and other gases may also be used.

【0030】[0030]

【発明の効果】以上述べたように、本発明においては、
発電機の3相各相の出力端子箱と発電機の中性点短絡母
線箱の対応する相部とをダクトで連結するという簡単な
構成の改良により、既存の相分離主母線及び発電機の出
力端子箱の強制冷却構造を活用して、さらに、発電機の
中性点短絡母線箱の強制冷却を行い、且つ、全体として
高い冷却効率を実現することができる。そして、このよ
うな冷却装置の共用によって、設備全体の小型・簡略化
に貢献し得るような、冷却効率に優れた強制風冷式相分
離母線を提供することができる。
[Effects of the Invention] As described above, in the present invention,
By improving the simple configuration of connecting the output terminal box of each of the three phases of the generator with the corresponding phase part of the generator's neutral point short circuit bus box with a duct, the existing phase-separated main bus and generator Utilizing the forced cooling structure of the output terminal box, it is also possible to forcibly cool the neutral short circuit bus box of the generator, and achieve high cooling efficiency as a whole. By sharing such a cooling device, it is possible to provide a forced air-cooled phase separation bus with excellent cooling efficiency, which can contribute to downsizing and simplifying the entire equipment.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明による強制風冷式相分離母線の第1実施
例の全体構成を示す概略側面図。
FIG. 1 is a schematic side view showing the overall configuration of a first embodiment of a forced air-cooled phase separation bus according to the present invention.

【図2】図1における発電機の出力端子箱と中性点短絡
母線箱及び冷却装置の詳細を示す側面図。
FIG. 2 is a side view showing details of the output terminal box, neutral short circuit bus box, and cooling device of the generator in FIG. 1;

【図3】図2のX矢視図。FIG. 3 is a view taken along the X arrow in FIG. 2;

【図4】図2のY矢視図。FIG. 4 is a view along the Y arrow in FIG. 2;

【図5】本発明による強制風冷式相分離母線の第2実施
例を示す正面図。
FIG. 5 is a front view showing a second embodiment of the forced air-cooled phase separation busbar according to the present invention.

【図6】本発明による強制風冷式相分離母線の第3実施
例を示す平面図。
FIG. 6 is a plan view showing a third embodiment of the forced air-cooled phase separation busbar according to the present invention.

【符号の説明】[Explanation of symbols]

G  発電機 T  変圧器 1(1A〜1C)出力端子箱 2    中性点短絡母線箱 3(3A〜3C)相分離主母線 4(4A〜4C)第1乃至第3のダクト5    第4
のダクト 6    第5のダクト 7    冷却装置 8    送風口 9    吸入口 10  バッフル或いはグリッド 11  ダンパー 12,13接続ブーツ 20(20A,20C),21 強制冷却風 30  端子箱 31  リターン風導
G Generator T Transformer 1 (1A to 1C) Output terminal box 2 Neutral short circuit bus box 3 (3A to 3C) Phase separation main bus 4 (4A to 4C) First to third ducts 5 Fourth
duct 6 Fifth duct 7 Cooling device 8 Air outlet 9 Inlet 10 Baffle or grid 11 Damper 12, 13 connection boots 20 (20A, 20C), 21 Forced cooling air 30 Terminal box 31 Return air guide

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】  並列に設けられた3相の個別の出力端
子箱と、並列配置の3相部を一括に収納してなる中性点
短絡母線箱とを備えた発電機と、端子箱を備えた変圧器
と、発電機の3相各相の出力端子箱と変圧器の端子箱を
個別に接続する3相の相分離主母線、及び、送風口を介
して相分離主母線内に冷却用気体を送り込み、吸入口を
介して相分離主母線内から冷却用気体を回収することで
、相分離主母線の強制風冷を行う冷却装置を有する強制
風冷式相分離母線において、前記発電機の3相各相の出
力端子箱と発電機の中性点短絡母線箱の対応する相部と
が、個別のダクトまたは相間に密封仕切りを有する共通
のダクトで連結されることを特徴とする強制風冷式相分
離母線。
[Claim 1] A generator equipped with three-phase individual output terminal boxes arranged in parallel and a neutral point short-circuit bus box formed by collectively housing three-phase parts arranged in parallel, and a terminal box. A three-phase phase-separated main bus that connects the equipped transformer, the output terminal box of each of the three phases of the generator, and the terminal box of the transformer individually, and cooling within the phase-separated main bus through the air outlet. In the forced air cooling type phase separation bus which has a cooling device that performs forced air cooling of the phase separation main bus by feeding the cooling gas and recovering the cooling gas from within the phase separation main bus through the suction port, the power generation The output terminal box of each of the three phases of the generator and the corresponding phase section of the neutral short circuit bus box of the generator are connected by individual ducts or a common duct having a sealed partition between the phases. Forced air cooling phase separation busbar.
【請求項2】  前記両端相の個別ダクトの内部または
共通ダクトの両端相部の内部に、相分離主母線の内部ま
たは発電機の出力端子箱の内部に地絡が発生した場合の
アーク移行を防止する、バッフル或いはグリッドを備え
たことを特徴とする請求項1に記載の強制風冷式相分離
母線。
2. The arc migration in the case where a ground fault occurs inside the phase separation main bus or inside the output terminal box of the generator is provided inside the individual ducts of the both end phases or inside the both end phase parts of the common duct. 2. The forced air-cooled phase separation busbar according to claim 1, further comprising a baffle or a grid for preventing the phase separation.
【請求項3】  前記中央相の個別ダクトの内部または
共通ダクトの中央相部の内部に、風量を調整するダンパ
ーを備えたことを特徴とする請求項1に記載の強制風冷
式相分離母線。
3. The forced air-cooled phase separation busbar according to claim 1, further comprising a damper for adjusting air volume inside each of the individual ducts of the central phase or inside the central phase section of the common duct. .
【請求項4】  前記冷却装置の送風口が、両端相の相
分離主母線に接続され、且つ、冷却装置の吸入口が、中
央相の相分離主母線に接続されたことを特徴とする請求
項1に記載の強制風冷式相分離母線。
4. A claim characterized in that the air outlet of the cooling device is connected to the phase separation main bus of both end phases, and the suction port of the cooling device is connected to the phase separation main bus of the central phase. The forced air cooling type phase separation busbar according to item 1.
JP2486191A 1991-02-19 1991-02-19 Forced air cooling type phase isolation bus Pending JPH04265616A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2486191A JPH04265616A (en) 1991-02-19 1991-02-19 Forced air cooling type phase isolation bus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2486191A JPH04265616A (en) 1991-02-19 1991-02-19 Forced air cooling type phase isolation bus

