JPH0466234B2 - - Google Patents

Info

Publication number
JPH0466234B2
JPH0466234B2 JP12055784A JP12055784A JPH0466234B2 JP H0466234 B2 JPH0466234 B2 JP H0466234B2 JP 12055784 A JP12055784 A JP 12055784A JP 12055784 A JP12055784 A JP 12055784A JP H0466234 B2 JPH0466234 B2 JP H0466234B2
Authority
JP
Japan
Prior art keywords
txa
formula
acid
hydrogen
compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP12055784A
Other languages
Japanese (ja)
Other versions
JPS611661A (en
Inventor
Soji Kanao
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daiichi Pharmaceutical Co Ltd
Original Assignee
Daiichi Pharmaceutical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daiichi Pharmaceutical Co Ltd filed Critical Daiichi Pharmaceutical Co Ltd
Priority to JP12055784A priority Critical patent/JPS611661A/en
Priority to PH31127A priority patent/PH22076A/en
Priority to YU1447/84A priority patent/YU43583B/en
Priority to CA000461690A priority patent/CA1253866A/en
Priority to DE8484110139T priority patent/DE3480652D1/en
Priority to ES535429A priority patent/ES8607905A1/en
Priority to EP84110139A priority patent/EP0135177B1/en
Priority to IE217084A priority patent/IE58352B1/en
Priority to AT84110139T priority patent/ATE48416T1/en
Priority to AU32381/84A priority patent/AU547979B2/en
Priority to KR1019840005180A priority patent/KR910008349B1/en
Priority to US06/644,284 priority patent/US4665188A/en
Publication of JPS611661A publication Critical patent/JPS611661A/en
Priority to US06/901,694 priority patent/US4777257A/en
Publication of JPH0466234B2 publication Critical patent/JPH0466234B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Pyridine Compounds (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は次の一般式 (式中、R1は水素原子または低級アルキル基
を、nは1〜5の整数を、Aは−CH2−,
The present invention is based on the following general formula (In the formula, R 1 is a hydrogen atom or a lower alkyl group, n is an integer of 1 to 5, A is -CH 2 -,

