JPH0528683B2 - - Google Patents

Info

Publication number
JPH0528683B2
JPH0528683B2 JP60010926A JP1092685A JPH0528683B2 JP H0528683 B2 JPH0528683 B2 JP H0528683B2 JP 60010926 A JP60010926 A JP 60010926A JP 1092685 A JP1092685 A JP 1092685A JP H0528683 B2 JPH0528683 B2 JP H0528683B2
Authority
JP
Japan
Prior art keywords
restorative material
composite restorative
filler
paste
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP60010926A
Other languages
Japanese (ja)
Other versions
JPS61171404A (en
Inventor
Namihiro Okabayashi
Shigeki Yuasa
Koji Kusumoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokuyama Corp
Original Assignee
Tokuyama Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokuyama Corp filed Critical Tokuyama Corp
Priority to JP60010926A priority Critical patent/JPS61171404A/en
Publication of JPS61171404A publication Critical patent/JPS61171404A/en
Publication of JPH0528683B2 publication Critical patent/JPH0528683B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は、特定した少なくとも3種類の混合粒
子を充填材として用いることを特徴とする複合修
復材に関する。複合修復材は、例えば歯科分野全
般に亘つて使用され、口腔内で治療しようとする
歯牙に充填あるいは塗布後、重合させるもの、あ
るいは口腔外で適当な形態を付与し、重合させた
後、歯牙に接着または合着させるものなどがあ
る。 〔従来技術及び発明が解決しようとする問題点〕 歯科用に使用する複合修復材は、その使用上の
特殊性から通常の複合材料と異なり、液状の重合
性単量体と無機材料を主成分とする充填材とのペ
ースト状混合物の形でユーザーに渡り、口腔内あ
るいは口腔外での医師による諸操作の過程で重合
硬化した後、通常の硬い複合材料となるものであ
る。従つて、このような複合修復材料に要求され
る性能は、ペースト状混合物に要求される性能と
重合硬化後の硬い材料に要求される性能に区別さ
れている。すなわち、前者はペーストを練り合わ
せたり充填したり歯の形に形成したりする操作性
能にかかわる性質であり、後者は通常の材料に要
求される圧縮強度、引張強度などの機械的、物理
的諸性質である。 このような複合修復材料に要求される諸性能を
高めるために、これまでに重合性単量体の化学構
造、あるいは充填材の材質、粒径、形状等の点で
多くの工夫、改善がなされてきた。例えば、重合
性単量体では、アクリレート化合物やメタクリレ
ート化合物、充填材の材質としては、無機酸化
物、樹脂や複合樹脂、粒径については大小の充填
材を組み合わせる方法等がある。また、形状につ
いても繊維状、球状、棒状、不定形などが検討さ
れ、従来の重合性単量体単独の材料に比べてより
優れた諸性能の材料が得られるようになつてい
る。しかしながら、一方では、歯科用に使用され
る複合修復材料は従来のような単なるう食窩洞の
充填修復というような単純な使われ方から、最近
では、例えば抜髄後の歯根部の空隙を埋めると同
時に、失われた歯冠部の形態を回復するために用
いられる等、従来、金属材料が用いられていたよ
うな部位の修復に応用する試みがなされていた。 このような特殊な用途に応用される場合には、
従来の複合修復材料に要求された性能に加えて更
に新たな性能が要求される。例えば上記した抜髄
後の支台築造用に用いる場合には、次のような点
で特に優れた性能の複合修復材料が望まれてい
る。 まず、硬化前のペースト状複合修復材の段階で
は、第1に修復材を抜髄後の歯髄腔に充填する際
に腔内に容易に填入できることは勿論のこと、さ
らに歯髄腔壁に無数に存在する微細な象牙細管の
内部にまですみやかにゆきわたる流動性を有する
ことが重要である。第2に、失われた歯冠部の形
態を回復する機能を果すために、形態付与を容易
にする適度なペーストの硬さが流動性に加えて要
求される。 次に、このような充填と形成を終えたペースト
は重合硬化反応によつて口腔内の諸々の力に耐え
る硬い複合修復材となるわけであるが、この際に
最も重要なことは重合硬化に伴う体積の収縮であ
る。すなわち、硬化時における収縮の程度(以
下、重合収縮率と呼ぶ)が小さいもの程、歯質と
複合修復材料の界面におけるひずみや間隙が小さ
く、密着性、密封性に優れた修復材料と言える。 さらに、重合硬化した複合修復材はまわりを象
牙組織や金属材料に覆われた状態で、口腔挫の苛
酷な条件下にさらされることになるが、この際最
も重要な性質は複合修復材の熱的性質である。す
なわち、修復材料の熱膨張係数がまわりの象牙組
織や金属材料のそれらに近い程、界面の局所的応
力が少なく、優れた修復材料と言える。 また例えば口腔内で硬化した樹脂の状態を観察
するためしばしばX線写真が利用されるが、かゝ
る目的のためにはX線不透過性の充填材であるこ
とが望まれる。 以上のような複合修復材の硬化に伴う体積の収
縮率や硬化後の熱膨張係数は、複合修復材の構成
成分の一つである重合性単量体の種類にも関係す
るが、その程度は小さく、大部分は他の一つの構
成成分である無機充填材の含有率に大きく依存す
る。すなわち、無機充填材の含有率が高い程、重
合収縮率は小さく熱膨張係数も小さくなる。 以上のように、できるだけ無機充填材の含有率
が高く、しかもその状態で歯髄腔内はもとより腔
内壁にある象牙細管の内部までゆきわたる流動性
と形態付与を容易にする適度な硬さを同時に有す
るペースト状の複合修復材を得るために、特に充
填材の大きさ、粒径分布、形状などについて従来
より種々検討されてきたが、未だ解決されるに至
つていない。例えば、特公昭44−19388号では、
1〜100μmの大きさの無機小球を充填材に用いる
ことが提案されているが、このような1μm以上の
比較的大きな粒径の充填材のみを用いる方法では
充填材の含有率を高めることはできるが、同時
に、流動性が低下し、細部へのすみやかな充填が
不十分となる。またドイツ特許公開公報第
2403211号では0.7μm以下の充填材を使用するこ
とが提案されているが、この場合には、流動性は
改善されるが形態の付与が困難である。さらに、
特開昭57−120506号公報では、0.5μmよりも小さ
く好ましくは0.1μm以下の充填材を10〜55%と0.5
〜0.8μmの充填材とを混合して用いることが提案
されている。しかしながら、本公報に具体的に使
用されているおよそ0.02μm程度の超微粒子を使
用した場合には、歯髄腔内全体では高い充填材含
有率が達成されるが、象牙細管のような微細な局
所空隙内においては混合充填材中大きな粒径の充
填材は歯髄腔内に残り、超微粒子部分と重合性単
量体からなる無機充填材含量の低い複合修復材の
みが進入する。 象牙細管のような局所空隙内における複合修復
材中の充填材含有率(以下、細部充填材含有率と
称す)は、歯質組織と硬化複合修復材との界面の
密封性、密着性に関係する重要な因子となる。す
なわち、細部充填材含有率が低下すると局所空隙
内における複合修復材の重合硬化に伴う体積の収
縮が増大し、その結果歯質との間にひずみや空隙
が生じ、界面の密封性、密着性が低下する。 このような理由から、上記公報に提案された方
法では界面における密封性、密着性が十分とは言
えず、さらに、細部充填材含有率を高める方法が
