JPH05288675A - Mtbe detecting sensor and fuel-property detecting apparatus - Google Patents

Mtbe detecting sensor and fuel-property detecting apparatus

Info

Publication number
JPH05288675A
JPH05288675A JP8727992A JP8727992A JPH05288675A JP H05288675 A JPH05288675 A JP H05288675A JP 8727992 A JP8727992 A JP 8727992A JP 8727992 A JP8727992 A JP 8727992A JP H05288675 A JPH05288675 A JP H05288675A
Authority
JP
Japan
Prior art keywords
fuel
mtbe
infrared
methyl
butyl ether
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8727992A
Other languages
Japanese (ja)
Inventor
Naoto Sawaki
直人 澤木
Teruyuki Hibino
晃之 日比野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niterra Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP8727992A priority Critical patent/JPH05288675A/en
Publication of JPH05288675A publication Critical patent/JPH05288675A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/3581Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light using far infrared light; using Terahertz radiation

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Toxicology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PURPOSE:To obtain an MTBE detecting sensor, which can simply detect the mixing ratio of methyl-t-butyl ether. CONSTITUTION:A fuel pipe 1, through which liquid fuel 12 passes, a far-infrared- lamp 2 and a convex lens 4, which are arranged at one and the other sides of the fuel pipe 1, an optical filter 3, an infrared-ray detector 5 and a detecting circuit 6 are provided. The mixing ratio of MTBE is detected based on the decreasing amount of the electric output from the infrared-ray detector 5.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、ガソリンに、代替燃料
を適宜、又は、オクタン価向上、排ガス浄化を目的とし
てMTBEを添加した混合ガソリンを使用する自動車に
用いる、MTBE検出センサ及び燃料性状検出装置に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an MTBE detection sensor and a fuel property detection device for use in a vehicle using gasoline as an alternative fuel, or mixed gasoline containing MTBE added for the purpose of improving octane number and exhaust gas purification. Regarding

【0002】[0002]

【従来の技術】ガソリン重質度と屈折率とが相関関係に
あることを利用し、発光素子で発光させた光を、ガソリ
ンに接触する様に配したプリズムの境界面で反射させ、
受光素子の出力変化から、ガソリン重質度(芳香族の容
積%)やメタノール混合比を検出する燃料性状検出装置
が従来より知られている。
2. Description of the Related Art Utilizing the fact that gasoline heaviness and refractive index are in correlation, light emitted from a light emitting element is reflected at a boundary surface of a prism arranged so as to come into contact with gasoline,
2. Description of the Related Art A fuel property detecting device has been conventionally known that detects gasoline heavyness (volume ratio of aromatics) and methanol mixing ratio from a change in output of a light receiving element.

【0003】[0003]

【発明が解決しようとする課題】しかるに、従来の燃料
性状検出装置では、設定した添加物(例えばメタノー
ル)以外の添加物(例えばメチル- t- ブチルエーテ
ル)が添加されると、添加量- 屈折率特性が対応しなく
なり、正しいガソリン重質度が検出できなくなるという
欠点がある。本発明の第1の目的は、メチル- t- ブチ
ルエーテルの混合割合が簡単に検出できるMTBE検出
センサの提供にあり、第2の目的は、メチル- t- ブチ
ルエーテルが添加されても液体燃料の燃料性状を正しく
求める事ができる燃料性状検出装置の提供にある。
However, in the conventional fuel property detecting device, when an additive (for example, methyl-t-butyl ether) other than the set additive (for example, methanol) is added, the addition amount-refractive index There is a drawback that the characteristics do not correspond and the correct gasoline heavyness cannot be detected. A first object of the present invention is to provide an MTBE detection sensor capable of easily detecting the mixing ratio of methyl-t-butyl ether, and a second object of the present invention is to provide a fuel for liquid fuel even if methyl-t-butyl ether is added. The purpose of the present invention is to provide a fuel property detection device capable of accurately determining the property.

