JPH05287416A - High strength and high electric conductivity copper alloy - Google Patents
High strength and high electric conductivity copper alloyInfo
- Publication number
- JPH05287416A JPH05287416A JP9569192A JP9569192A JPH05287416A JP H05287416 A JPH05287416 A JP H05287416A JP 9569192 A JP9569192 A JP 9569192A JP 9569192 A JP9569192 A JP 9569192A JP H05287416 A JPH05287416 A JP H05287416A
- Authority
- JP
- Japan
- Prior art keywords
- strength
- alloy
- electric conductivity
- copper alloy
- conductivity
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Conductive Materials (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、強度及び導電率が高い
と共に耐熱性が優れていて、電気及び電子機器等に使用
される線材の材料として好適の高強度高導電率銅合金に
関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high-strength and high-conductivity copper alloy which has high strength and electric conductivity and excellent heat resistance and is suitable as a material for wire rods used in electric and electronic devices.
【0002】[0002]
【従来の技術】マグネット、産業ロボット及び自動車用
の電線及び電子部品等に使用される高強度高導電率銅合
金としては、導電性が良好であることに加えて、加工
性、引張強度及び耐熱性が優れていることが要求され
る。2. Description of the Related Art As a high-strength and high-conductivity copper alloy used for electric wires and electronic parts for magnets, industrial robots, automobiles, etc., in addition to good conductivity, workability, tensile strength and heat resistance It is required to have excellent properties.
【0003】従来、上述した用途には、無酸素銅、錫入
り銅及びりん青銅等が使用されている。また、これらに
比して強度が高い材料として、Cu−Fe合金が知られ
ている。Conventionally, oxygen-free copper, tin-containing copper, phosphor bronze and the like have been used for the above-mentioned applications. A Cu—Fe alloy is known as a material having higher strength than these materials.
【0004】このCu−Fe合金は、FeがCu中に微
量しか固溶しない性質を利用して強度の向上を図ったも
のである。即ち、溶解したCu中に所定量のFeを添加
し、これを鋳造すると、Feは銅合金中に単独で分散す
る。例えば、この鋳塊を伸線加工すると、Fe部分は細
い繊維状になる。この繊維状のFeにより、Cu−Fe
合金の強度が向上する。また、このCu−Fe合金は、
Cuマトリックスの物性が純Cuと殆ど同一であるた
め、導電性も優れている。This Cu-Fe alloy is intended to improve the strength by utilizing the property that Fe forms a solid solution in Cu in a very small amount. That is, when a predetermined amount of Fe is added to molten Cu and this is cast, Fe is dispersed alone in the copper alloy. For example, when this ingot is drawn, the Fe portion becomes thin fibrous. With this fibrous Fe, Cu-Fe
The strength of the alloy is improved. In addition, this Cu-Fe alloy,
Since the physical properties of the Cu matrix are almost the same as those of pure Cu, the conductivity is also excellent.
【0005】[0005]
【発明が解決しようとする課題】しかしながら、Cu−
Fe合金は、上述の如く、Cuマトリックスの物性が純
Cuと殆ど同一であるため、軟化温度が低い。このた
め、Cu−Fe合金は、繊維状Feによる強度向上効果
にも拘らず、使用温度が上昇すると、Cuマトリックス
が軟化して強度が低下してしまう。However, Cu-
The Fe alloy has a low softening temperature because the physical properties of the Cu matrix are almost the same as those of pure Cu as described above. For this reason, in the Cu-Fe alloy, the strength of the Cu matrix softens and the strength decreases when the operating temperature rises, despite the strength improving effect of the fibrous Fe.
【0006】Fe含有量を多くすると、Cu−Fe合金
中における軟化しやすいCuマトリックスの占める割合
が少なくなるため、高温での強度の低下を低減すること
ができる。しかし、Fe含有量を多くすると、必然的に
導電率が低下してしまうという難点がある。When the Fe content is increased, the proportion of the Cu matrix, which is easily softened, in the Cu-Fe alloy is reduced, so that the decrease in strength at high temperature can be suppressed. However, when the Fe content is increased, the electrical conductivity is inevitably lowered.