望まれている。 〔問題点を解決するための手段〕 以上述べたような歯科用複合修復材に望まれる
問題を解決するために、本発明者らは複合修復材
の構成成分の一つである充填材に特に注目し、そ
の形状や粒径分布について鋭意研究した結果、充
填材として特定した少なくとも3種類の平均粒径
を有する混合粒子を用いることにより、充填材の
含有率が高くしかも歯髄腔壁の細管内部にも十分
ゆきわたる流動性を持ち、細管内部に進入した部
分の細部充填材含有率が高く、歯質密着性や密封
性の優れた、しかも歯冠部の形態を形成するに十
分な硬さをも同時に有するペースト状の複合修復
材を完成し、ここに提案するに至つた。 即ち、本発明は重合性単量体、充填材、及び重
合開始剤を含む複合修復材において、充填材とし
て、 (a) 平均粒径が1.0〜100μmである非球形状粒子
(A)10〜90重量%と (b) 平均粒径が1.0〜100μmである球形状粒子(B)
45〜5重量%と (c) 平均粒径が0.1〜1.0μmである球形状粒子(C)45
〜5重量% とを含有する充填材を用いることを特徴とする歯
科用複合修復材である。 本発明で用いる重合性単量体は特に限定され
ず、例えば歯科用複合修復材として使用される公
知のものが使用できる。一般に好適に使用される
重合性単量体を例示すれば、種々のアクリル酸化
合物、メタクリル酸化合物、アクリル酸エステル
化合物、メタクリル酸エステル化合物、ウレタン
系化合物、スチレン系化合物等歯科用として使用
可能な重合性化合物が限定されずに用いることが
できる。更に具体的に、上記化合物を例示する
と、2,2−ビス〔4(2−ヒドロキシ−3−メ
タクリルオキシプロポキシ)フエニル〕プロパ
ン、メチルメタクリレート、ビスメタクリロエト
キシフエニルプロパン、トリエチレングリコール
ジメタクリレート、ジエチレングリコールジメタ
クリレート、テトラメチロールメタントリアクリ
レート、テトラメチロールメタンテトラアクリレ
ート、テトラメチロールメタントリメタクリレー
ト、トリメチロールエタントリメタクリレート、
及び下記構造式で示されるウレタン系化合物等が
ある。 ただし、上記式中、R1、R2、R3及びR4は同種
または異種のHまたはCH3で、(−A)−は(−CH2)−
6
[Industrial Field of Application] The present invention relates to a composite restorative material characterized by using mixed particles of at least three specified types as a filler. Composite restorative materials are used, for example, throughout the dental field, and are either filled or applied to the tooth to be treated intraorally and then polymerized, or are given an appropriate form outside the oral cavity, polymerized, and then placed on the tooth. There are things that are glued or joined together. [Prior art and problems to be solved by the invention] Composite restorative materials used in dentistry are different from ordinary composite materials due to their special characteristics in use; their main components are liquid polymerizable monomers and inorganic materials. It is delivered to the user in the form of a paste-like mixture with fillers, and after polymerization and hardening during various intra-oral or extra-oral operations by a doctor, it becomes a conventional hard composite material. Therefore, the performance required for such a composite restorative material is divided into the performance required for a pasty mixture and the performance required for a hard material after polymerization and hardening. In other words, the former relates to the operational performance of kneading, filling, and forming paste into tooth shapes, while the latter relates to mechanical and physical properties such as compressive strength and tensile strength required of ordinary materials. It is. In order to enhance the various performances required of such composite restorative materials, many innovations and improvements have been made in terms of the chemical structure of polymerizable monomers, the material, particle size, shape, etc. of fillers. It's here. For example, the polymerizable monomer may be an acrylate compound or a methacrylate compound, the material of the filler may be an inorganic oxide, a resin or a composite resin, and the particle size may be a combination of fillers of various sizes. In addition, fibrous, spherical, rod-like, amorphous, etc. shapes are being considered, and materials with better performance than conventional materials made of polymerizable monomers alone are now being obtained. However, on the other hand, composite restorative materials used in dentistry have gone from being used simply for filling and restoring carious cavities, to recently being used for filling cavities in the roots of teeth after pulp extraction, for example. At the same time, attempts have been made to apply it to the restoration of areas where metal materials have traditionally been used, such as to restore the form of lost tooth crowns. When applied to such special uses,
