JPH0528711B2 - - Google Patents

Info

Publication number
JPH0528711B2
JPH0528711B2 JP22018684A JP22018684A JPH0528711B2 JP H0528711 B2 JPH0528711 B2 JP H0528711B2 JP 22018684 A JP22018684 A JP 22018684A JP 22018684 A JP22018684 A JP 22018684A JP H0528711 B2 JPH0528711 B2 JP H0528711B2
Authority
JP
Japan
Prior art keywords
txa
acid
compound
production
hydrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP22018684A
Other languages
Japanese (ja)
Other versions
JPS61100575A (en
Inventor
Soji Kanao
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daiichi Pharmaceutical Co Ltd
Original Assignee
Daiichi Pharmaceutical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daiichi Pharmaceutical Co Ltd filed Critical Daiichi Pharmaceutical Co Ltd
Priority to JP22018684A priority Critical patent/JPS61100575A/en
Publication of JPS61100575A publication Critical patent/JPS61100575A/en
Publication of JPH0528711B2 publication Critical patent/JPH0528711B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は一般式 (式中、R1及びR2は同じ又は異なつて水素原
子又は低級アルキル基を、nは1〜3の整数を示
す)で表わされるチアゾール誘導体及びその塩に
関する。 (産業上の利用分野) 本発明の一般式()の化合物はトロンボキサ
ンA2(以下TXA2と略す)合成阻害作用を有して
おり、TXA2が関与する疾患、たとえば狭心症、
心筋梗塞のような虚血性心疾患、脳血管障害及び
血栓症の予防、治療に有用である。 (従来の技術) TXA2は生体内でアラキドン酸より生合成され
る生理活性物質である。さらに詳しく説明すると
アラキドン酸はシクロオキシゲナーゼによりプロ
スタグランデインG2(以下PGG2)、プロスタグラ
ンデインH2(以下PGH2)となる。このPGG2
PGH2から種々の酵素によつてプロスタサイクリ
ン(以下PGI2)、プロスタグランデインE2(以下
PGE2)、プロスタグランデインF2a)及びTXA2
等が産生される。 TXA2の生理活性については、強力な血小板凝
集促進作用と血管収縮作用が知られており、一部
の狭心疾患者では狭心発作時にTXA2の産生が亢
進している例が知られている。(M.Tadaら、
Circulation、64巻、6号、1107頁,1981年) TXA2の産生を抑制する薬物としてはアスピリ
ン又はインドメサシン等のシクロオキシゲナーゼ
阻害薬並びにダゾキシベン(4−〔2−(1−イミ
ダゾリル)エトキシ〕安息香酸 塩酸塩)等の
TXA2合成酵素阻害薬が知られている。 前者のシクロオキシゲナーゼ阻害薬はTXA2
産生抑制と同時にPGI2、PGE2等の他のプロスタ
グランデイン類の産生をも抑制する。PGI2
TXA2と相反する生理活性、すなわち強力な血小
板凝集阻害作用及び血管拡張作用を有しており、
PGI2の産生抑制は狭心症、心筋梗塞等の虚血性
心疾患にとつて好ましいとはいえない。 一方後者のTXA2合成酵素阻害薬はTXA2産生
を抑制するが、PGI2、PGE2等の産生については
むしろ増加させるので前者より後者の方がより好
ましい。 しかしながら既知のTXA2合成酵素阻害薬も高
濃度ではシクロオキシゲナーゼ阻害作用を発現す
る。したがつてより選択性の高いTXA2合成阻害
作用を有する化合物が望まれる。 本発明者らは従来のTXA2合成阻害薬のかかる
欠点を克服すべく鋭意検討した結果本発明を完成
した。 (発明の構成) 本発明は一般式()の化合物及びその塩に関
するものである。塩としては塩酸、硫酸等の無機
酸及びフマル酸、マレイン酸、酒石酸、シユウ
酸、メタンスルホン酸、ベンゼンスルホン酸、ト
ルエンスルホン酸等の有機酸との酸付加塩又、
R2が水素原子である場合にはカルボン酸のナト
リウム塩、カリウム塩等のアルカリ金属塩及びカ
ルシウム塩、マグネシウム塩等のアルカリ土類金
属塩があげられる。 次に本発明の一般式()の化合物の製造法を
示す。 (式中、R21及びR3はそれぞれ低級アルキル基
を示し、R1及びnは前記に同じである。) 即ち、式()で表わされる化合物を式()
で表わされる化合物又は式()で表わされる化
合物とテトラヒドロフラン、ジオキサン又はジク
ロロメタン等の溶媒中水素化ナトリウム、ナトリ
ウムアルコキシドもしくはカリウム第三級ブトキ
シド等の無機塩の存在下もしくは無存在下反応さ
せることにより式()においてR2が低級アル
キル基である式(a)の化合物を製造すること
ができる。 生成した式(a)の化合物を塩酸、硫酸等の
酸又は水酸化ナトリウム、水酸化カリウム等のア
ルカリを用いて加水分解することにより式()
においてR2が水素原子である式(b)の化合
物を製造することができる。 又、式()においてR1及びR2が共に水素原
子を示す化合物は、式()の化合物をピリジン
中マロン酸と加熱することによつても製造するこ
とができる。 (発明の効果) 本発明の式()の化合物は強力はTXA2合成
阻害作用を有する。その活性の強度についてはラ
ツト血液より得られる多血小板血漿(PRP)に
アラキドン酸を添加して産生されるTXA2の安定
代謝物であるトロンボキサンB2(以下TXB2)の
産生量を特異的放射免疫分析法(ラジオイムノア
ツセイ法)〔RIA法〕)にて測定し、無投与群と比
較してTXA2合成に対する50%阻止モル濃度
(IC50値)を求めた。また、TXA2合成抑制に対
する選択性については次に述べる方法により求め
た。シクロオキシゲナーゼを阻害するとPGE2
産生量が減少するが、TXA2合成酵素を阻害する
とPGE2の産生量は増加するので、先のTXB2
生量を測定する際にPGE2の産生量を測定し、無
投与群のそれと比較してPGE2産生増加量を求め
る。これとTXA2産生抑制量との比を求めてこれ
をTXA2合成抑制の選択性指標とした。この指標
が大きい程TXA2合成抑制の選択性が高いことを
意味する。 本発明の化合物は既知のTXA2合成酵素阻害薬
のダゾキシベンに比して強力でかつ選択性に優れ
たTXA2合成阻害作用を有していた。 (実施例) 以下本発明を実施例及び試験例によつて説明す
る。 本発明の原料である一般式()の化合物は新
規化合物であり、その合成法の一例を参考例に示
す。 参考例 1 4−(5−チアゾリルメチル)ベンズアルデヒ
ド (1) 4−(2−クロロ−2−ホルミルエチル)安
息香酸エチル p−アミノ安息香酸エチル11.9gを水18ml及び
濃塩酸18mlの混液にけん濁し氷冷する。−5〜0