【式】または[expression] or

【式】で表わされる基を 示す。)で表わされる化合物およびその塩に関す
る。 (産業上の利用分野) 本発明の一般式()の化合物はトロンボキサ
ンA2(以下TXA2)合成阻害作用を有しており、
TXA2が関与する疾患、たとえば狭心症、心筋梗
塞のような虚血性心疾患および脳血管障害、血栓
症の予防および治療に有用である。 (従来の技術) TXA2は生体内でアラキドン酸より生合成され
る生理活性物質である。さらにくわしく説明する
と、アラキドン酸はシクロオキシゲナーゼにより
プロスタグランデインG2(以下PGG2)、さらにプ
ロスタグランデインH2(以下PGH2)となる。こ
のPGG2とPGH2から種々の酵素によつてプロス
タサイクリン(以下PGI2)、プロスタグランデイ
ンE2(以下PGE2)、プロスタグランデインF2a(以
下PGF2a)、TXA2等が産生される。TXA2の生
理活性については強力な血小板凝集促進作用と血
管収縮作用が知られている。一部の狭心症患者で
は狭心発作時にTXA2産生の亢進する例が知られ
ている。 (M.Tadaら、Circulation,64巻,6号,1107
頁,1981年)。 TXA2の産生を抑制する薬物としてはアスピリ
ン、インドメサシンを代表とするシクロオキシゲ
ナーゼ阻害薬とダゾキシベン(4−〔2−(1−イ
ミダゾリル)エトキシ〕安息香酸塩酸塩)を代表
とするTXA2合成酵素阻害薬が知られている。 前者のシクロオキシゲナーゼ阻害薬はTXA2
産生を抑制すると同時にPGI2やPGE2等の他のプ
ロスタグランデイン類の産生も阻害する。PGI2
はTXA2と相反する生理活性、すなわち強力な血
小板凝集阻害作用と血管拡張作用を有しているの
で、PGI2の生成抑制は狭心症、心筋梗塞等の虚
血性の疾患にとつて好ましいとはいえない。一
方、TXA2合成酵素阻害薬はTXA2の産生は抑制
するが他のプロスタグランデイン類、すなわち
PGI2、PGE2等の産生量をむしろ増加するので虚
血性の疾患には後者がより好ましいといえる。 しかしながら、既知のTXA2合成酵素阻害薬で
あるダゾキシベンもより高濃度ではシクロオキシ
ゲナーゼ阻害作用を発現する。従つて、より選択
性の高いTXA2合成阻害作用を有する化合物が望
まれる。 本発明者らは、従来のTXA2合成抑制作用を有
する化合物のかかる欠点を克服すべく鋭意検討し
た結果本発明を完成した。 すなわち、本発明は一般式()の化合物およ
びその塩に関するものである。 塩としては、塩酸、硫酸、硝酸等の無機酸およ
びフマル酸、酒石酸、マレイン酸、コハク酸、シ
ユウ酸、ベンゼンスルホン酸、トルエンスルホン
酸、メタンスルホン酸等の有機酸との酸付加塩、
又R1が水素原子である場合にはカルボキシル基
のナトリウム塩、カリウム塩等のアルカリ金属塩
およびカルシウム塩、マグネシウム塩等のアルカ
リ土類金属塩があげられる。 次に本発明の一般式()の化合物の製造法を
説明する。 一般式()の化合物の代表的な製造法とし
て、ピリジルアルキルが1,2,3,4−テトラ
ヒドロナフタレンの2位に置換した化合物の製造
法を以下に示す。 (式中、R2は低級アルキル基を、mは0〜4
の整数を示し、nは前記に同じである。) すなわち、式()の化合物を式()の化合
物と酢酸およびピリジンの混合物中で加熱反応さ
せると式()の化合物が生成する。これをメタ
ノール、エタノール等のアルコールもしくは酢酸
中でパラジウム炭もしくは白金を触媒として接触
還元することにより式()においてピリジルア
ルキルが1,2,3,4−テトラヒドロナフタレ
ンの2位に置換し、R1が低級アルキルでAが
Indicates a group represented by [Formula]. ) and its salts. (Industrial Application Field) The compound of the general formula () of the present invention has thromboxane A 2 (hereinafter referred to as TXA 2 ) synthesis inhibiting action,
It is useful for the prevention and treatment of diseases involving TXA 2 , such as angina pectoris, ischemic heart diseases such as myocardial infarction, cerebrovascular disorders, and thrombosis. (Prior Art) TXA 2 is a physiologically active substance that is biosynthesized from arachidonic acid in vivo. To explain in more detail, arachidonic acid is converted to prostaglandin G 2 (hereinafter referred to as PGG 2 ) and further to prostaglandin H 2 (hereinafter referred to as PGH 2 ) by cyclooxygenase. Prostacyclin (hereinafter referred to as PGI 2 ), prostaglandin E 2 ( hereinafter referred to as PGE 2 ), prostaglandin F 2a (hereinafter referred to as PGF 2a ), TXA 2 , etc. are produced from this PGG 2 and PGH 2 by various enzymes. . Regarding the physiological activities of TXA 2 , it is known that it has a strong platelet aggregation promoting effect and a vasoconstricting effect. It is known that TXA 2 production is increased in some angina patients during angina attacks. (M. Tada et al., Circulation, Vol. 64, No. 6, 1107
Page, 1981). Drugs that suppress TXA 2 production include cyclooxygenase inhibitors such as aspirin and indomethacin, and TXA 2 synthase inhibitors such as dazoxiben (4-[2-(1-imidazolyl)ethoxy]benzoic acid hydrochloride). It has been known. The former cyclooxygenase inhibitor suppresses the production of TXA 2 and at the same time inhibits the production of other prostaglandins such as PGI 2 and PGE 2 . PGI 2
Since PGI 2 has physiological activities that are contradictory to those of TXA 2 , namely, a strong platelet aggregation inhibitory effect and vasodilating effect, inhibition of PGI 2 production is preferable for ischemic diseases such as angina pectoris and myocardial infarction. No, no. On the other hand, TXA 2 synthetase inhibitors suppress the production of TXA 2 but inhibit the production of other prostaglandins, i.e.
The latter can be said to be more preferable for ischemic diseases since it rather increases the production amount of PGI 2 , PGE 2 and the like. However, dazoxiben, a known TXA 2 synthase inhibitor, also exhibits cyclooxygenase inhibitory effects at higher concentrations. Therefore, a compound having a more selective TXA 2 synthesis inhibitory effect is desired. The present inventors have completed the present invention as a result of intensive studies aimed at overcoming these drawbacks of conventional compounds having an inhibitory effect on TXA 2 synthesis. That is, the present invention relates to a compound of general formula () and a salt thereof. Examples of salts include acid addition salts with inorganic acids such as hydrochloric acid, sulfuric acid, and nitric acid, and organic acids such as fumaric acid, tartaric acid, maleic acid, succinic acid, oxalic acid, benzenesulfonic acid, toluenesulfonic acid, and methanesulfonic acid;
When R 1 is a hydrogen atom, examples thereof include alkali metal salts such as sodium salts and potassium salts, and alkaline earth metal salts such as calcium salts and magnesium salts of carboxyl groups. Next, a method for producing the compound of general formula () of the present invention will be explained. As a typical method for producing the compound of general formula (), a method for producing a compound in which pyridyl alkyl is substituted at the 2-position of 1,2,3,4-tetrahydronaphthalene is shown below. (In the formula, R 2 is a lower alkyl group, m is 0 to 4
, and n is the same as above. ) That is, when the compound of formula () is heated and reacted in a mixture of the compound of formula (), acetic acid and pyridine, the compound of formula () is produced. By catalytically reducing this in an alcohol such as methanol, ethanol, or acetic acid using palladium charcoal or platinum as a catalyst, pyridyl alkyl is substituted at the 2-position of 1,2,3,4-tetrahydronaphthalene in formula (), and R 1 is lower alkyl and A is