【0007】本発明はかかる問題点に鑑みてなされたも
のであって、加工性が優れており、強度及び導電率が高
いと共に、高温での強度の低下が少ない高強度高導電率
銅合金を提供することを目的とする。The present invention has been made in view of the above problems, and provides a high-strength and high-conductivity copper alloy which is excellent in workability, has high strength and conductivity, and has little decrease in strength at high temperatures. The purpose is to provide.
【0008】[0008]
【課題を解決するための手段】本発明に係る高強度高導
電率銅合金は、0.1 乃至10重量%のFe及び0.0050乃至
1.0 重量%のZrを含有し、残部がCu及び不可避的不
純物からなることを特徴とする。The high strength and high conductivity copper alloy according to the present invention comprises 0.1 to 10% by weight of Fe and 0.0050 to 0.0050 to
It is characterized by containing 1.0% by weight of Zr and the balance being Cu and inevitable impurities.
【0009】[0009]
【作用】次に、本発明に係る高強度高導電率銅合金の各
成分の添加理由及びその組成限定理由について説明す
る。Next, the reason for adding each component of the high strength and high conductivity copper alloy according to the present invention and the reason for limiting the composition thereof will be described.
【0010】Fe(鉄) Feは、銅合金中に単独で分散し、例えば伸線加工を施
すことにより、繊維状になって銅合金の強度を向上させ
る作用がある。しかし、Fe含有量が0.1 重量%未満の
場合は、目的とする強度の改善効果が得られない。ま
た、Fe含有量が10重量%を超えると、導電率が著しく
低下する。このため、Fe含有量は0.1 乃至10重量%と
する。 Fe (Iron) Fe is dispersed alone in a copper alloy, and has a function of becoming fibrous by performing, for example, wire drawing to improve the strength of the copper alloy. However, if the Fe content is less than 0.1% by weight, the desired strength improving effect cannot be obtained. Further, when the Fe content exceeds 10% by weight, the conductivity remarkably decreases. Therefore, the Fe content is 0.1 to 10% by weight.
【0011】Zr(ジルコニウム) Zrは、Cuマトリックスに固溶して軟化温度を上昇さ
せ、耐熱性を向上させる作用がある。しかし、Zr含有
量が0.0050重量%未満の場合は、その効果を十分に得る
ことができない。また、Zr含有量が1.0 重量%を超え
ると、その効果が飽和して無駄であると共に、導電率及
び加工性が著しく低下する。このため、Zr含有量は、
0.0050乃至1.0 重量%とする。 Zr (Zirconium) Zr has the function of forming a solid solution in a Cu matrix to raise the softening temperature and improve heat resistance. However, if the Zr content is less than 0.0050% by weight, the effect cannot be sufficiently obtained. On the other hand, if the Zr content exceeds 1.0% by weight, the effect is saturated and useless, and the conductivity and workability are significantly reduced. Therefore, the Zr content is
0.0050 to 1.0% by weight.
【0012】[0012]
【実施例】次に、本発明の実施例について、その特許請
求の範囲から外れる比較例と比較して説明する。EXAMPLES Next, examples of the present invention will be described in comparison with comparative examples outside the scope of the claims.
【0013】先ず、無酸素銅、Fe及びZrを原料とし
て、10-3torrの減圧下で高周波真空溶解炉より前記原料
を溶解し、これを鋳造して、直径が30mm、長さが300mm
の丸棒状のインゴットを得た。このインゴットの組成を
下記表1に示す。First, using oxygen-free copper, Fe and Zr as raw materials, the raw materials are melted in a high-frequency vacuum melting furnace under a reduced pressure of 10 -3 torr and cast, and the diameter is 30 mm and the length is 300 mm.
A round bar-shaped ingot was obtained. The composition of this ingot is shown in Table 1 below.