℃にて亜硝酸ナトリウム6g及び水27mlの溶液を
滴下し、更に0℃にて20分間撹拌する。炭酸水素
ナトリウムを加え中和する。この溶液をアクロレ
イン11.7ml、塩化第二銅4.49g、酸化カルシウム
1.8g及びアセトン90mlよりなる氷冷した溶液中
に加える。氷冷下更に2時間撹拌後、減圧下にア
セトンを留去し、ベンゼンで抽出する。有機層を
分取し水洗、乾燥後、減圧下に濃縮し油状の表記
化合物15.1gを得る。 (2) 4−〔(2−アミノチアゾール−5−イル)メ
チル〕安息香酸エチル (1)で製した化合物15.1gをチオ尿素4.78gと共
にエタノール240mlと混合し25時間加熱還流する。
減圧濃縮し残渣を炭酸水素ナトリウムにて中和
し、クロロホルムにて抽出する。抽出液を水洗、
乾燥後減圧濃縮し、残渣をベンゼン及びn−ヘキ
サンの混液より結晶化させ、表記化合物の無色プ
リズム晶18.8gを得る。融点108〜110℃。 (3) 4−〔(2−クロロチアゾール−5−イル)メ
チル〕安息香酸エチル (2)で製した化合物18.8gをアセトニトリル80ml
に溶かした溶液を塩化第二銅11.6g、第三級ブチ
ル亜硝酸エステル10.4g及びアセトニトリル200
mlよりなる溶液中に55〜60℃にて滴下する。滴下
後60℃にて20分間撹拌する。反応液を冷却し、15
%塩酸150mlを加え、クロロホルムにて抽出する。
抽出液を乾燥後、減圧濃縮し、残渣をカラムクロ
マトにて精製し表記化合物の油状物12.1gを得
る。1 H−NMR(CDCl3)δ: 1.39(3H,t,−CO2CH2C 3) 4.13(2H,s,−CH2−) 4.37(2H,q,−CO2C 2CH3) 7.26(1H,s,チアゾール4位水素) 7.31(2H,d,ベンゼン環水素) 8.01(2H,d,ベンゼン環水素) (4) 4−(5−チアゾリルメチル)安息香酸エチ
ル (3)で製した化合物11.8gを酢酸200mlに溶かし、
亜粉末5.49gを加え2時間還流する。不溶物を濾
去し、濾液を減圧濃縮する。残渣をクロロホルム
に溶かし、水洗、乾燥後、減圧濃縮して表記化合
物の油状物8.49gを得る。 (5) 4−(5−チアゾリルメチル)ベンジルアル
コール (4)で製した化合物8.49gをテトラヒドロフラン
60mlに溶かした溶液を水素化リチウムアルミニウ
ム1.3g及びテトラヒドロフラン30mlよりなるけ
ん濁液に滴下し、室温にて5時間撹拌する。氷冷
下反応液に水2ml、15%水酸化ナトリウム水溶液
2ml及び水6mlを順次滴下し不溶物を濾去する。
濾液を減圧濃縮し、クロロホルムにて抽出する。
抽出液を水洗、乾燥後減圧濃縮し表記化合物の油
状物6.3gを得る。 (6) 4−(5−チアゾリルメチル)ベンズアルデ
ヒド (5)で製した化合物5.04gをジメチルスルホキシ
ド25ml及びベンゼン25mlの混液に溶かし、ピリジ
ン2ml、ジシクロヘキシルカルボジイミド15.2g
及びトリフルオロ酢酸0.95mlを加え室温にて71時
間撹拌する。反応液にエーテル500mlを加え、続
いてシユウ酸6.63gをメタノール30mlに溶かした
溶液を滴下する。30分間室温にて撹拌後、水を加
えて不溶物を濾去する。濾液の有機層を飽和炭酸
水素ナトリウム水溶液で洗浄する。乾燥後、減圧
濃縮し、残渣をシリカゲルカラムクロマトにて精
製し表記化合物の油状物1.75gを得る。1 H−NMR(CDCl3)δ: 4.27(2H,s,−CH2−) 7.39(2H,d,ベンゼン環水素) 7.67(1H,s,チアゾール4位水素) 7.87(2H,d,ベンゼン環水素) 8.70(1H,s,チアゾール2位水素) 9.98(1H,s,−CHO) 実施例 1 (E)−3−〔4−(5−チアゾリルメチル)フエニ
ル〕プロペン酸 参考例1で製した4−(5−チアゾリルメチル)
ベンズアルデヒド0.2g及びマロン酸104mgをピリ
ジン0.3mlと混合し100℃にて4時間加熱する。冷
後、希アンモニア水を加え不溶物を濾去する。濾
液を濃塩酸にて酸性とし、操出する結晶を濾集
し、含水エタノールより再結晶して表記化合物の
無色粉末130mgを得る。融点183〜185℃。1 H−NMR(CDCl3)δ: 4.21(2H,s,−CH2−) 6.43(1H,d,J=16Hz) 7.25(2H,d,J=8Hz、ベンゼン環水素) 7.52(2H,d,J=8Hz、ベンゼン環水素) 7.67(1H,s,チアゾール4位水素) 7.76(1H,d,J=16Hz) 8.72(1H,s,チアゾール2位水素) 元素分析 C13H11NO2Sとして 計算値 C 63.65,H 4.52,N 5.71 分析値 C 63.61,H 4.47,N 5.76 実施例 2 (E)−2−メチル−3−〔4−(5−チアゾリルメ
チル)フエニル〕プロペン酸エチル 参考例1で製した4−(5−チアゾリルメチル)
ベンズアルデヒド1.0g及び2−(トリフエニルホ
スホラニリデン)プロピオン酸エチル1.51gをジ
クロロメタン25mlに溶かし室温にて2時間撹拌す
る。減圧濃縮し、残渣をシリカゲルカラムクロマ
トにて精製し、表記化合物の油状物0.79gを得
る。1 H−NMR(CDCl3)δ: 1.34(3H,t,−CO2CH2C 3) 2.11(3H,d,J=1.3Hz,−CH3) 4.20(2H,s,−CH2−) 4.27(2H,q,−CO2C 2CH3) 7.22(2H,d,ベンゼン環水素) 7.37(2H,d,ベンゼン環水素) 7.67(2H,s,チアゾール4位水素、−CH
=) 8.68(1H,s,チアゾール2位水素) 実施例 3 (E)−2−メチル−3−〔4−(5−チアゾリルメ
チル)フエニル〕プロペン酸 実施例2で製した(E)−2−メチル−3〔4−(5
−チアゾリルメチル)フエニル〕プロペン酸エチ
ル790mgを6N水酸化ナトリウム水溶液1.9ml及び
エタノール2mlの混液に加え30分間加熱還流す
る。減圧濃縮し水を加え不溶物を濾去する。濾液
を濃塩酸にてPH7とし、析出する結晶を濾集し、
含水エタノールより再結晶すると表記化合物の結
晶340mgを得る。融点182〜184℃。1 H−NMR(CDCl3)δ: 2.14(3H,d,−CH3) 4.21(2H,s,−CH2−) 7.26(2H,d,J=8Hz,ベンゼン環水素) 7.41(2H,d,J=8Hz,ベンゼン環水素) 7.69(1H,s) 7.79(1H,s) 8.73(1H,s,チアゾール2位水素) 元素分析 C14H13NO2Sとして 計算値 C 64.84,H 5.05,N 5.40 分析値 C 64.81,H 5.21,N 5.31 試験例 in vitro血小板TXA2生成抑制試験 PRP(多血小板血漿)の調製 体重280〜320gの雄性ウイスター今道系ラツト
よりペントバルビタール麻酔下に心臓穿刺にてク
エン酸加血(血液9容に対して3.13%クエン酸ナ
トリウム1容を添加)を採取し、室温、230×g
で7分間遠心した。得られた上清(PRP)を
PPP(乏血小板血漿)で希釈して、血小板数を5
×108個/mlに調整し、以下の試験を用いた。
PPPとしてはPRP分離後の残渣を1500×gで10
分間遠心してその上清を用いた。 TXA2及びPGE2生成反応とその測定 検体溶液10μに上記のPRP90μを加え1分
間振とうしたのち、この混合液の90μをとつて
5mMのアラキドン酸ナトリウム溶液10μと合一
し、室温で振とうした。5分間振とうしたのち、
この混液の10μlをとつて100μMのフルルビプロフ
エン溶液90μ中に加え反応を停止した。反応液
を1000×gで5分間遠心し、得られた上清中の
TXB2(TXA2の安定分解物)とPGE2濃度を