【式】である式(′)の化合物を製造するこ とができる。式(′)の化合物をエタノール等
のアルコール中水素化ホウ素ナトリウムと反応さ
せ、得られる生成物を粗製のままアルコール中濃
塩酸と処理すると式()の化合物が生成する。
これをパラジウム炭または白金を触媒としてエタ
ノール、メタノール等のアルコールまたは酢酸中
で接触還元することにより式()においてピリ
ジルアルキルが1,2,3,4−テトラヒドロナ
フタレンの2位に置換しR1が低級アルキル基で
Aが−CH2−である式(″)の化合物を製造す
ることができる。 このようにして得られた式(′)または式
(″)の化合物を水酸化ナトリウム、水酸化カリ
ウム等のアルカリまたは塩酸、硫酸等の無機酸を
用いて加水分解することにより式()において
ピリジルアルキルが1,2,3,4−テトラヒド
ロナフタレンの2位に置換し、R1が水素原子で
Aが−CH2−または
A compound of formula (') can be prepared. When the compound of formula (') is reacted with sodium borohydride in an alcohol such as ethanol, and the crude product obtained is treated with concentrated hydrochloric acid in alcohol, the compound of formula () is produced.
By catalytically reducing this in an alcohol such as ethanol, methanol, or acetic acid using palladium charcoal or platinum as a catalyst, pyridyl alkyl is substituted at the 2-position of 1,2,3,4-tetrahydronaphthalene in formula (), and R 1 is A compound of formula ('') where A is -CH 2 - in a lower alkyl group can be produced. The compound of formula (') or formula ('') thus obtained is treated with sodium hydroxide and hydroxide. By hydrolysis using an alkali such as potassium or an inorganic acid such as hydrochloric acid or sulfuric acid, pyridyl alkyl is substituted at the 2-position of 1,2,3,4-tetrahydronaphthalene in formula (), and R 1 is a hydrogen atom. A is −CH 2 − or

【式】である化合物を製造 することができる。 更に、式()においてピリジルアルキルが
1,2,3,4−テトラヒドロナフタレンの2位
に置換し、R1が水素原子でAが
Compounds of the formula can be prepared. Furthermore, in formula (), pyridyl alkyl is substituted at the 2-position of 1,2,3,4-tetrahydronaphthalene, R 1 is a hydrogen atom, and A is

【式】である 化合物をヒドラジンと反応させることにより式
()においてピリジルアルキルが1,2,3,
4−テトラヒドロナフタレンの2位に置換しR1
が水素原子でAが
By reacting a compound of [formula] with hydrazine, pyridyl alkyl in formula () is 1,2,3,
R 1 substituted at the 2-position of 4-tetrahydronaphthalene
is a hydrogen atom and A is