【0014】次に、直径が27mmになるまで前記インゴッ
トの表面を切削した後、スウェージング及びダイス引き
による冷間伸線加工を施し、直径が8mm の線材を得た。Then, the surface of the ingot was cut to a diameter of 27 mm, and then cold drawing was performed by swaging and die drawing to obtain a wire rod having a diameter of 8 mm.
【0015】次に、この線材をN2 雰囲気中で900 ℃に
加熱し、1時間保持した後、水冷した。Next, this wire was heated to 900 ° C. in an N 2 atmosphere, held for 1 hour, and then cooled with water.
【0016】次いで、前記線材に冷間伸線加工を施して
直径が 2mmの線材を得た。この線材を600 ℃の温度で焼
鈍した後、再び冷間伸線加工を施して、直径が0.6mm の
線材を得た。Next, the wire rod was subjected to cold wire drawing to obtain a wire rod having a diameter of 2 mm. After annealing this wire at a temperature of 600 ° C., cold drawing was performed again to obtain a wire having a diameter of 0.6 mm.
【0017】このようにして得た線材について、引張試
験により、その引張強さ及び伸びを調べた。また、これ
らの線材の導電率及び耐熱性についても調べた。その結
果を表1に併せて示す。但し、表1において、耐熱性
は、30分間加熱した後の硬度が初期硬度の80%となる温
度を軟化温度とし、この軟化温度により評価した。ま
た、加工性は、直径が 2mmの線材から直径が0.6mm の線
材を得る冷間伸線加工工程において断線が発生した場合
を×、断線が発生しなかった場合を○で示した。The tensile strength and elongation of the wire thus obtained were examined by a tensile test. In addition, the electrical conductivity and heat resistance of these wires were also investigated. The results are also shown in Table 1. However, in Table 1, the heat resistance was evaluated by the softening temperature when the temperature at which the hardness after heating for 30 minutes was 80% of the initial hardness was taken as the softening temperature. The workability is indicated by x when a wire breakage occurred in the cold wire drawing process for obtaining a wire rod having a diameter of 0.6 mm from a wire rod having a diameter of 2 mm, and ◯ when no wire breakage occurred.
【0018】[0018]
【表1】 [Table 1]
【0019】この表1から明らかなように、実施例1乃
至5はいずれも引張強さ及び伸びが夫々50.8kgf/mm2 以
上及び1.3 %以上と優れていると共に、導電率が50.8%
IACS以上であり、軟化温度も503 ℃以上と高い。また、
これらの実施例1乃至5はいずれも加工性が優れてい
た。一方、Fe含有量が少ない比較例1は引張強さが十
分でなく、Zr含有量が少ない比較例2及びZrを含有
しない比較例4はいずれも軟化温度が低いものであっ
た。更に、Zrを過剰に含有する比較例3は、導電率が
低いと共に、加工性が悪いものであった。更にまた、Z
rを含有せず、且つFeを過剰に含有する比較例5は、
導電率が極めて低いものであった。As is clear from Table 1, Examples 1 to 5 are excellent in tensile strength and elongation of 50.8 kgf / mm 2 or more and 1.3% or more, respectively, and have an electric conductivity of 50.8%.
It is above IACS, and the softening temperature is as high as above 503 ℃. Also,
All of Examples 1 to 5 were excellent in workability. On the other hand, Comparative Example 1 having a small Fe content had insufficient tensile strength, and Comparative Example 2 having a small Zr content and Comparative Example 4 not containing Zr had a low softening temperature. Further, Comparative Example 3 containing excessive Zr had low conductivity and poor workability. Furthermore, Z
Comparative Example 5, which does not contain r and contains Fe in excess,
The conductivity was extremely low.
【0020】[0020]
【発明の効果】以上説明したように本発明に係る高強度
高導電率銅合金は、所定量のFe及びZrを含有するか
ら、導電率及び強度が高く、加工性が優れていると共
に、耐熱性が優れていて高温での強度の低下が少ない。As described above, the high-strength and high-conductivity copper alloy according to the present invention contains a predetermined amount of Fe and Zr, and thus has high conductivity and strength, excellent workability, and heat resistance. It has excellent properties and its strength does not decrease at high temperatures.