In addition to the performance required of conventional composite restorative materials, new performance is required. For example, when used for constructing an abutment after pulp extraction as described above, a composite restorative material with particularly excellent performance is desired in the following respects. First of all, at the stage of paste-like composite restorative material before hardening, first of all, when filling the dental pulp cavity with the restorative material after pulp extraction, it goes without saying that it can be easily inserted into the cavity, but also that it can be easily inserted into the pulp cavity wall. It is important to have fluidity that quickly spreads to the inside of the minute dentinal tubules that exist. Second, in order to perform the function of restoring the lost shape of the tooth crown, in addition to fluidity, appropriate hardness of the paste is required to facilitate shaping. Next, the paste that has been filled and formed in this way undergoes a polymerization and hardening reaction to become a hard composite restorative material that can withstand various forces in the oral cavity. This is accompanied by a contraction in volume. That is, the smaller the degree of shrinkage during curing (hereinafter referred to as polymerization shrinkage rate), the smaller the strain and gap at the interface between the tooth and the composite restorative material, and the better the adhesive and sealing properties of the restorative material. Furthermore, the polymerized and hardened composite restorative material is surrounded by ivory tissue and metal materials and is exposed to the harsh conditions of oral cavity trauma. It is a characteristic of In other words, the closer the coefficient of thermal expansion of the restorative material is to that of the surrounding ivory tissue or metal material, the lower the local stress at the interface, and the better the restorative material. Furthermore, for example, X-ray photography is often used to observe the state of hardened resin in the oral cavity, and for such purposes, it is desirable that the filling material be X-ray opaque. The volumetric shrinkage rate and coefficient of thermal expansion after curing of the composite restorative material as described above are also related to the type of polymerizable monomer, which is one of the components of the composite restorative material, but the degree of is small and largely depends on the content of the other component, the inorganic filler. That is, the higher the content of the inorganic filler, the lower the polymerization shrinkage rate and the lower the coefficient of thermal expansion. As mentioned above, the content of the inorganic filler is as high as possible, and at the same time, it has the appropriate hardness to facilitate the fluidity and shape that can reach not only the inside of the dental pulp cavity but also the inside of the dentinal tubules on the inner wall of the cavity. In order to obtain a paste-like composite restorative material, various studies have been made, particularly regarding the size, particle size distribution, shape, etc. of the filler, but no solution has yet been reached. For example, in Special Publication No. 44-19388,
It has been proposed to use inorganic spherules with a size of 1 to 100 μm as a filler, but such a method that uses only fillers with a relatively large particle size of 1 μm or more requires increasing the filler content. However, at the same time, the fluidity decreases and prompt filling of details becomes insufficient. Also, German Patent Publication No.