【0004】[0004]

【課題を解決するための手段】上記課題の解決のため、
本発明は、以下の構成を採用した。 (1)液体燃料が通過する、赤外線透過性の燃料管路
と、該燃料管路の一方外方側に配される赤外線放射源
と、前記燃料管路の他方外方側に配される赤外線量検出
器と、波長8μm付近の赤外線を選択的に透過させる特
性を有し、前記赤外線放射源と赤外線量検出器との間に
配されるバンドパスフィルターとを備え、該検出器が送
出する電気出力に基づいて、適宜、添加されるメチル-
t- ブチルエーテルの混合割合を検出する。 (2)液体燃料の屈折率変化から得られる屈折率関連デ
ータに基づいて燃料性状を求める燃料性状検出装置にお
いて、前記屈折率関連データを、上記(1)のMTBE
検出センサで検出されるMTBE混合割合に応じて補正
する。
[Means for Solving the Problems] In order to solve the above problems,
The present invention has the following configurations. (1) Infrared-permeable fuel pipeline through which liquid fuel passes, infrared radiation source arranged on one outer side of the fuel pipeline, and infrared radiation arranged on the other outer side of the fuel pipeline And a bandpass filter having a characteristic of selectively transmitting infrared rays having a wavelength of around 8 μm and arranged between the infrared radiation source and the infrared ray quantity detector, and the detector sends the quantity. Methyl added as appropriate based on the electrical output
The mixing ratio of t-butyl ether is detected. (2) In the fuel property detecting device for determining the fuel property based on the refractive index related data obtained from the change in the refractive index of the liquid fuel, the refractive index related data is converted into the MTBE of the above (1).
Correction is made according to the MTBE mixing ratio detected by the detection sensor.

【0005】[0005]

【作用および発明の効果】[Operation and effect of the invention]

〔請求項1について〕赤外線放射源から放射される赤外
線は、燃料管路を透過したのちバンドパスフィルターに
より波長8μm付近のものに絞られるか、バンドパスフ
ィルターにより波長8μm付近のものに絞られたのち燃
料管路を透過して赤外線量検出器に到達する。ここで、
メチル- t- ブチルエーテルは、波長8μm付近に吸収
域を有するので、液体燃料中のメチル- t- ブチルエー
テルの含有量が多くなる程、赤外線量検出器の電気出力
は低下する。この為、電気出力に基づいて、メチル- t
- ブチルエーテルの混合割合が検出できる。 〔請求項2について〕液体燃料の屈折率変化から得られ
る屈折率関連データは、MTBE検出センサで検出され
るMTBE混合割合に応じて補正されるので、メチル-
t- ブチルエーテルの影響を相殺した液体燃料の燃料性
状が検出できる。
[Claim 1] The infrared radiation emitted from the infrared radiation source is passed through the fuel line and then narrowed down to a wavelength of around 8 μm by a bandpass filter or narrowed down to a wavelength of around 8 μm by a bandpass filter. After that, it passes through the fuel pipe and reaches the infrared amount detector. here,
Since methyl-t-butyl ether has an absorption region near a wavelength of 8 μm, the electrical output of the infrared detector decreases as the content of methyl-t-butyl ether in the liquid fuel increases. Therefore, based on the electrical output, methyl-t
-The mixing ratio of butyl ether can be detected. [Claim 2] Since the refractive index related data obtained from the change in the refractive index of the liquid fuel is corrected according to the MTBE mixing ratio detected by the MTBE detection sensor, methyl-
It is possible to detect the fuel property of the liquid fuel that cancels the influence of t-butyl ether.

【0006】[0006]

【実施例】つぎに、本発明の第1実施例(請求項1に対
応)を図1〜図3に基づいて説明する。図1に示す如
く、MTBE検出装置Aは、液体燃料12が通過する燃
料管路1と、燃料管路1の一方外方側に配される遠赤外
線ランプ2と、燃料管路1の他方外方側に配される、光
学フィルター3、凸レンズ4、及び赤外光検出器5と、
赤外光検出器5が送出する電気出力が入力される検出回
路6とを具備する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, a first embodiment of the present invention (corresponding to claim 1) will be described with reference to FIGS. As shown in FIG. 1, the MTBE detection device A includes a fuel conduit 1 through which a liquid fuel 12 passes, a far-infrared lamp 2 arranged on one outer side of the fuel conduit 1, and the other outside of the fuel conduit 1. An optical filter 3, a convex lens 4, and an infrared light detector 5, which are arranged on one side,
The infrared light detector 5 is provided with a detection circuit 6 to which an electric output transmitted is input.