Morrisらのラジオイムノアツセイ法
(Prostaglandins 21,771,1981)に従つて測定
した。各検体及び試薬は生食液又はメタノールに
濃厚溶液となるように溶解し、生食液で適当な濃
度まで希釈して用いた。 TXA2合成抑制率を下記式にて算出し、TXA2
合成抑制活性を、50%の抑制率を示す検体の濃度
(IC50)で表わした。 抑制率=100−(検体添加時のTXB2濃度/対照のTXB2
度×100) 血小板では、シクロオキシゲナーゼの抑制によ
り、TXB2のみならず、PGE2及びPGF2aの生成
が抑制されること(Hambergら、Proc.Nat.
Acad.Sci.USA,71,3824,1974)、逆にTXA2
成酵素の欠乏又は抑制によりPGE2,PGF2a及び
PGD2の生成が増加すること(Defreynら、Brot,
J.Haematol.49,29,1981)が知られている。そ
こで、下記式にて、TXA2合成抑制の選択性指標
を算出し、TXA2合成酵素とシクロオキシゲナー
ゼの両酵素に対する作用の関係を示した。 TXA2合成抑制の選択性指標=検体添加時のPGE2生成量
−対照のPGE2生成量/対照のTXB2生成量−検体添加時の
TXB2生成量 この数値が大きいほど、TXA2合成抑制作用が
強く、シクロオキシゲナーゼ抑制作用が弱いこと
を意味する。 試験例により得られた本発明化合物の効果を下
表に示す。 【表】
[Detailed Description of the Invention] The present invention relates to the general formula (wherein R 1 and R 2 are the same or different and represent a hydrogen atom or a lower alkyl group, and n represents an integer of 1 to 3) and salts thereof. (Industrial Application Field) The compound of the general formula () of the present invention has an inhibitory effect on the synthesis of thromboxane A 2 (hereinafter abbreviated as TXA 2 ), and is effective against diseases involving TXA 2 , such as angina pectoris,
It is useful for the prevention and treatment of ischemic heart diseases such as myocardial infarction, cerebrovascular disorders, and thrombosis. (Prior Art) TXA 2 is a physiologically active substance that is biosynthesized from arachidonic acid in vivo. To explain in more detail, arachidonic acid is converted into prostaglandin G 2 (hereinafter referred to as PGG 2 ) and prostaglandin H 2 (hereinafter referred to as PGH 2 ) by cyclooxygenase. This PGG 2 ,
PGH 2 is converted into prostacyclin (hereinafter PGI 2 ) and prostaglandin E 2 (hereinafter referred to as PGI 2 ) by various enzymes.
PGE 2 ), prostaglandin F 2a ) and TXA 2
etc. are produced. Regarding the physiological activities of TXA 2 , it is known that it has a strong platelet aggregation promoting effect and vasoconstricting effect, and it is known that in some patients with angina pectoris, TXA 2 production is increased during angina attacks. There is. (M. Tada et al.
Circulation, Vol. 64, No. 6, p. 1107, 1981) Drugs that suppress TXA 2 production include cyclooxygenase inhibitors such as aspirin or indomethacin, and dazoxyben (4-[2-(1-imidazolyl)ethoxy]benzoic acid hydrochloride) salt) etc.
TXA 2 synthase inhibitors are known. The former cyclooxygenase inhibitor suppresses the production of TXA 2 and at the same time suppresses the production of other prostaglandins such as PGI 2 and PGE 2 . PGI 2 is
It has physiological activities that are contradictory to TXA 2 , namely strong platelet aggregation inhibitory and vasodilatory effects.
Suppression of PGI 2 production is not favorable for ischemic heart diseases such as angina pectoris and myocardial infarction. On the other hand, the latter TXA 2 synthetase inhibitor suppresses TXA 2 production, but rather increases the production of PGI 2 , PGE 2, etc., so the latter is more preferable than the former. However, known TXA 2 synthase inhibitors also exhibit cyclooxygenase inhibitory effects at high concentrations. Therefore, a compound having a highly selective TXA 2 synthesis inhibitory effect is desired. The present inventors completed the present invention as a result of intensive studies aimed at overcoming these drawbacks of conventional TXA 2 synthesis inhibitors. (Structure of the Invention) The present invention relates to a compound of general formula () and a salt thereof. Examples of salts include acid addition salts with inorganic acids such as hydrochloric acid and sulfuric acid, and organic acids such as fumaric acid, maleic acid, tartaric acid, oxalic acid, methanesulfonic acid, benzenesulfonic acid, and toluenesulfonic acid;