No. 2403211 proposes the use of a filler with a diameter of 0.7 μm or less, but in this case, fluidity is improved but it is difficult to give shape. moreover,
In JP-A No. 57-120506, 10 to 55% of fillers smaller than 0.5 μm, preferably 0.1 μm or less, and 0.5%
It has been proposed to use a filler with a thickness of ~0.8 μm. However, when using ultrafine particles of about 0.02 μm, which are specifically used in this publication, a high filler content is achieved in the entire pulp cavity, but in small localized areas such as dentinal tubules. In the cavity, the filling material with a large particle size in the mixed filling material remains in the pulp cavity, and only the composite restorative material with a low content of inorganic filler consisting of ultrafine particle portions and polymerizable monomers enters. The filler content in the composite restorative material in local voids such as dentinal tubules (hereinafter referred to as detailed filler content) is related to the sealing and adhesion of the interface between the tooth tissue and the hardened composite restorative material. This is an important factor. In other words, when the content of the detailed filling material decreases, the volume shrinkage due to polymerization and hardening of the composite restorative material within the local voids increases, resulting in distortion and voids between the tooth structure and the sealing and adhesion of the interface. decreases. For these reasons, the method proposed in the above-mentioned publication cannot be said to provide sufficient sealing and adhesion at the interface, and a method is desired that further increases the content of the fine filler. [Means for Solving the Problems] In order to solve the problems desired in dental composite restorative materials as described above, the present inventors have specifically developed a filling material, which is one of the components of the composite restorative materials. As a result of intensive research on the shape and particle size distribution, we found that by using a mixture of particles with at least three types of average particle diameters as a filling material, we were able to achieve a high content of the filling material while also being able to penetrate the inside of the tubules in the wall of the pulp cavity. It has sufficient fluidity to penetrate into the tooth, has a high content of small filler in the part that has entered the inside of the tubule, has excellent adhesion and sealing properties to the tooth structure, and is hard enough to form the shape of the tooth crown. At the same time, we have completed a paste-like composite restorative material, which we have proposed here. That is, the present invention provides a composite restorative material containing a polymerizable monomer, a filler, and a polymerization initiator, which includes (a) non-spherical particles having an average particle size of 1.0 to 100 μm as the filler;