【0007】燃料タンクとエンジン間を連絡する燃料配
管11の適所に配設される燃料管路1は、遠赤外線を透
過し、且つ液体燃料12に冒され難いセラミック材(ガ
ラス、プラスチックも可)で形成され、略円筒状を呈す
る。液体燃料12は、本実施例では、ガソリンに、メチ
ル- t- ブチルエーテル(MTBE)を0容積%〜20
容積%の範囲で添加したものである。尚、図3に、ガソ
リンとメチル- t- ブチルエーテルの赤外吸収パターン
を示す。
The fuel pipe 1 arranged at a proper position of the fuel pipe 11 connecting the fuel tank and the engine transmits far infrared rays and is a ceramic material (glass or plastic may be used) which is hard to be affected by the liquid fuel 12. And has a substantially cylindrical shape. In the present embodiment, the liquid fuel 12 is gasoline containing methyl-t-butyl ether (MTBE) in an amount of 0% to 20% by volume.
It is added in the range of volume%. In addition, FIG. 3 shows infrared absorption patterns of gasoline and methyl-t-butyl ether.

【0008】遠赤外線ランプ2は、発熱コイル(本実施
例ではニクロム合金)を、絶縁粉末を充填した金属管
(本実施例ではステンレス)の内部に収納し、管表面に
遠赤外線放射物質(本実施例ではチタニヤとジルコニア
の混合物)を被着したものであり、図示しない電源によ
り通電が成され、遠赤外線を効率的に放射する。
The far-infrared lamp 2 has a heating coil (Nichrome alloy in this embodiment) housed inside a metal tube (stainless steel in this embodiment) filled with insulating powder, and the far-infrared emitting material (this In the embodiment, a mixture of titania and zirconia) is applied, which is energized by a power source (not shown) to efficiently radiate far infrared rays.

【0009】凸レンズ4- 赤外光検出器5間に配される
光学フィルター3は、薄膜層によって生じる光の干渉を
利用した、図2に示す特性(波長8μm付近の赤外線を
選択的に透過)を有するバンドパスフィルタであり、高
屈折率の誘電体薄膜と低屈折率の誘電体薄膜とを交互に
蒸着し、これを多段に積層して形成されている。
The optical filter 3 arranged between the convex lens 4 and the infrared photodetector 5 utilizes the interference of light generated by the thin film layer as shown in FIG. 2 (selectively transmits infrared rays having a wavelength of about 8 μm). Is a bandpass filter having a high refractive index dielectric thin film and a low refractive index dielectric thin film, which are alternately deposited, and are formed by stacking them in multiple stages.

【0010】凸レンズ4は、本実施例では、蛍石(Ca
2 )で形成され、燃料管路1を透過した赤外線を赤外
光検出器5位置に集光する。
In this embodiment, the convex lens 4 is made of fluorite (Ca
The infrared rays formed of F 2 ) and transmitted through the fuel pipe line 1 are focused on the position of the infrared light detector 5.

【0011】赤外光検出器5は、遠赤外線量を検出する
光電変換素子であり、受光した遠赤外線量に比例した大
きさの電気出力を送出する。尚、本実施例では、P- G
e(フォトンドラッグ)を使用している。
The infrared light detector 5 is a photoelectric conversion element for detecting the amount of far infrared rays, and sends out an electric output having a magnitude proportional to the amount of far infrared rays received. In this embodiment, P-G
e (photon drug) is used.

【0012】検出回路6は、液体燃料12にメチル- t
- ブチルエーテルを添加しない状態での赤外光検出器5
が送出する電気出力の値を予めメモリしておき、この電
気出力値から、監視中における赤外光検出器5が送出す
る電気出力の値を減じ、この差からメチル- t- ブチル
エーテルの混合割合を演算して求めている。
The detection circuit 6 uses methyl-t as the liquid fuel 12.
-Infrared detector without butyl ether 5
The value of the electric output sent by is stored in advance, and the value of the electric output sent by the infrared photodetector 5 being monitored is subtracted from this electric output value. From this difference, the mixing ratio of methyl-t-butyl ether is calculated. Is calculated to obtain.