When R 2 is a hydrogen atom, examples thereof include alkali metal salts such as sodium salts and potassium salts, and alkaline earth metal salts such as calcium salts and magnesium salts of carboxylic acids. Next, a method for producing the compound of general formula () of the present invention will be described. (In the formula, R 21 and R 3 each represent a lower alkyl group, and R 1 and n are the same as above.) That is, a compound represented by the formula () is converted into a compound represented by the formula ()
By reacting a compound represented by the formula or a compound represented by the formula () in a solvent such as tetrahydrofuran, dioxane or dichloromethane in the presence or absence of an inorganic salt such as sodium hydride, sodium alkoxide or potassium tert-butoxide, the formula Compounds of formula (a) in which R 2 is a lower alkyl group can be produced. By hydrolyzing the generated compound of formula (a) using an acid such as hydrochloric acid or sulfuric acid or an alkali such as sodium hydroxide or potassium hydroxide, the formula ()
A compound of formula (b) in which R 2 is a hydrogen atom can be produced. Further, a compound in which R 1 and R 2 both represent a hydrogen atom in formula () can also be produced by heating the compound of formula () with malonic acid in pyridine. (Effects of the Invention) The compound of formula () of the present invention has a strong TXA 2 synthesis inhibitory effect. Regarding the strength of its activity, we specifically determined the production amount of thromboxane B 2 (hereinafter referred to as TXB 2 ), a stable metabolite of TXA 2 , produced by adding arachidonic acid to platelet-rich plasma (PRP) obtained from rat blood. It was measured by radioimmunoassay (RIA method), and the 50% inhibition molar concentration (IC 50 value) for TXA 2 synthesis was determined in comparison with the non-administered group. In addition, selectivity for inhibition of TXA 2 synthesis was determined by the method described below. Inhibiting cyclooxygenase reduces the amount of PGE 2 produced, but inhibiting TXA 2 synthase increases the amount of PGE 2 produced, so when measuring the amount of TXB 2 produced earlier, it is necessary to measure the amount of PGE 2 produced. , determine the amount of increase in PGE 2 production compared to that of the non-administration group. The ratio between this and the amount of inhibition of TXA 2 production was determined, and this was used as an index of selectivity for inhibition of TXA 2 synthesis. The larger this index is, the higher the selectivity of suppressing TXA 2 synthesis. The compound of the present invention had a stronger and more selective TXA 2 synthesis inhibitory effect than dazoxiben, a known TXA 2 synthase inhibitor. (Examples) The present invention will be explained below with reference to Examples and Test Examples. The compound of general formula () which is a raw material of the present invention is a new compound, and an example of its synthesis method is shown in Reference Example. Reference example 1 4-(5-thiazolylmethyl)benzaldehyde (1) Ethyl 4-(2-chloro-2-formylethyl)benzoate Suspend 11.9 g of ethyl p-aminobenzoate in a mixture of 18 ml of water and 18 ml of concentrated hydrochloric acid, and suspend on ice. Cool down. -5~0