(A) 10 to 90% by weight and (b) spherical particles with an average particle size of 1.0 to 100 μm (B)
45 to 5% by weight and (c) spherical particles with an average particle size of 0.1 to 1.0 μm (C)45
This is a dental composite restorative material characterized by using a filler containing ~5% by weight. The polymerizable monomer used in the present invention is not particularly limited, and for example, known monomers used as dental composite restorative materials can be used. Examples of generally preferred polymerizable monomers include various acrylic acid compounds, methacrylic acid compounds, acrylic ester compounds, methacrylic ester compounds, urethane compounds, styrene compounds, etc. that can be used for dental purposes. Polymerizable compounds can be used without limitation. More specifically, examples of the above compounds include 2,2-bis[4(2-hydroxy-3-methacryloxypropoxy)phenyl]propane, methyl methacrylate, bismethacryloethoxyphenylpropane, triethylene glycol dimethacrylate, Diethylene glycol dimethacrylate, tetramethylolmethane triacrylate, tetramethylolmethanetetraacrylate, tetramethylolmethane trimethacrylate, trimethylolethane trimethacrylate,
There are also urethane compounds represented by the following structural formula. However, in the above formula, R 1 , R 2 , R 3 and R 4 are the same or different H or CH 3 , and (-A)- is (-CH 2 )-
6 ,

【式】または[expression] or

〔発明の効果〕〔Effect of the invention〕

本発明によつて得られる複合修復材は、歯科分
野に使用したとき充填材含有率を80重量%以上ま
で高めることができるので、重合硬化時の体積収
縮率が少なく、また硬化後における熱膨張係数も
著しく小さく、さらに機械的強度にも優れた性能
を有し、且つX線造影性をも具備できる。特にこ
のように80重量%以上にも達する高い充填材含有
率にもかかわらず、本発明による修復材は、歯髄
腔内の細部にまでゆきわたる流動性を失うことが
なく、また、細部に充填された修復材中の充填材
含有率も高く、歯質との密着性に優れ、さらに、
歯冠部の形態付与をする際の操作性も保持される
という、従来の歯科用複合材料にみられない優れ
た性能を有するものであり、その効果は顕著であ
る。 〔実施例〕 以下、実施例によりさらに詳しく本発明の内容
を説明するが、本発明はこれらの実施例に限定さ
れるものではない。なお、本文中並びに実施例中
に示した材料の性状に関する諸量の定義及びそれ
らの測定方法については次のとおりである。 (1) 粒子径及び粒子径分布の標準偏差値 粉体の走査型あるいは透過型電子顕微鏡写真を
撮り、その写真の単位視野内に観察される粒子の
数(n)、及粒子径(直径Xi)を求め、次式により
算出される。 標準偏差値=X+σn−1/X ただし、 (2) 粒子の平均均斉度値 粉体の走査型電子顕微鏡写真を撮り、その写真
の単位視野内に観察される、粒子の数(n)、粒子の
最大幅を長径(L)、この長径に直交する方向での最
大幅を短径(B)として、n、L、Bを求め、次式に
より算出される。 (3) 比表面積 柴田化学器機工業株式会社、迅速表面積測定装
置SA−1000を用いた。測定原理はBET法であ
る。 (4) 圧縮強度 重合開始剤の種類に応じて、ペースト状複合修
復材を37℃で30分間重合させるか、又は市販の可
視光照射器「オプテイラツクス」(デメトロン社
製)を用い、1分間光照射して重合させた後、37
℃、水中24時間浸漬したものを試験片とした。そ
の大きさ、形状は直径4mm、高さ10mmの円柱状の
ものである。この試験片を試験機(東洋ボードウ
イン製、UTM−5T)に装着し、クロスヘツドス
ピード10mm/mmで圧縮強度を測定した。 (5) 引張強度 重合開始剤の種類に応じて、ペースト状複合修
復材を37℃で30分間重合させるか、又は市販の可
視光照射器「オプテイラツクス」(デメトロン社
製)を用い、1分間光照射して重合させた後、37
℃、水中24時間浸漬したものを試験片とした。そ
の大きさ、形状は直径6mm、高さ6mmの円柱状の
ものである。この試験片を試験機(東洋ボードウ
イン製、UTM−5T)に装着し、クロスヘツドス
ピード10mm/mmで引張強度を測定した。 (6) 曲げ強度 重合開始剤の種類に応じて、ペースト状複合修
復材を37℃で30分間重合させるか、又は市販の可
視光照射器「オプテイラツクス」(デメトロン社
製)を用い、1分間光照射して重合させた後、37
℃の水中に24時間浸漬したものを試験片とした。
その大きさ、形状は、2×2×25mmの角柱状のも