【式】である化合物を製 造することができる。 (発明の効果) 本発明の式()の化合物は強力なTXA2合成
阻害作用を有する。その活性の強度についてはラ
ツト血液より得られる多血小板血漿(PRP)に
アラキドン酸を添加して産生されるTXA2の安定
代謝物であるトロンボキサンB2(以下TXB2)の
産生量を特異的放射免疫分析法(ラジオイムノア
ツセイ法〔RIA法〕)にて測定し、無投与群と比
較してTXA2合成に対する50%阻止モル濃度
(IC50値)を求めた。また、TXA2合成抑制に対
する選択性については次に述べる方法により求め
た。シクロオキシゲナーゼを阻害するとPGE2
産生量が減少するが、TXA2合成酵素を阻害する
とPGE2の産生量は増加するので、先のTXB2
生量を測定する際にPGE2の産生量を測定し、無
投与群のそれと比較してPGE2産生増加量を求め
る。これとTXB2産生抑制量との比を求めてこれ
をTXA2合成抑制の選択性指標とした。この指標
が大きい程TXA2合成抑制の選択性が高いことを
意味する。 本発明の化合物は既知のTXA2合成酵素阻害薬
のダゾキシベンに比して強力でかつ選択性に優れ
たTXA2合成阻害作用を有していた。 以下、本発明を実施例および試験例によつて説
明する。 実施例 1 6−(3−ピリジルメチル)−5−オキソ−5,
6,7,8−テトラヒドロ−2−ナフタレンカ
ルボン酸エチル (1) 6−(3−ピリジルメチリデン)−5−オキソ
−5,6,7,8−テトラヒドロ−2−ナフタ
レンカルボン酸エチル 5−オキソ−5,6,7,8−テトラヒドロ
−2−ナフタレンカルボン酸エチル5.0gを3
−ピリジンアルデヒド2.5g、酢酸10mlおよび
ピペリジン10mlと混合し、100℃で4時間撹拌
する。減圧濃縮し、残留物を酢酸エチルに溶か
し、10%塩酸にて抽出する。塩酸層を分取し炭
酸水素ナトリウムにて中和し、クロロホルムに
て抽出する。抽出液を水洗、乾燥後、減圧濃縮
し、残渣をシリカゲルカラムクロマトにて精製
して淡黄色結晶5.6gを得る。融点112〜114℃。 (2) 6−(3−ピリジルメチル)−5−オキソ−
5,6,7,8−テトラヒドロ−2−ナフタレ
ンカルボン酸エチル 上記で製した化合物6.3gをエタノール50ml
および酢酸エチル50ml中で10%パラジウム炭1
gを用いて接触還元する。水素の吸収終了後、
触媒を濾去し、濾液を減圧濃縮する。残査をシ
リカゲルカラムクロマトにて精製して表題化合
物の油状物を4.8gを得る。 1H−NMRスペクトル(CDCl3)δ: 1.40(3H,t,−CO2CH2C 3) 1.8〜2.2(2H,m,ナフタレン7位水素) 2.6〜3.6(5H,m,ナフタレン6,8位水素,
メチレン水素) 4.36(2H,q,−CO2C 2CH3) 7.1〜8.5(7H,m,芳香環水素) 実施例 2 6−(3−ピリジルメチル)−5−オキソ−5,
6,7,8−テトラヒドロ−2−ナフタレンカ
ルボン酸塩酸塩 実施例1で製した6−(3−ピリジルメチル)−
5−オキソ−5,6,7,8−テトラヒドロ−2
−ナフタレンカルボン酸エチル4.5gを水酸化ナ
トリウム8.5g、水100mlと混合し、100℃に3時
間加熱撹拌する。冷後、酢酸にて中和し析出する
結晶を濾集水洗する。エタノールにけん濁し、塩
化水素−エタノール溶液を加え減圧乾固し、メタ
ノールより再結晶して表題化合物の無色結晶2.5
gを得る。融点239〜250℃。 元素分析値 C17H15NO3・HClとして 計算値 C 64.25,H 5.08,N 4.41 実験値 C 64.40,H 4.97,N 4.03 実施例 3 6−(3−ピリジルメチル)−5−ヒドラゾノ−
5,6,7,8−テトラヒドロ−2−ナフタレ
ンカルボン酸塩酸塩 実施例2で製した6−(3−ピリジルメチル)−
5−オキソ−5,6,7,8−テトラヒドロ−2
−ナフタレンカルボン酸塩酸塩1.6gを80%ヒド
ラジンヒドラート2g、水酸化カリウム1.9gお
よびエチレングリコール20mlと混和し、120℃で
4時間加熱する。冷後反応液を水に注加し、酢酸
を加えて中和する。析出する粉末を濾集し塩化水
素−エタノール溶液と混和し、減圧濃縮する。残
渣をメタノールおよびエーテルの混液より再結晶
して表題化合物の粉末0.9gを得る。融点275℃
(分解)。 元素分析値 C17H17N3O2・2HClとして 計算値 C 55.44,H 5.20,N 11.41 実験値 C 55.89,H 5.52,N 11.61 実施例 4 6−(3−ピリジルメチル)−5,6,7,8−
テトラヒドロ−2−ナフタレンカルボン酸エチ
ル (1) 6−(3−ピリジルメチル)−7,8−ジヒド
ロ−2−ナフタレンカルボン酸エチル 実施例1で製した6−(3−ピリジルメチル)
−5−オキソ−5,6,7,8−テトラヒドロ
−2−ナフタレンカルボン酸エチル3gをエタ
ノール50ml溶かし、水素化ホウ素ナトリウム
0.9gを少量づつ加え、室温にて1時間加熱還
流する。減圧濃縮し残査に水を加えクロロホル
ムにて摘出する。抽出液を水洗し乾燥後減圧濃
縮し油状物を得る。この油状物をエタノール80
mlに溶かし、濃塩酸20mlを加え5時間加熱還流
する。炭酸水素ナトリウムにて中和した後、減
圧濃縮し残査をシリカゲルカラムクロマトにて
精製して表題化合物の油状物1.8gを得る。 1H−NMR(CDCl3)δ: 1.36(3H,t,−CO2CH2C 3) 2.0〜2.4(2H,m,ナフタレン7位水素) 2.6〜2.9(2H,m,ナフタレン8位水素) 3.5(2H,m,
Compounds of the formula can be prepared. (Effects of the Invention) The compound of formula () of the present invention has a strong TXA 2 synthesis inhibitory effect. Regarding the strength of its activity, we specifically determined the production amount of thromboxane B 2 (hereinafter referred to as TXB 2 ), a stable metabolite of TXA 2 , produced by adding arachidonic acid to platelet-rich plasma (PRP) obtained from rat blood. It was measured by radioimmunoassay (RIA method), and the 50% inhibition molar concentration (IC 50 value) for TXA 2 synthesis was determined in comparison with the non-administered group. Furthermore, selectivity for inhibition of TXA 2 synthesis was determined by the method described below. Inhibiting cyclooxygenase reduces the amount of PGE 2 produced, but inhibiting TXA 2 synthase increases the amount of PGE 2 produced, so when measuring the amount of TXB 2 produced earlier, it is necessary to measure the amount of PGE 2 produced. , determine the amount of increase in PGE 2 production compared to that of the non-administered group. The ratio between this and the amount of inhibition of TXB 2 production was determined, and this was used as an index of selectivity for inhibition of TXA 2 synthesis. The larger this index is, the higher the selectivity of suppressing TXA 2 synthesis. The compound of the present invention had a stronger and more selective TXA 2 synthesis inhibitory effect than dazoxiben, a known TXA 2 synthase inhibitor. The present invention will be explained below using Examples and Test Examples. Example 1 6-(3-pyridylmethyl)-5-oxo-5,
Ethyl 6,7,8-tetrahydro-2-naphthalenecarboxylate (1) 6-(3-pyridylmethylidene)-5-oxo-5,6,7,8-tetrahydro-2-naphthalenecarboxylate ethyl 5-oxo -5.0g of ethyl 5,6,7,8-tetrahydro-2-naphthalenecarboxylate