A solution of 6 g of sodium nitrite and 27 ml of water was added dropwise at 0°C, and the mixture was further stirred at 0°C for 20 minutes. Add sodium bicarbonate to neutralize. Add this solution to 11.7 ml of acrolein, 4.49 g of cupric chloride, and calcium oxide.
Add to an ice-cold solution consisting of 1.8 g and 90 ml of acetone. After further stirring for 2 hours under ice cooling, acetone was distilled off under reduced pressure and extracted with benzene. The organic layer was separated, washed with water, dried, and concentrated under reduced pressure to obtain 15.1 g of the title compound as an oil. (2) Ethyl 4-[(2-aminothiazol-5-yl)methyl]benzoate 15.1 g of the compound prepared in (1) was mixed with 240 ml of ethanol together with 4.78 g of thiourea and heated under reflux for 25 hours.
Concentrate under reduced pressure, neutralize the residue with sodium hydrogen carbonate, and extract with chloroform. Wash the extract with water,
After drying, the mixture was concentrated under reduced pressure, and the residue was crystallized from a mixture of benzene and n-hexane to obtain 18.8 g of colorless prism crystals of the title compound. Melting point 108-110℃. (3) Ethyl 4-[(2-chlorothiazol-5-yl)methyl]benzoate (18.8 g of the compound prepared from (2) was dissolved in 80 ml of acetonitrile.
11.6 g of cupric chloride, 10.4 g of tertiary butyl nitrite and 200 g of acetonitrile
ml solution at 55-60°C. After dropping, stir at 60°C for 20 minutes. Cool the reaction solution and incubate for 15
Add 150ml of % hydrochloric acid and extract with chloroform.
After drying the extract, it was concentrated under reduced pressure, and the residue was purified by column chromatography to obtain 12.1 g of the title compound as an oil. 1 H-NMR (CDCl 3 ) δ: 1.39 (3H, t, -CO 2 CH 2 C H 3 ) 4.13 (2H, s, -CH 2 -) 4.37 (2H, q, -CO 2 C H 2 CH 3 ) 7.26 (1H, s, thiazole 4-position hydrogen) 7.31 (2H, d, benzene ring hydrogen) 8.01 (2H, d, benzene ring hydrogen) (4) Made from ethyl 4-(5-thiazolylmethyl)benzoate (3) Dissolve 11.8g of the compound in 200ml of acetic acid,
Add 5.49 g of subpowder and reflux for 2 hours. Insoluble matters are removed by filtration, and the filtrate is concentrated under reduced pressure. The residue was dissolved in chloroform, washed with water, dried, and concentrated under reduced pressure to obtain 8.49 g of the title compound as an oil. (5) 4-(5-thiazolylmethyl)benzyl alcohol 8.49 g of the compound prepared in (4) was added to tetrahydrofuran.
The solution dissolved in 60 ml was added dropwise to a suspension consisting of 1.3 g of lithium aluminum hydride and 30 ml of tetrahydrofuran, and the mixture was stirred at room temperature for 5 hours. 2 ml of water, 2 ml of a 15% aqueous sodium hydroxide solution and 6 ml of water were sequentially added dropwise to the reaction mixture under ice cooling, and insoluble materials were filtered off.
The filtrate is concentrated under reduced pressure and extracted with chloroform.