のである。曲げ試験は、支点間距離20mmの曲げ試
験装置を東洋ボードウイン製、UTM−5Tに装着
して行い、クロスヘツドスピード0.5mm/mmとし
た。 (7) 表面硬度 重合開始剤の種類に応じて、ペースト状複合修
復材を37℃で30分間重合させるか、又は市販の可
視光照射器「オプテイラツクス」(デメトロン社
製)を用い、1分間光照射して重合させた後、37
℃、水中24時間浸漬したものを試験片とした。そ
の大きさ、形状は2.5×10×10mmの板状のもので
ある。測定はミクロブリネル硬さ試験を用いた。 (8) 熱膨張係数 重合開始剤の種類に応じて、ペースト状複合修
復材を37℃で24時間重合させるか、又は前記の可
視光照射器を用いて、1分間照射して重合させた
ものを試験片とした。その大きさ、形状は、圧縮
試験に用いたものと同じである。測定は、理学電
機社製のThermoflexを用い、20℃〜50℃の間の
線膨張率によつて求めた。 (9) 吸水率 重合開始剤の種類に応じて、ペースト状複合修
復材を37℃で30分間重合させるか、又は前記の可
視光照射器を用いて1分間光照射して重合させた
後、研磨紙(日本研紙、1000番)で表面を研磨し
た後、37℃の無水硫酸マグネシウムデシケータ中
に恆量になるまで保存した。その後、37℃の水中
に浸漬し、24時間後の重量を測定した。増加重量
(mg)を浸漬前の試験片の表面積(cm2)で除し値
を吸水率とする。この試験片の大きさ、形状は、
1.0×10×10mmの板状である。 (10) ペースト流動量 内径5mm、長さ20mmで、出口径が1mmのプラス
チツクシリンジに約0.2mlのペースト状複合修復
材を填入し、ピストンをシリンダーに約3mm押し
込み、ストツパーでピストンを固定したから、ピ
ストンに700gの荷重をかけ、ダイヤルゲージを
取り付けた。ここで用いたピストンは、外径5
mm、長さ70mmのプラスチツク製、ただし、複合材
に接する部分はゴム製であつた。ストツパーを外
してから10秒後のピストンの移動距離をダイヤル
ゲージで測定し、その長さをペースト流動量とし
て表わした。移動量距離が大きい程、流れ易く粘
度の低い複合修復材であることを示す。 (11) 圧接充填率 内径4mm、長さ12mm、出口径1mmのプラスチツ
ク製シリンダーと、外径4mm、長さ70mmのプラス
チツク製ピストンを用いた。ただし、ピストンに
は半径1mmで中心角40゜の楕円状の溝を縦に4本
つけ、ピストンの横断面が十字形になるようにし
た。23℃の室内で、シリンダーにペースト状複合
修復材を気泡が入らないように満杯まで充填し
た。その後、ピストンを毎秒1mmの速度で押し、
シリンダーの出口より流出したペースト状複合修
復材の長さを測定した。この操作を5回繰り返
し、その流出長さの平均値をLmmとし、圧接充填
率を次式により算出した。 圧接充填率=L/12×100(%) 築盛や形態の付与が困難で圧接しにくい複合修
復材は、ピストンの溝より流出し易く、シリンダ
ーの出口に流出してくる複合修復材の量が少なく
なり、圧接充填率が低くなる。 (12) 細部充填材含有率 新鮮牛歯の歯根側から約5mmのところを切断し
歯髄を抜いた。その歯髄腔を35%のオルトリン酸
水溶液で30分間エツチングしてから水洗し、超音
波洗浄器で10分間水洗した。さらに、メタノール
で洗つた後エアブローで乾燥した。このように処
理した5本の牛歯に、歯根側からペースト状複合
修復材を歯科修復材充填用シリンジで充填し、さ
らに3mmの厚さに盛り上げた後、ポリプロピレン
フイルム(厚さ50μm)でカバーした。このカバ
ーの上から5Kgの荷重を1分間かけた後重合開始
剤の種類に応じて、可視光照射器を用いて1分間
光照射して重合するか、又は37℃で12時間重合さ
せた。これを12N塩酸水溶液中に25℃で7日間放
置して、歯質部分を完全に溶解除去することによ
り硬化複合修復材のみを回収し、水洗後、さらに
象牙細管に相当する細い繊維状の部分と歯髄腔に
相当する部分とに選別した。この中、細い繊維状
の部分にさらにメタノールで洗浄し、風乾後、減
圧下に12時間乾燥した。このようにして得られた
繊維状の硬化体を熱天秤(島津社製、DT−30)
を用いて、700℃における重量減少率から硬化体
中に含まれる無機充填材の含有率を百分率として
算出し、細部充填材含有率とした。 (13) 重合収縮率 1端の内径が2mm、他の1端が内径が1.5mmで、
長さが24000mmのパイレツクスガラス管に、離型
剤とてけシリコンオイルを塗布しよく拭き取つ
た。23℃の室内で練和した複合修復材をこのガラ
ス管に一杯にまで充填し、37℃の恆温室に3時間
保存するか、又は1分間光照射を行なつた。37℃
の恒温室に保存した場合には、3時間後、23℃の
室内で室温まで冷却した後複合修復材を取り出
し、その長さをマイクロメーターで測定した。こ
の長さとガラス管の長さとの差を、ガラス管の長
さで除した値を100倍したものを重合収縮率とし
た。 実施例 1 平均粒径9μm、平均均斉度値0.35のα−石英粉
末(非球形状の粉砕品)を1重量%のγ−メタク
リロキシプロピルトリメトキシシランで表面処理
したものを表面処理充填材(A−1)とする。 平均粒径17μm、平均均斉度値0.37のジルコニ
ア粉末(非球形状子)(半井化学社製、試薬特級)
を、(A−1)と同様にして表面処理したものを
表面処理充填材(A−2)とする。 平均粒径10μm、平均均斉度値0.96の球状のア
ルミナ(播磨耐火煉瓦社製)を、(A−1)と同
様にして表面処理したものを表面処理充填材(B
−1)とする。 エチルシリケート(日本コルコート社製)350
gをメタノール20に溶かした溶液をA液とし、
28%のアンモニア水0.9とメタノール3.6の混
合溶液をB液とする。A液とB液は20℃に保ち、
B液を羽根付撹拌棒を取り付けた撹拌機で撹拌し
ながら、A液をB液に毎分7mlの速度で滴下し
た。滴下量が増えるに従い、B液は白色となつ
た。この白色溶液をロータリーエバポレーターに
かけ、溶媒を除去し、白色粉末を得た。この粉末
を1000℃で1時間焼成したものは、粒子径範囲
0.21〜0.35μm、平均粒子径0.25μm、標準偏差値
1.08及び粒子の平均均斉度値0.99の球形状粉末で
あつた。この粉末を5重量%のγ−メタクリロキ
シプロピルトリメトキシシランで表面処理したも
のを、表面処理充填材(C−1)とする。 トリエチレングリコールジメタクリレート(以
下、TEGDMAと言う)28重量部と2,2−ビス
〔P−(γ−メタクリロキシ−P−ヒドロキシプロ