- Mix 2.5 g of pyridine aldehyde, 10 ml of acetic acid and 10 ml of piperidine and stir at 100° C. for 4 hours. Concentrate under reduced pressure, dissolve the residue in ethyl acetate, and extract with 10% hydrochloric acid. The hydrochloric acid layer is separated, neutralized with sodium hydrogen carbonate, and extracted with chloroform. The extract was washed with water, dried, and concentrated under reduced pressure, and the residue was purified by silica gel column chromatography to obtain 5.6 g of pale yellow crystals. Melting point 112-114℃. (2) 6-(3-pyridylmethyl)-5-oxo-
Ethyl 5,6,7,8-tetrahydro-2-naphthalenecarboxylate 6.3g of the compound prepared above was added to 50ml of ethanol.
and 10% palladium on charcoal in 50 ml of ethyl acetate
catalytic reduction using g. After hydrogen absorption is completed,
The catalyst is filtered off and the filtrate is concentrated under reduced pressure. The residue was purified by silica gel column chromatography to obtain 4.8 g of the title compound as an oil. 1 H-NMR spectrum (CDCl 3 ) δ: 1.40 (3H, t, -CO 2 CH 2 C H 3 ) 1.8 to 2.2 (2H, m, hydrogen at the 7th position of naphthalene) 2.6 to 3.6 (5H, m, naphthalene 6, 8th position hydrogen,
methylene hydrogen) 4.36 (2H, q, -CO 2 CH 2 CH 3 ) 7.1-8.5 (7H, m, aromatic ring hydrogen) Example 2 6-(3-pyridylmethyl)-5-oxo-5,
6,7,8-tetrahydro-2-naphthalenecarboxylic acid hydrochloride 6-(3-pyridylmethyl)- prepared in Example 1
5-oxo-5,6,7,8-tetrahydro-2
- Mix 4.5 g of ethyl naphthalenecarboxylate with 8.5 g of sodium hydroxide and 100 ml of water, and heat and stir at 100°C for 3 hours. After cooling, the mixture is neutralized with acetic acid, and the precipitated crystals are collected by filtration and washed with water. Suspend in ethanol, add hydrogen chloride-ethanol solution, dry under reduced pressure, and recrystallize from methanol to obtain colorless crystals of the title compound.
get g. Melting point 239-250℃. Elemental analysis value C 17 H 15 NO 3・HCl Calculated value C 64.25, H 5.08, N 4.41 Experimental value C 64.40, H 4.97, N 4.03 Example 3 6-(3-pyridylmethyl)-5-hydrazono-
5,6,7,8-tetrahydro-2-naphthalenecarboxylic acid hydrochloride 6-(3-pyridylmethyl)- produced in Example 2
5-oxo-5,6,7,8-tetrahydro-2
- 1.6 g of naphthalene carboxylic acid hydrochloride are mixed with 2 g of 80% hydrazine hydrate, 1.9 g of potassium hydroxide and 20 ml of ethylene glycol and heated at 120° C. for 4 hours. After cooling, the reaction solution is poured into water, and acetic acid is added to neutralize it. The precipitated powder is collected by filtration, mixed with a hydrogen chloride-ethanol solution, and concentrated under reduced pressure. The residue was recrystallized from a mixture of methanol and ether to obtain 0.9 g of the title compound as a powder. Melting point 275℃
(Disassembly). Elemental analysis value C 17 H 17 N 3 O 2・2HCl Calculated value C 55.44, H 5.20, N 11.41 Experimental value C 55.89, H 5.52, N 11.61 Example 4 6-(3-pyridylmethyl)-5,6, 7,8-
Ethyl tetrahydro-2-naphthalenecarboxylate (1) Ethyl 6-(3-pyridylmethyl)-7,8-dihydro-2-naphthalenecarboxylate 6-(3-pyridylmethyl) prepared in Example 1
Dissolve 3 g of ethyl -5-oxo-5,6,7,8-tetrahydro-2-naphthalenecarboxylate in 50 ml of ethanol, and dissolve sodium borohydride.
Add 0.9 g little by little and heat under reflux at room temperature for 1 hour. Concentrate under reduced pressure, add water to the residue, and extract with chloroform. The extract is washed with water, dried, and concentrated under reduced pressure to obtain an oil. Add this oil to 80% ethanol
ml, add 20 ml of concentrated hydrochloric acid, and heat under reflux for 5 hours. After neutralization with sodium hydrogen carbonate, the mixture was concentrated under reduced pressure and the residue was purified by silica gel column chromatography to obtain 1.8 g of the title compound as an oil. 1 H-NMR (CDCl 3 ) δ: 1.36 (3H, t, -CO 2 CH 2 C H 3 ) 2.0 to 2.4 (2H, m, hydrogen at the 7th position of naphthalene) 2.6 to 2.9 (2H, m, hydrogen at the 8th position of naphthalene) ) 3.5 (2H, m,