The extract was washed with water, dried, and concentrated under reduced pressure to obtain 6.3 g of the title compound as an oil. (6) 4-(5-thiazolylmethyl)benzaldehyde Dissolve 5.04 g of the compound prepared in (5) in a mixture of 25 ml of dimethyl sulfoxide and 25 ml of benzene, and add 2 ml of pyridine and 15.2 g of dicyclohexylcarbodiimide.
Add 0.95 ml of trifluoroacetic acid and stir at room temperature for 71 hours. 500 ml of ether is added to the reaction solution, and then a solution of 6.63 g of oxalic acid dissolved in 30 ml of methanol is added dropwise. After stirring for 30 minutes at room temperature, water was added and insoluble materials were filtered off. The organic layer of the filtrate is washed with saturated aqueous sodium bicarbonate solution. After drying, it was concentrated under reduced pressure, and the residue was purified by silica gel column chromatography to obtain 1.75 g of the title compound as an oil. 1 H-NMR (CDCl 3 ) δ: 4.27 (2H, s, -CH 2 -) 7.39 (2H, d, benzene ring hydrogen) 7.67 (1H, s, hydrogen at 4-position of thiazole) 7.87 (2H, d, benzene ring Hydrogen) 8.70 (1H, s, hydrogen at 2-position of thiazole) 9.98 (1H, s, -CHO) Example 1 (E)-3-[4-(5-thiazolylmethyl)phenyl]propenoic acid 4 produced in Reference Example 1 -(5-thiazolylmethyl)
0.2 g of benzaldehyde and 104 mg of malonic acid are mixed with 0.3 ml of pyridine and heated at 100° C. for 4 hours. After cooling, dilute ammonia water is added and insoluble matter is filtered off. The filtrate is made acidic with concentrated hydrochloric acid, and the crystals are collected by filtration and recrystallized from aqueous ethanol to obtain 130 mg of the title compound as a colorless powder. Melting point 183-185℃. 1 H-NMR (CDCl 3 ) δ: 4.21 (2H, s, -CH 2 -) 6.43 (1H, d, J = 16 Hz) 7.25 (2H, d, J = 8 Hz, benzene ring hydrogen) 7.52 (2H, d , J = 8Hz, benzene ring hydrogen) 7.67 (1H, s, hydrogen at 4th position of thiazole) 7.76 (1H, d, J = 16Hz) 8.72 (1H, s, hydrogen at 2nd position of thiazole) Elemental analysis C 13 H 11 NO 2 S Calculated value C 63.65, H 4.52, N 5.71 Analytical value C 63.61, H 4.47, N 5.76 Example 2 Ethyl (E)-2-methyl-3-[4-(5-thiazolylmethyl)phenyl]propenoate Reference example 1 4-(5-thiazolylmethyl) prepared by
1.0 g of benzaldehyde and 1.51 g of ethyl 2-(triphenylphosphoranylidene)propionate were dissolved in 25 ml of dichloromethane and stirred at room temperature for 2 hours. Concentrate under reduced pressure, and purify the residue using silica gel column chromatography to obtain 0.79 g of the title compound as an oil. 1 H-NMR (CDCl 3 ) δ: 1.34 (3H, t, -CO 2 CH 2 C H 3 ) 2.11 (3H, d, J=1.3Hz, -CH 3 ) 4.20 (2H, s, -CH 2 - ) 4.27 (2H, q, -CO 2 C H 2 CH 3 ) 7.22 (2H, d, benzene ring hydrogen) 7.37 (2H, d, benzene ring hydrogen) 7.67 (2H, s, thiazole 4-position hydrogen, -CH
=) 8.68 (1H, s, hydrogen at 2-position of thiazole) Example 3 (E)-2-methyl-3-[4-(5-thiazolylmethyl)phenyl]propenoic acid (E)-2- produced in Example 2 Methyl-3[4-(5
-Thiazolylmethyl)phenyl]ethyl propenoate (790 mg) was added to a mixture of 1.9 ml of 6N aqueous sodium hydroxide solution and 2 ml of ethanol and heated under reflux for 30 minutes. Concentrate under reduced pressure, add water, and filter off insoluble matter. The filtrate was adjusted to pH 7 with concentrated hydrochloric acid, and the precipitated crystals were collected by filtration.