【0013】つぎに、MTBE検出装置Aの作動を述べ
る。遠赤外線ランプ2から放射される遠赤外線は、燃料
管路1を透過したのち、光学フィルター3により波長8
μm付近のものに絞られ、凸レンズ4により集光され、
赤外光検出器5に到達する。ガソリン100容積%の場
合の赤外光検出器5が送出する電気出力の値がE0、現
在の赤外光検出器5が送出する電気出力の値がE1 であ
ると、検出回路6は両者の差(E0 −E1 )に基づいて
メチル- t- ブチルエーテルの混合割合を求める。尚、
メチル- t- ブチルエーテルの混合割合が増えると液体
燃料12中を赤外光が通過する際、波長8μm付近の赤
外光が液体燃料12に吸収され、赤外光検出器5が送出
する電気出力が低減する。
Next, the operation of the MTBE detection device A will be described. The far-infrared rays emitted from the far-infrared lamp 2 pass through the fuel line 1 and then have a wavelength of 8 by the optical filter 3.
It is narrowed down to around μm and is condensed by the convex lens 4,
The infrared light detector 5 is reached. When the value of the electric output sent by the infrared light detector 5 is E 0 and the value of the electric output sent by the present infrared light detector 5 is E 1 in the case of 100% by volume of gasoline, the detection circuit 6 The mixing ratio of methyl-t-butyl ether is determined based on the difference (E 0 -E 1 ) between the two. still,
When the mixing ratio of methyl-t-butyl ether is increased, when the infrared light passes through the liquid fuel 12, the infrared light near the wavelength of 8 μm is absorbed by the liquid fuel 12 and the electric output sent by the infrared light detector 5 Is reduced.

【0014】本実施例の利点を述べる。 (あ)適宜、添加される添加剤の種類がメチル- t- ブ
チルエーテルだけだと分かっている場合、メチル- t-
ブチルエーテルの混合割合が簡単な構成で検出できる。 (い)光学フィルター3を、燃料管路1の他方外方側
の、凸レンズ4- 赤外光検出器5間に配しているので、
他の配置方法に比べ、波長8μm付近以外の遠赤外線が
赤外光検出器5に侵入する可能性が少ない(MTBE混
合割合の検出精度が高い)。
The advantages of this embodiment will be described. (A) If it is known that the only kind of additive to be added is methyl-t-butyl ether, methyl-t-
The mixing ratio of butyl ether can be detected with a simple structure. (Ii) Since the optical filter 3 is arranged between the convex lens 4 and the infrared light detector 5 on the other outer side of the fuel pipe line 1,
Far infrared rays having a wavelength other than around 8 μm are less likely to enter the infrared light detector 5 as compared with other arrangement methods (higher detection accuracy of the MTBE mixing ratio).

【0015】つぎに、本発明の第2実施例(請求項2に
対応)を図4及び図5に基づいて説明する。MTBE・
ガソリン混合割合検出装置兼ガソリン重質度検出装置B
は、発光ダイオード71が放射する光を、液体燃料12
に接触させたプリズム72の燃料接触面721で全反射
させてフォトダイオード73に入光させ、フォトダイオ
ード73の電気出力(屈折率関連データに相当)に基づ
いて、液体燃料12中のガソリン重質度を検出する公知
のガソリン重質度検出センサ7と、MTBE検出装置A
と、フォトダイオード73の電気出力を、検出センサ7
で検出したMTBE混合量に応じて補正して、MTBE
/ガソリンの混合割合及びガソリン重質度を算出する検
出回路8とを有する。
Next, a second embodiment of the present invention (corresponding to claim 2) will be described with reference to FIGS. 4 and 5. MTBE
Gasoline mixture ratio detector and gasoline heaviness detector B
Emits light emitted from the light emitting diode 71 to the liquid fuel 12
The fuel contact surface 721 of the prism 72 brought into contact with the light is totally reflected to enter the photodiode 73, and based on the electric output of the photodiode 73 (corresponding to the refractive index related data), the gasoline heavy in the liquid fuel 12 Well-known gasoline heavyness detecting sensor 7 for detecting degree and MTBE detecting device A
And the electric output of the photodiode 73 is detected by the detection sensor 7
The MTBE is corrected according to the MTBE mixed amount detected in
And / a detection circuit 8 for calculating the mixing ratio of gasoline and the gasoline heaviness.