【式】 ) 4.32(2H,q,−CO2C 2CH3) 6.21(1H,m,ナフタレン5位水素) 6.9〜8.45(7H,m,芳香環水素) (2) 6−(3−ピリジルメチル)−5,6,7,8
−テトラヒドロ−2−ナフタレンカルボン酸エ
チル 上記で製した化合物1.8gをエタノール100ml
に溶かし、10%パラジウム炭1gを用いて接触
還元する。水素の吸収終了後、触媒を濾去し、
濾液を減圧濃縮し表題化合物の油状物1.8gを
得る。 1H−NMRスペクトル(CDCl3)δ: 1.36(3H,t,−CO2CH2C 3) 1.8〜2.3(2H,m,ナフタレン7位水素) 2.4〜3.3(7H,mナフタレン5,6,8位水
素,メチレン水素) 4.32(2H,q,−CO2C 2CH3) 7.0〜8.5(7H,m,芳香環水素) 実施例 5 6−(3−ピリジルメチル)−5,6,7,8−
テトラヒドロ−2−ナフタレンカルボン酸塩酸
塩 実施例4で製した6−(3−ピリジルメチル)
−5,6,7,8−テトラヒドロ−2−ナフタ
レンカルボン酸エチル1.8gを6N−塩酸50mlと
混合し4時間加熱還流後、減圧乾固する。得ら
れた残査をメタノールより再結晶して表題化合
物の無色結晶1.04gを得る。融点222〜226℃。 1H−NMRスペクトル(ジメチルスルホキシド
−d6)δ: 1.8〜2.2(2H,m,ナフタレン7位水素) 2.4〜3.3(7H,m,ナフタレン5,6,8位
水素,メチレン水素) 7.1〜8.9(7H,m,芳香環水素) 元素分析値 C17H17NO2・HClとして 計算値 C 67.21,H 5.97,N 4.61 実験値 C 67.17,H 6.02,N 4.55 試験例 in vitro血小板TXA2生成抑制試験 PRP(多血小板血漿)の調製 体重280〜320gの雄性ウイスター今道系ラツト
よりペントバルビタール麻酔下に心臓穿刺にてク
エン酸加血(血液9容に対して3.13%クエン酸ナ
トリウム1容を添加)を採取し、室温、230×g
で7分間遠心した。得られた上清(PRP)を
PPP(乏血小板血漿)で希釈して、血小板数を5
×108個/mlに調整し、以下の試験に用いた。
PPPとしてはPRP分離後の残査を1500×gで10
分間遠心し、その上清を用いた。 TXA2およびPGE2生成反応とその測定 検体溶液10μに上記のPRP90μを加え1分
間振とうしたのち、この混合液の90μをとつて
5mMのアラキドン酸ナトリウム溶液10μと合一
し、室温で振とうした。5分間振とうしたのち、
この混液の10μをとつて100μMのフルルピプロ
フエン溶液90μ中に加え反応を停止した。反応
液を1000×gで5分間遠心し、得られた上清中の
TXB2(TXA2の安定分解物)とPGE2濃度を
Morrisらのラジオイムノアツセイ法
(Prostaglandins 21,771,1981)に従つて測定
した。各検体および試薬は生食液またはメタノー
ルに濃厚溶液となるように溶解し、生食液で適当
な濃度まで希釈して用いた。 TXA2合成抑制率を下記式にて算出し、TXA2
合成抑制活性を、50%の抑制率を示す検体の濃度
(IC50)で表わした。 抑制率=100 −(検体添加時のTXB2濃度/対照のTXB2濃度×100
) 血小板では、シクロオキシゲナーゼの抑制によ
り、TXB2のみならずPGE2およびPGF2aの生成
が抑制されること(Hambergら,Proc.Nat.
Acad.Sci.USA,71,3824,1974)、逆に、TXA2
合成酵素の欠乏または抑制によりPGE2,PGF2a
およびPGD2の生成が増加すること(Defreynら,
Brot.J.Haematol.49,29,1981)が知られてい
る。そこで、下記式にて、TXA2合成抑制の選択
性指標を算出し、TXA2合成酵素とシクロオキシ
ゲナーゼの両酵素に対する作用の関係を示した。 TXA2合成抑制の選択性指標=検体添加時のPGE2生成量−
対照のPGE2生成量/対照のTXB2生成量−検体添加時のTX
B2生成量 この数値が大きいほど、TXA2合成抑制作用が
強く、シクロオキシゲナーゼ抑制作用が弱いこと
を意味する。 試験例にて得られた本発明化合物の活性を以下
の表に示す。
[Formula] ) 4.32 (2H, q, -CO 2 C H 2 CH 3 ) 6.21 (1H, m, hydrogen at 5th position of naphthalene) 6.9-8.45 (7H, m, aromatic ring hydrogen) (2) 6-(3- pyridylmethyl)-5,6,7,8
-ethyl tetrahydro-2-naphthalenecarboxylate 1.8g of the compound prepared above was added to 100ml of ethanol.
and catalytic reduction using 1 g of 10% palladium on charcoal. After hydrogen absorption is completed, the catalyst is removed by filtration,
The filtrate was concentrated under reduced pressure to obtain 1.8 g of the title compound as an oil. 1 H-NMR spectrum (CDCl 3 ) δ: 1.36 (3H, t, -CO 2 CH 2 C H 3 ) 1.8-2.3 (2H, m, hydrogen at 7-position of naphthalene) 2.4-3.3 (7H, m-naphthalene 5, 6 , 8-position hydrogen, methylene hydrogen) 4.32 (2H, q, -CO 2 C H 2 CH 3 ) 7.0-8.5 (7H, m, aromatic ring hydrogen) Example 5 6-(3-pyridylmethyl)-5,6 ,7,8-
Tetrahydro-2-naphthalenecarboxylic acid hydrochloride 6-(3-pyridylmethyl) prepared in Example 4