Recrystallization from aqueous ethanol gives 340 mg of crystals of the title compound. Melting point 182-184℃. 1 H-NMR (CDCl 3 ) δ: 2.14 (3H, d, -CH 3 ) 4.21 (2H, s, -CH 2 -) 7.26 (2H, d, J = 8 Hz, benzene ring hydrogen) 7.41 (2H, d , J=8Hz, benzene ring hydrogen) 7.69 (1H, s) 7.79 (1H, s) 8.73 (1H, s, hydrogen at 2-position of thiazole) Elemental analysis C 14 H 13 NO 2 S Calculated value C 64.84, H 5.05, N 5.40 Analytical values C 64.81, H 5.21, N 5.31 Test example In vitro platelet TXA 2 production inhibition test Preparation of PRP (platelet rich plasma) Male Wistar Kondo rats weighing 280 to 320 g were subjected to cardiac puncture under pentobarbital anesthesia. Collect citrated blood (1 volume of 3.13% sodium citrate added to 9 volumes of blood) at room temperature, 230 × g
Centrifuged for 7 minutes. The obtained supernatant (PRP)
Dilute with PPP (platelet poor plasma) to reduce the platelet count to 5.
The concentration was adjusted to ×10 8 cells/ml, and the following test was used.
As PPP, the residue after PRP separation is 1500 x 10
The mixture was centrifuged for a minute and the supernatant was used. TXA 2 and PGE 2 production reaction and its measurement Add 90μ of the above PRP to 10μ of the sample solution, shake for 1 minute, and then take 90μ of this mixture.
Combined with 10μ of 5mM sodium arachidonic acid solution and shaken at room temperature. After shaking for 5 minutes,
10 μl of this mixed solution was added to 90 μl of a 100 μM flurbiprofen solution to stop the reaction. The reaction solution was centrifuged at 1000 x g for 5 minutes, and the supernatant obtained was
TXB 2 (stable decomposition product of TXA 2 ) and PGE 2 concentration
It was measured according to the radioimmunoassay method of Morris et al. (Prostaglandins 21 , 771, 1981). Each specimen and reagent was dissolved in saline or methanol to form a concentrated solution, diluted with saline to an appropriate concentration, and used. The TXA 2 synthesis inhibition rate was calculated using the following formula, and the TXA 2
The synthesis inhibitory activity was expressed as the concentration of the sample exhibiting a 50% inhibition rate (IC 50 ). Inhibition rate = 100 - (TXB 2 concentration at the time of sample addition / TXB 2 concentration in control x 100) In platelets, inhibition of cyclooxygenase suppresses the production of not only TXB 2 but also PGE 2 and PGF 2a (Hamberg et al., Proc. Nat.
Acad.Sci.USA, 71 , 3824, 1974); conversely, deficiency or inhibition of TXA 2 synthetase leads to the production of PGE 2 , PGF 2a and
Increased production of PGD 2 (Defreyn et al., Brot,
J. Haematol. 49 , 29, 1981). Therefore, the selectivity index for inhibition of TXA 2 synthesis was calculated using the following formula, and the relationship between the effects on both TXA 2 synthase and cyclooxygenase was shown. Selectivity index of TXA 2 synthesis inhibition = PGE 2 production amount when sample is added - PGE 2 production amount of control / TXB 2 production amount of control - when sample is added
TXB 2 production amount The larger this number is, the stronger the TXA 2 synthesis inhibitory effect is and the weaker the cyclooxygenase inhibitory effect. The effects of the compounds of the present invention obtained in the test examples are shown in the table below. 【table】