【0016】上記ガソリン重質度検出センサ7は、液体
燃料12中の、ガソリン重質度が軽質になると臨界角が
小さくなるのでフォトダイオード73の電気出力は増大
するが、メチル- t- ブチルエーテルの混合割合が増加
してもフォトダイオード73の電気出力は増大する。
尚、臨界角が小さいと、発光ダイオード71から放射さ
れる光は実線で示す光路711を進んでフォトダイオー
ド73に到達する。
In the gasoline heaviness detection sensor 7, the critical angle becomes smaller when the gasoline heaviness in the liquid fuel 12 becomes lighter, so that the electric output of the photodiode 73 increases, but methyl-t-butyl ether Even if the mixing ratio increases, the electric output of the photodiode 73 increases.
When the critical angle is small, the light emitted from the light emitting diode 71 travels along the optical path 711 indicated by the solid line and reaches the photodiode 73.

【0017】液体燃料12は、本実施例では、ガソリン
に、メチル- t- ブチルエーテルを、合計、0容積%〜
20容積%の範囲で適宜、添加される。
In the present embodiment, the liquid fuel 12 is gasoline containing methyl-t-butyl ether in a total amount of 0% by volume.
It is appropriately added within the range of 20% by volume.

【0018】次に、MTBE・ガソリン混合割合検出装
置兼ガソリン重質度検出装置Bの作動を、図5のフロー
チャートとともに説明する。ステップs1で、MTBE
検出装置Aの検出回路6は、赤外光検出器5から電気出
力を得る。ステップs2で、MTBE検出装置Aの検出
回路6は、E0 −E1 に基づいてメチル- t- ブチルエ
ーテルの混合割合を求める。ステップs3において、メ
チル- t- ブチルエーテルが検出される場合、ステップ
s4に進み、また、メチル- t- ブチルエーテルが検出
されない場合、ステップs6に進む。メチル- t- ブチ
ルエーテルが添加されている場合、フォトダイオード7
3の電気出力が増加するので、ステップs4において、
この増加分が相殺される様に電気出力を電気的に補正
し、ステップs5に進む。ステップs5で、補正された
フォトダイオード73の電気出力に基づいて、検出回路
8はガソリン重質度を算出する。メチル- t- ブチルエ
ーテルが添加されていない場合、ステップs6におい
て、フォトダイオード73の電気出力に基づいて、検出
回路8は、ガソリン重質度を算出する。
Next, the operation of the MTBE / gasoline mixture ratio detecting device / gasoline heaviness detecting device B will be described with reference to the flow chart of FIG. In step s1, MTBE
The detection circuit 6 of the detection device A obtains an electric output from the infrared light detector 5. In step s2, the detection circuit 6 of MTBE detecting device A, methyl based on E 0 -E 1 - finding the mixing ratio of t- butyl ether. In step s3, if methyl-t-butyl ether is detected, the process proceeds to step s4, and if methyl-t-butyl ether is not detected, the process proceeds to step s6. Photodiode 7 when methyl-t-butyl ether is added
Since the electric output of 3 increases, in step s4,
The electric output is electrically corrected so that this increase is offset, and the process proceeds to step s5. In step s5, the detection circuit 8 calculates the gasoline heaviness based on the corrected electric output of the photodiode 73. When methyl-t-butyl ether is not added, in step s6, the detection circuit 8 calculates the gasoline heaviness based on the electric output of the photodiode 73.

【0019】本実施例の利点を述べる。 (う)液体燃料12が、ガソリンにメチル- t- ブチル
エーテルを添加したものであっても、MTBE/ガソリ
ンの混合割合を正確に求めることができる。 (え)MTBE検出装置Aから離し、且つ上流側の燃料
配管11にガソリン重質度検出センサ7を配設している
ので、遠赤外線ランプ2からの遠赤外線の輻射や、遠赤
外線による液体燃料12の昇温の影響による、ガソリン
重質度検出センサ7の誤作動を回避できる。
The advantages of this embodiment will be described. (V) Even if the liquid fuel 12 is gasoline to which methyl-t-butyl ether is added, the MTBE / gasoline mixing ratio can be accurately determined. (E) Since the gasoline heaviness detection sensor 7 is arranged in the fuel pipe 11 on the upstream side, apart from the MTBE detection device A, the far-infrared lamp 2 radiates far-infrared rays and the liquid fuel by far-infrared rays. The malfunction of the gasoline heavyness detection sensor 7 due to the influence of the temperature rise of 12 can be avoided.