Publications (1)

Publication Number Publication Date
JPH04265616A true JPH04265616A (en) 1992-09-21

Family

ID=12150002

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2486191A Pending JPH04265616A (en) 1991-02-19 1991-02-19 Forced air cooling type phase isolation bus

Country Status (1)

Country Link
JP (1) JPH04265616A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04265614A (en) * 1991-02-19 1992-09-21 Toshiba Corp Forced air cooling type phase isolation bus

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5145780A (en) * 1974-10-18 1976-04-19 Hitachi Ltd Sobunribosenno reikyakusochi
JPS5434077A (en) * 1977-08-22 1979-03-13 Toshiba Corp Cooling device for phase separation bus
JPS63265509A (en) * 1987-04-23 1988-11-02 Toshiba Corp Phase splitting bus
JPS63265510A (en) * 1987-04-23 1988-11-02 Toshiba Corp Phase splitting bus
JPH04265614A (en) * 1991-02-19 1992-09-21 Toshiba Corp Forced air cooling type phase isolation bus
JPH04265615A (en) * 1991-02-19 1992-09-21 Toshiba Corp Forced air cooling type phase isolation bus

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5145780A (en) * 1974-10-18 1976-04-19 Hitachi Ltd Sobunribosenno reikyakusochi
JPS5434077A (en) * 1977-08-22 1979-03-13 Toshiba Corp Cooling device for phase separation bus
JPS63265509A (en) * 1987-04-23 1988-11-02 Toshiba Corp Phase splitting bus
JPS63265510A (en) * 1987-04-23 1988-11-02 Toshiba Corp Phase splitting bus
JPH04265614A (en) * 1991-02-19 1992-09-21 Toshiba Corp Forced air cooling type phase isolation bus
JPH04265615A (en) * 1991-02-19 1992-09-21 Toshiba Corp Forced air cooling type phase isolation bus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04265614A (en) * 1991-02-19 1992-09-21 Toshiba Corp Forced air cooling type phase isolation bus

Similar Documents

Publication Publication Date Title
CN103477729B (en) For manufacturing the power switch cabinet of the equipment of electric energy
US7567160B2 (en) Supplementary transformer cooling in a reactive power compensation system
CA1192593A (en) Rotary converter machine
CN108011306B (en) A kind of integrated type alternating current-direct current power supply and distribution device and its operating method
US20170040906A1 (en) Power Conversion Unit and Power Conversion Device
CN112217264A (en) Charging pile and charging unit thereof
JP3481846B2 (en) Power converter
WO2018047229A1 (en) Power conversion device, cooling structure, power conversion system, and power supply device
EP4300734A1 (en) Prefabricated substation
JPH04265616A (en) Forced air cooling type phase isolation bus
CN210608893U (en) Power module, converter power module and wind power generation system
JPH04265614A (en) Forced air cooling type phase isolation bus
JP2021151052A (en) Control device for uninterruptible power supply
JPH04275011A (en) Forced-air-cooled isolated phase bus-bar
JPH04265615A (en) Forced air cooling type phase isolation bus
JPH04271249A (en) Compulsory air cooling type phase isolating bus
US2878300A (en) Bus structure
US2300520A (en) Damper winding
JPH04271248A (en) Compulsory air cooling type phase isolating bus
CN212343623U (en) Wind power converter
US20220192047A1 (en) Cooling system for use in power converters
CN208028803U (en) A kind of motor activation configuration
JPH0528896Y2 (en)
US7019216B2 (en) Generator output line, in particular for a connection region in the generator base
US8049377B2 (en) Multi phase generator with frequency adaptation unit