1.8 g of ethyl -5,6,7,8-tetrahydro-2-naphthalenecarboxylate was mixed with 50 ml of 6N hydrochloric acid, heated under reflux for 4 hours, and then dried under reduced pressure. The resulting residue was recrystallized from methanol to obtain 1.04 g of colorless crystals of the title compound. Melting point 222-226℃. 1 H-NMR spectrum (dimethyl sulfoxide- d6 ) δ: 1.8-2.2 (2H, m, hydrogen at the 7th position of naphthalene) 2.4-3.3 (7H, m, hydrogen at the 5th, 6th, and 8th positions of naphthalene, methylene hydrogen) 7.1-8.9 (7H, m, aromatic ring hydrogen) Elemental analysis value C 17 H 17 NO 2・HCl Calculated value C 67.21, H 5.97, N 4.61 Experimental value C 67.17, H 6.02, N 4.55 Test example In vitro platelet TXA 2 production inhibition Preparation of test PRP (platelet-rich plasma) Citrate-added blood (1 volume of 3.13% sodium citrate was added to 9 volumes of blood) from male Wistar Kondo rats weighing 280 to 320 g through cardiac puncture under pentobarbital anesthesia. ) was collected at room temperature, 230×g
Centrifuged for 7 minutes. The obtained supernatant (PRP)
Dilute with PPP (platelet poor plasma) to reduce the platelet count to 5.
It was adjusted to ×10 8 cells/ml and used in the following tests.
As PPP, the residue after PRP separation is 1500 x g.
The mixture was centrifuged for a minute, and the supernatant was used. TXA 2 and PGE 2 production reaction and its measurement Add 90μ of the above PRP to 10μ of the sample solution, shake for 1 minute, and then take 90μ of this mixture.
Combined with 10μ of 5mM sodium arachidonic acid solution and shaken at room temperature. After shaking for 5 minutes,
10μ of this mixture was added to 90μ of a 100μM flurpiprofen solution to stop the reaction. The reaction solution was centrifuged at 1000 x g for 5 minutes, and the supernatant obtained was
TXB 2 (stable decomposition product of TXA 2 ) and PGE 2 concentration
It was measured according to the radioimmunoassay method of Morris et al. (Prostaglandins 21 , 771, 1981). Each specimen and reagent was dissolved in saline or methanol to form a concentrated solution, diluted with saline to an appropriate concentration, and used. The TXA 2 synthesis inhibition rate was calculated using the following formula, and the TXA 2
The synthesis inhibitory activity was expressed as the concentration of the sample exhibiting a 50% inhibition rate (IC 50 ). Inhibition rate = 100 - (TXB 2 concentration at the time of sample addition / TXB 2 concentration in control x 100
) In platelets, inhibition of cyclooxygenase suppresses the production of not only TXB 2 but also PGE 2 and PGF 2a (Hamberg et al., Proc. Nat.
Acad.Sci.USA, 71 , 3824, 1974), conversely, TXA 2
PGE 2 , PGF 2a due to deficiency or inhibition of synthetic enzymes
and increased production of PGD 2 (Defreyn et al.,
Brot. J. Haematol. 49 , 29, 1981) is known. Therefore, the selectivity index for inhibition of TXA 2 synthesis was calculated using the following formula, and the relationship between the effects on both TXA 2 synthase and cyclooxygenase was shown. Selectivity index of TXA 2 synthesis inhibition = PGE 2 production amount when sample is added -
Control PGE 2 production amount / Control TXB 2 production amount - TX when adding sample
B 2 Production Amount The larger this value is, the stronger the TXA 2 synthesis inhibitory effect is and the weaker the cyclooxygenase inhibitory effect. The activity of the compounds of the present invention obtained in the test examples is shown in the table below.