【0020】本発明は、上記実施例以外に、つぎの実施
態様を含む。 a.赤外線放射源は、MTBEの吸収域の波長(8μm
前後)を含む遠赤外線を放射できるものであれば、その
他、グローバ、シーズヒータ、レーザ、アーク灯、IR
Sランプ等でも良い。 b.赤外線量検出器は、波長8μm付近の遠赤外線を検
出できれば、その他、HgCdTe、CdSe、PbS
nTe、Ge:Hg、HgTe- CdTe等を用いても
良い。 c.バンドパスフィルターは、波長8μm付近の赤外線
を選択的に透過させる事ができれば、その他、回折、金
属メッシュ、選択吸収、残留反射、全反射等を利用した
光学素子で構成しても良い。また、バンドパスフィルタ
ーの配設は、その他、燃料管路1- 凸レンズ4間、遠赤
外線ランプ2- 燃料管路1間に配設しても良い。
The present invention includes the following embodiments in addition to the above embodiments. a. The infrared radiation source has a wavelength in the absorption region of MTBE (8 μm
Others, such as glober, sheathed heater, laser, arc lamp, IR
It may be an S lamp or the like. b. If the infrared ray amount detector can detect far infrared rays having a wavelength of around 8 μm, HgCdTe, CdSe, PbS
You may use nTe, Ge: Hg, HgTe- CdTe etc. c. The bandpass filter may be composed of an optical element utilizing diffraction, a metal mesh, selective absorption, residual reflection, total reflection, etc., as long as it can selectively transmit infrared rays having a wavelength of around 8 μm. Further, the band pass filter may be arranged between the fuel pipe 1 and the convex lens 4 and between the far infrared lamp 2 and the fuel pipe 1.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1実施例にかかるMTBE検出装置
の構造説明図である。
FIG. 1 is a structural explanatory view of an MTBE detection device according to a first embodiment of the present invention.

【図2】そのMTBE検出装置に使用するバンドパスフ
ィルターの特性図である。
FIG. 2 is a characteristic diagram of a bandpass filter used in the MTBE detection device.

【図3】ガソリンとメチル- t- ブチルエーテルの赤外
吸収パターンを示すグラフである。
FIG. 3 is a graph showing infrared absorption patterns of gasoline and methyl-t-butyl ether.

【図4】本発明の第2実施例にかかる、MTBE・ガソ
リン混合割合検出装置兼ガソリン重質度検出装置Bの構
造説明図である。
FIG. 4 is a structural explanatory view of an MTBE / gasoline mixture ratio detection device / gasoline heaviness detection device B according to a second embodiment of the present invention.

【図5】その装置の作動を示すフローチャートである。FIG. 5 is a flowchart showing the operation of the apparatus.

【符号の説明】[Explanation of symbols]

A MTBE検出装置(MTBE検出センサ) B MTBE・ガソリン混合割合検出装置兼ガソリン重
質度検出装置(燃料性状検出装置) 1 燃料管路 2 遠赤外線ランプ(赤外線放射源) 3 光学フィルター(バンドパスフィルター) 5 赤外光検出器(赤外線量検出器) 12 液体燃料
A MTBE detection device (MTBE detection sensor) B MTBE / gasoline mixture ratio detection device and gasoline heavyness detection device (fuel property detection device) 1 Fuel line 2 Far infrared lamp (infrared radiation source) 3 Optical filter (band pass filter) ) 5 Infrared detector (infrared amount detector) 12 Liquid fuel

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 液体燃料が通過する、赤外線透過性の燃
料管路と、 該燃料管路の一方外方側に配される赤外線放射源と、 前記燃料管路の他方外方側に配される赤外線量検出器
と、 波長8μm付近の赤外線を選択的に透過させる特性を有
し、前記赤外線放射源と赤外線量検出器との間に配され
るバンドパスフィルターとを備え、 該検出器が送出する電気出力に基づいて、適宜、添加さ
れるメチル- t- ブチルエーテルの混合割合を検出する
MTBE検出センサ。
1. An infrared-transparent fuel conduit through which liquid fuel passes, an infrared radiation source arranged on one outside of the fuel conduit, and an infrared radiation source arranged on the other outside of the fuel conduit. An infrared ray amount detector having a wavelength of 8 μm and a bandpass filter arranged between the infrared ray radiation source and the infrared ray amount detector. An MTBE detection sensor that appropriately detects the mixing ratio of methyl-t-butyl ether to be added based on the electric output sent.
【請求項2】 液体燃料の屈折率変化から得られる屈折
率関連データに基づいて燃料性状を求める燃料性状検出
装置において、 前記屈折率関連データを、請求項1記載のMTBE検出
センサで検出されるMTBE混合割合に応じて補正する
ことを特徴とする燃料性状検出装置。
2. A fuel property detecting device for obtaining a fuel property based on refractive index related data obtained from a change in refractive index of liquid fuel, wherein the refractive index related data is detected by an MTBE detection sensor according to claim 1. A fuel property detection device, characterized in that it is corrected according to the MTBE mixing ratio.
JP8727992A 1992-04-08 1992-04-08 Mtbe detecting sensor and fuel-property detecting apparatus Pending JPH05288675A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8727992A JPH05288675A (en) 1992-04-08 1992-04-08 Mtbe detecting sensor and fuel-property detecting apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8727992A JPH05288675A (en) 1992-04-08 1992-04-08 Mtbe detecting sensor and fuel-property detecting apparatus