Claims (1)
1.0 重量%のZrを含有し、残部がCu及び不可避的不
純物からなることを特徴とする高強度高導電率銅合金。1. From 0.1 to 10% by weight of Fe and from 0.0050 to
A high-strength, high-conductivity copper alloy containing 1.0% by weight of Zr and the balance being Cu and inevitable impurities.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9569192A JPH05287416A (en) | 1992-04-15 | 1992-04-15 | High strength and high electric conductivity copper alloy |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9569192A JPH05287416A (en) | 1992-04-15 | 1992-04-15 | High strength and high electric conductivity copper alloy |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH05287416A true JPH05287416A (en) | 1993-11-02 |
Family
ID=14144524
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP9569192A Pending JPH05287416A (en) | 1992-04-15 | 1992-04-15 | High strength and high electric conductivity copper alloy |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH05287416A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007270241A (en) * | 2006-03-31 | 2007-10-18 | Nikko Kinzoku Kk | High-strength and high-conductivity two phase copper alloy |
JP2013028839A (en) * | 2011-07-28 | 2013-02-07 | Yazaki Corp | Conductor for electric wire |
-
1992
- 1992-04-15 JP JP9569192A patent/JPH05287416A/en active Pending
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007270241A (en) * | 2006-03-31 | 2007-10-18 | Nikko Kinzoku Kk | High-strength and high-conductivity two phase copper alloy |
JP4623737B2 (en) * | 2006-03-31 | 2011-02-02 | Jx日鉱日石金属株式会社 | High-strength and highly conductive two-phase copper alloy |
JP2013028839A (en) * | 2011-07-28 | 2013-02-07 | Yazaki Corp | Conductor for electric wire |
WO2013014904A3 (en) * | 2011-07-28 | 2013-04-04 | Yazaki Corporation | Conductor for electric wire |
CN103827329A (en) * | 2011-07-28 | 2014-05-28 | 矢崎总业株式会社 | Conductor for electric wire |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPWO2003076672A1 (en) | High strength and high conductivity copper alloy wire with excellent stress relaxation resistance | |
US4486250A (en) | Copper-based alloy and method for producing the same | |
JPS633936B2 (en) | ||
JP3324228B2 (en) | Copper wire for ultrafine wire and method of manufacturing the same | |
JP3856073B2 (en) | Method for producing Cu-Ag alloy | |
JP2534073B2 (en) | Copper alloy for electronic component construction and method for producing the same | |
JP4130593B2 (en) | High strength and high conductivity copper alloy with excellent fatigue and intermediate temperature characteristics | |
JPH05287416A (en) | High strength and high electric conductivity copper alloy | |
US3019102A (en) | Copper-zirconium-hafnium alloys | |
JPS6164834A (en) | Copper alloy having high strength, heat resistance and electric conductivity | |
JPH05287417A (en) | High strength and high electric conductivity copper alloy | |
JPH05287413A (en) | High strength and high electric conductivity copper alloy | |
JPH05287418A (en) | High strength and high electric conductivity copper alloy | |
KR960001714B1 (en) | Method of casting and mold making | |
JPH05287414A (en) | High strength and high electric conductivity | |
JP2862942B2 (en) | Heat treatment method of Corson alloy | |
JPS6017039A (en) | Copper alloy with superior heat resistance, mechanical characteristic, workability and electric conductivity | |
JPS5952943B2 (en) | Cu alloy with high heat resistance and high conductivity | |
JPS6220265B2 (en) | ||
JPH05287415A (en) | High strength and high electric conductivity copper alloy | |
JPS6212295B2 (en) | ||
US3107998A (en) | Copper-zirconium-arsenic alloys | |
JPS5952221B2 (en) | Heat-resistant and highly conductive copper alloy | |
JPS6152334A (en) | Copper alloy having superior heat resistance and electric conductivity | |
JPS6043905B2 (en) | Manufacturing method of highly conductive heat-resistant copper alloy material |