ポキシ)フエニル〕プロパン(以下Bis−GMA
と言う)42重量部と、テトラメチロールメタント
リアクリレート(以下TMM3Aと言う)30重量
部とを、混合し2部分に分割した。その後一方に
はN,N−ジエタノール−P−トルイジン1.5重
量部を、他の部分には過酸化ベンゾイル1.8重量
部を混合した。それぞれをペーストA用、ペース
トB用重合性単量体とする。 充填材の40重量部を(A−1)、20重量部を
(A−2)、20重量部を(B−1)とし、更に20重
量部を(C−1)とする充填材に、ペーストA用
重合性単量体またはペーストB用重合性単量体を
配合し、アルミナ乳鉢で充分練和することにより
それぞれペーストAまたはペーストB複合修復材
を得た。この際、複合修復材のシラン処理充填材
の含有量は86.2重量%で、ペーストの粘度は操作
上適正であつた。 この複合修復材のペースト流動量は、1.7mm、
圧接充填率93.5%、細部充填材含有率73%、重合
収縮率0.16%であつた。 上記のペーストAとペーストBを等量取り30秒
間室温で練和し硬化させたものについて特性を測
定した結果、熱膨張係数18.0ppm/℃、吸水率
0.18mg/cm2、表面硬度70.0、圧縮強度3820Kg/
cm2、引張強度620Kg/cm2、曲げ強度1210Kg/cm2
あつた。 実施例 2〜10 平均粒子径5μm、平均均斉度値0.33の硫酸バリ
ウム(和光純薬社製、試薬特級)を1重量%のγ
−メタクリロキシプロピルトリメトキシシランで
表面処理したものを、表面処理充填材(A−3)
とする。 平均粒子径40μm、平均均斉度値0.35のα−石
英(龍森社製、クリスタライト)を(A−1)と
同様にして表面処理したものを(A−4)とす
る。 平均粒子径20μm、平均均斉度値0.46のジルコ
ニア(マグネシウムエレクトロン社製)を(A−
1)と同様にして表面処理したものを(A−5)
とする。 平均粒子径50μm、平均均斉度値0.97のアルミ
ナ(播磨耐火煉瓦社製)を(A−1)と同様にし
て表面処理したものを(B−2)とする。 平均粒子径10μm、平均均斉度値0.97のシリカ
(播磨耐火煉瓦社製)を(A−1)と同様にして
表面処理したものを(B−3)とする。 平均粒子径18μm、平均均斉度値0.95のガラス
ビーズ(東芝バロテイーニ社製)を(A−1)と
同様にして表面処理したものを(B−4)とす
る。 実施例1記載の(C−1)の製造法において、
A液とB液の温度を25℃とし、A液の滴下速度を
毎分18mlとした以外は全て(C−1)の製造法と
同様の方法で、粒子径範囲0.20〜0.60μm、平均粒
子径0.31μm、標準偏差値1.61、及び粒子の平均均
斉度値0.80の球形状粒子を得た。その後、(C−
1)と同様の方法で表面処理したものを(C−
2)とする。 実施例1の表面処理充填材(A−1)及び/ま
たは(C−1)と重合性単量体、Bis−GMA及
びTEGDMA、及び/または(A−3)、(A−
4)、(A−5)、(B−2)、(B−3)、(B−4
)、
及び/または(C−2)、及び/または、テトラ
メチロールメタンテトラアクリレート(以下
TMM4Aと言う)を用い、実施例1と同様な方
法でペーストを調製し、ペースト流動量、圧接充
填率及び細部充填材含有率を測定した。さらに硬
化させた複合修復材の物性を測定し、その結果を
まとめて表−1に示す。 実施例 11 エチルシリケート(日本コルコート社製)350
gを、メタノール2.0に溶かし、水30gを加え、
60℃にまで加熱した後、室温まで冷却した溶液を
A液とする。ストロンチウム金属22g(半井化学
社製)を、500mlの精製メタノールに加えて、ス
トロンチウムとメタノールとを反応させる。この
反応溶液をB液とする。28%のアンモニア水0.9
とメタノール3.6の混合溶液をC液とする。 B液をA液に、撹拌しながら加えた。この溶液
をD液とし、C液とD液を20℃に保ち、C液を羽
根付撹拌棒を取り付けた撹拌棒で撹拌しながら、
D液をC液に毎分7mlの速度で滴下した。滴下量
が増えるに従い、C液は白色となつた。この白色
溶液をロータリーエバポレーターにかけ、溶媒を
除去し、白色粉末を得た。この粉末を1000℃で1
時間焼成したものは、粒子径範囲、0.25〜
0.40μm、平均粒子径0.33μm、標準偏差値1.10及
び粒子の平均均斉度値0.99の球形状粒子であつ
た。この粉末を、5重量%のγ−メタクリロキシ
プロピルトリメトキシシランで表面処理したもの
を、表面処理充填材(C−3)とする。 実施例1の表面処理充填材(A−1)と(B−
1)及び重合性単量体、及び(C−3)を用い、
実施例1と同様な方法でペーストを調整し、ペー
スト流動量圧接充填率及び細部充填材含有率を測
定した。さらに、硬化させた複合修復材の物性を
測定し、その結果をまとめて表−1に示す。
When the composite restorative material obtained by the present invention is used in the dental field, the filler content can be increased to 80% by weight or more, so the volumetric shrinkage rate during polymerization and curing is small, and the thermal expansion after curing is low. It has a significantly small coefficient, has excellent mechanical strength, and can also have X-ray contrast properties. In particular, despite such a high filler content of over 80% by weight, the restorative material according to the present invention does not lose its fluidity and can be filled into the fine details of the pulp cavity. The filling material content in the restorative material is high, and it has excellent adhesion to the tooth structure.