【表】【table】

Claims (1)

【特許請求の範囲】 1 一般式 (式中、R1は水素原子または低級アルキル基
を、nは1〜5の整数を、Aは−CH2−,
【式】または【式】で表わされる基を 示す。)で表わされる化合物およびその塩。
[Claims] 1. General formula (In the formula, R 1 is a hydrogen atom or a lower alkyl group, n is an integer of 1 to 5, A is -CH 2 -,
Indicates a group represented by [Formula] or [Formula]. ) and its salts.
JP12055784A 1983-08-25 1984-06-12 Pyridine derivative Granted JPS611661A (en)

Priority Applications (13)

Application Number Priority Date Filing Date Title
JP12055784A JPS611661A (en) 1984-06-12 1984-06-12 Pyridine derivative
PH31127A PH22076A (en) 1983-08-25 1984-08-20 Benzocycloalkane derivative
YU1447/84A YU43583B (en) 1983-08-25 1984-08-23 Process for preparation of benzocycloalkane derivatives
CA000461690A CA1253866A (en) 1983-08-25 1984-08-23 Benzocycloalkane derivatives
IE217084A IE58352B1 (en) 1983-08-25 1984-08-24 Benzocycloalkane derivatives
ES535429A ES8607905A1 (en) 1983-08-25 1984-08-24 New carboxy-alkyl-heterocyclyl-alkyl-indane(s) and analogues - useful as strong selective inhibitors of thromboxane a2
EP84110139A EP0135177B1 (en) 1983-08-25 1984-08-24 Benzocycloalkane derivatives
DE8484110139T DE3480652D1 (en) 1983-08-25 1984-08-24 BENZOCYCLOAL CANDERIVIVES.
AT84110139T ATE48416T1 (en) 1983-08-25 1984-08-24 BENZOCYCLOALKALINE DERIVATIVES.
AU32381/84A AU547979B2 (en) 1983-08-25 1984-08-24 Heterocycloalkyl benzocycloalkane derivatives
KR1019840005180A KR910008349B1 (en) 1983-08-25 1984-08-25 How to prepare benzocycloalkane derivative
US06/644,284 US4665188A (en) 1983-08-25 1984-08-27 Certain [(1-imidazolyl)-lower-alkylene]-tetrahydronaphthalenecarboxylic acids or corresponding idan-carboxylic acids which are thromboxane A2
US06/901,694 US4777257A (en) 1983-08-25 1986-08-29 Certain tetrahydronaphthyl or indanylcarboxylates and derivatives thereof which inhibit the synthesis of thromboxane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12055784A JPS611661A (en) 1984-06-12 1984-06-12 Pyridine derivative

Publications (2)

Publication Number Publication Date
JPS611661A JPS611661A (en) 1986-01-07
JPH0466234B2 true JPH0466234B2 (en) 1992-10-22

Family

ID=14789252

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12055784A Granted JPS611661A (en) 1983-08-25 1984-06-12 Pyridine derivative

Country Status (1)

Country Link
JP (1) JPS611661A (en)

Also Published As

Publication number Publication date
JPS611661A (en) 1986-01-07

Similar Documents

Publication Publication Date Title
RU2130453C1 (en) Substituted pyrazoles, pharmaceutical composition based on said, method of patient treatment, intermediate compound
JP6440690B2 (en) Cycloalkyl acid derivative, process for producing the same, and pharmaceutical application thereof
KR910008349B1 (en) How to prepare benzocycloalkane derivative
JPS6341903B2 (en)
FR2698873A1 (en) Potassium channel activating benzocycloheptenes, benzoxepines and benzothiepins, process for their preparation, pharmaceutical composition containing them
JP2022530718A (en) Tricyclic compounds and their manufacturing methods and uses
JPH0660183B2 (en) Intermediate for the preparation of pyrazoloquinolines with alkylated pyrazole ring
JPS6191157A (en) Tetrahydronaphthalene derivatives
JPWO2019240143A1 (en) A method for producing a triazolindione adduct, a method for producing a triazolindione adduct, a method for producing an en compound, and a method for analyzing an en compound.
JPS63165362A (en) Substituted aminomethyl-5, 6, 7, 8- tetrahydronaphthyloxyacetic acids, intermediates, production thereof and their use in medicine
JPH0466234B2 (en)
JP2000501696A (en) Production of aldehydes or ketones from alcohols
JPH0528711B2 (en)
KR100578425B1 (en) Cathecol Hydrazine Derivatives, Process for Producing the Same and Pharmaceutical Composition Containing the Same
JPH0374216B2 (en)
JPH0530830B2 (en)
JP4011819B2 (en) Process for producing indole derivatives and intermediates thereof
JPH0564628B2 (en)
JPH0520430B2 (en)
JPH0421673B2 (en)
JPH0529032B2 (en)
JPS6016975A (en) N-imidazolyl derivatives of bicyclic compounds and manufacture
TW201217324A (en) Preparation of bicyclo[2.2.2]octan-2-one compounds
JPH0370703B2 (en)
JP2003523341A (en) Process for producing (pyridinylidene) -phthalides