Claims (1)

【特許請求の範囲】 1 一般式 (式中、R1及びR2は同じ又は異なつて水素原
子又は低級アルキル基を、nは1〜3の整数を示
す)で表わされるチアゾール誘導体及びその塩
[Claims] 1. General formula Thiazole derivatives and salts thereof represented by (wherein R 1 and R 2 are the same or different and represent a hydrogen atom or a lower alkyl group, and n represents an integer of 1 to 3)
JP22018684A 1984-10-19 1984-10-19 Thiazole derivative Granted JPS61100575A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22018684A JPS61100575A (en) 1984-10-19 1984-10-19 Thiazole derivative

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22018684A JPS61100575A (en) 1984-10-19 1984-10-19 Thiazole derivative

Publications (2)

Publication Number Publication Date
JPS61100575A JPS61100575A (en) 1986-05-19
JPH0528711B2 true JPH0528711B2 (en) 1993-04-27

Family

ID=16747226

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22018684A Granted JPS61100575A (en) 1984-10-19 1984-10-19 Thiazole derivative

Country Status (1)

Country Link
JP (1) JPS61100575A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1990011278A1 (en) * 1989-03-24 1990-10-04 The Green Cross Corporation Thiazole compounds and applications thereof

Also Published As

Publication number Publication date
JPS61100575A (en) 1986-05-19

Similar Documents

Publication Publication Date Title
RU2130453C1 (en) Substituted pyrazoles, pharmaceutical composition based on said, method of patient treatment, intermediate compound
US4921862A (en) Carbostyril derivatives as combined thromboxane synthetase and cyclic-amp phosphodiesterase inhibitors
US4792561A (en) Carbostyril derivatives as combined thromboxane synthetase and cyclic-AMP phosphodiesterase inhibitors
KR910002583B1 (en) Piperazine derivative or its salt,process for producing the same and pharmaceutical composition comprsing the same as active ingredient
JPS6341903B2 (en)
CS264107B2 (en) Process for preparing derivatives of tetrazole
JPH0129187B2 (en)
JP2002515053A (en) Pyrazole compounds as inhibitors of human non-pancreatic phospholipase A
RU2137760C1 (en) Benzazepine derivative, pharmaceutical composition, derivative of difluorobenzazepine and derivative of (substituted) amino-benzoyldifluorobenzazepine
US4857644A (en) Aryl sulfonopiperazines as anti-inflammatory agents
FR2566404A1 (en) NOVEL 1,4-DIHYDROPYRIDINE DERIVATIVES, THEIR SALTS, PROCESS FOR THEIR PREPARATION, AND PHARMACEUTICAL COMPOSITIONS CONTAINING THEM
US5958948A (en) Substituted pyrazoles as CRF antagonists
DK169104B1 (en) Analogous Process for Preparation of N-Substituted 2-Pyridylindoles or Salts thereof
JPS5982385A (en) N-substituted-2-(1-imidazolyl)indole, manufacture and medicine
JPH0528711B2 (en)
JPH0665209A (en) Imidazolyl-substituted phenylpropionic acid and cinnamic acid derivative
JP2709415B2 (en) Azulene derivative, thromboxane A 2 and prostaglandin endoperoxide receptor antagonist and method for producing the same
US4665080A (en) Imidazolyl compounds and their use as medicaments
JP3479708B2 (en) Benzoic acid derivative
JPH0421673B2 (en)
JPH0564628B2 (en)
JPH0466234B2 (en)
JPH0530830B2 (en)
EP0658550A2 (en) Amino acid salts of and methods for preparing antihypercholesterolemic tetrazole compounds
JPH0528702B2 (en)