Publications (1)

Publication Number Publication Date
JPH05288675A true JPH05288675A (en) 1993-11-02

Family

ID=13910350

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8727992A Pending JPH05288675A (en) 1992-04-08 1992-04-08 Mtbe detecting sensor and fuel-property detecting apparatus

Country Status (1)

Country Link
JP (1) JPH05288675A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007040745A (en) * 2005-08-01 2007-02-15 Mitsubishi Electric Engineering Co Ltd Inspection device of adhesive state of filling container
JP2007085907A (en) * 2005-09-22 2007-04-05 Mitsubishi Electric Engineering Co Ltd Device for inspecting filling container
JP2008107098A (en) * 2006-10-23 2008-05-08 Toyota Motor Corp Fuel property detection device
JP2008157728A (en) * 2006-12-22 2008-07-10 Toyota Motor Corp Device for detecting fuel properties

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007040745A (en) * 2005-08-01 2007-02-15 Mitsubishi Electric Engineering Co Ltd Inspection device of adhesive state of filling container
JP4664769B2 (en) * 2005-08-01 2011-04-06 三菱電機エンジニアリング株式会社 Filling container adhesion state inspection device
JP2007085907A (en) * 2005-09-22 2007-04-05 Mitsubishi Electric Engineering Co Ltd Device for inspecting filling container
JP2008107098A (en) * 2006-10-23 2008-05-08 Toyota Motor Corp Fuel property detection device
JP2008157728A (en) * 2006-12-22 2008-07-10 Toyota Motor Corp Device for detecting fuel properties

Similar Documents

Publication Publication Date Title
US12085500B2 (en) Reference switch architectures for noncontact sensing of substances
US5262645A (en) Sensor for measuring alcohol content of alcohol gasoline fuel mixtures
US5239860A (en) Sensor for measuring alcohol content of alcohol/gasoline fuel mixtures
Varma et al. Long optical cavities for open-path monitoring of atmospheric trace gases and aerosol extinction
WO2009007875A2 (en) Photo acoustic sample detector with light guide
GB2197065A (en) Optical sensor device
US11913880B2 (en) Spectrometer device
GB2340228A (en) Infra-red optical gas sensor
US10036702B2 (en) Method, device and sensor for determining an absorption behavior of a medium
US20230417657A1 (en) Spectral sensing device and method for measuring optical radiation
KR950033445A (en) Temperature measuring method and apparatus using optical fiber
JPH04505967A (en) Device for measuring the composition of fluids, e.g. components of exhaust gas from internal combustion engines
EP0834732A2 (en) Gas analyzer
US10298836B2 (en) Image sensor and image-capturing apparatus
JPH05288675A (en) Mtbe detecting sensor and fuel-property detecting apparatus
US20130120743A1 (en) Integrated Surface Plasmon Resonance Sensor
US3471698A (en) Infrared detection of surface contamination
RU2290614C1 (en) Two-channel spectral ratio pyrometer
US10690591B2 (en) Measurement time distribution in referencing schemes
JP2006275632A (en) Spectroscopic gas sensor
KR101165720B1 (en) Portable biophotonic sensor measurement apparatus and the measuring method of the same
JPS6189543A (en) Method and device for measuring dual beam spectral transmittance
WO2020066769A1 (en) Concentration measurement method
JP3247845B2 (en) Method and apparatus for measuring quantum efficiency of phosphor
KR101760031B1 (en) Optical gas sensor with the improvement of sensitivity and reliability