It has excellent performance not found in conventional dental composite materials, such as maintaining operability when shaping the crown of a tooth, and its effects are remarkable. [Examples] Hereinafter, the present invention will be explained in more detail with reference to Examples, but the present invention is not limited to these Examples. In addition, the definitions of various quantities related to the properties of materials shown in the text and examples and the methods for measuring them are as follows. (1) Standard deviation value of particle size and particle size distribution Take a scanning or transmission electron micrograph of a powder, and calculate the number (n) of particles observed within a unit field of view of the photograph, and the particle diameter (diameter Xi ) is calculated using the following formula. Standard deviation value = X + σn-1/X However, (2) Average symmetry value of particles Take a scanning electron micrograph of a powder, and calculate the number of particles (n), the maximum width of the particles as the major axis (L), and the major axis (L) as observed within the unit field of view of the powder. With the maximum width in the direction orthogonal to the minor axis (B), n, L, and B are calculated using the following formula. (3) Specific surface area A rapid surface area measuring device SA-1000 manufactured by Shibata Kagaku Kiki Kogyo Co., Ltd. was used. The measurement principle is the BET method. (4) Compressive strength Depending on the type of polymerization initiator, the paste-like composite restorative material can be polymerized at 37℃ for 30 minutes, or it can be cured using a commercially available visible light irradiator “Opteirax” (manufactured by Demetron). After polymerization by light irradiation for 37 min,
A test piece was immersed in water at ℃ for 24 hours. Its size and shape are cylindrical with a diameter of 4 mm and a height of 10 mm. This test piece was mounted on a testing machine (Toyo Baudouin, UTM-5T), and the compressive strength was measured at a crosshead speed of 10 mm/mm. (5) Tensile strength Depending on the type of polymerization initiator, the paste-like composite restorative material may be polymerized at 37℃ for 30 minutes, or a commercially available visible light irradiator "Opteirax" (manufactured by Demetron) may be used to After polymerization by light irradiation for 37 min,
A test piece was immersed in water at ℃ for 24 hours. Its size and shape are cylindrical with a diameter of 6 mm and a height of 6 mm. This test piece was attached to a testing machine (Toyo Baudouin, UTM-5T), and the tensile strength was measured at a crosshead speed of 10 mm/mm. (6) Bending strength Depending on the type of polymerization initiator, the paste-like composite restorative material may be polymerized at 37°C for 30 minutes, or it may be After polymerization by light irradiation for 37 min,
The test piece was immersed in water at ℃ for 24 hours.
Its size and shape are 2 x 2 x 25 mm prismatic. The bending test was conducted using a bending test device with a distance between fulcrums of 20 mm mounted on a UTM-5T manufactured by Toyo Baudouin, and a crosshead speed of 0.5 mm/mm. (7) Surface hardness Depending on the type of polymerization initiator, the paste composite restorative material may be polymerized at 37°C for 30 minutes, or a commercially available visible light irradiator “Opteirax” (manufactured by Demetron) may be used to cure the paste. After polymerization by light irradiation for 37 min,
A test piece was immersed in water at ℃ for 24 hours. Its size and shape are plate-like, 2.5 x 10 x 10 mm. The measurement used a micro Brinell hardness test. (8) Coefficient of thermal expansion Depending on the type of polymerization initiator, paste composite restorative materials are polymerized at 37°C for 24 hours, or by irradiation for 1 minute using the visible light irradiator mentioned above. was used as the test piece. Its size and shape are the same as those used in the compression test. The measurement was performed using Thermoflex manufactured by Rigaku Denki Co., Ltd., and was determined by the coefficient of linear expansion between 20°C and 50°C. (9) Water absorption rate Depending on the type of polymerization initiator, the paste-like composite restorative material is polymerized at 37°C for 30 minutes, or after polymerization by irradiating it with light for 1 minute using the visible light irradiator described above, After polishing the surface with abrasive paper (Nihon Kenshi, No. 1000), it was stored in an anhydrous magnesium sulfate desiccator at 37°C until it reached its final volume. Thereafter, it was immersed in water at 37°C, and its weight was measured 24 hours later. The increased weight (mg) is divided by the surface area (cm 2 ) of the test piece before immersion, and the value is taken as the water absorption rate. The size and shape of this test piece are
It has a plate shape of 1.0 x 10 x 10 mm. (10) Paste flow rate Approximately 0.2 ml of paste composite restorative material was inserted into a plastic syringe with an inner diameter of 5 mm, a length of 20 mm, and an outlet diameter of 1 mm, the piston was pushed into the cylinder approximately 3 mm, and the piston was fixed with a stopper. Then, a 700g load was applied to the piston and a dial gauge was attached. The piston used here has an outer diameter of 5
It was made of plastic with a length of 70 mm, but the part that came into contact with the composite material was made of rubber. The distance traveled by the piston 10 seconds after the stopper was removed was measured using a dial gauge, and the distance was expressed as the amount of paste flow. The larger the distance traveled, the easier it is to flow and the lower the viscosity of the composite restorative material. (11) Pressure filling rate A plastic cylinder with an inner diameter of 4 mm, a length of 12 mm, and an outlet diameter of 1 mm and a plastic piston with an outer diameter of 4 mm and a length of 70 mm were used. However, the piston had four vertical elliptical grooves with a radius of 1 mm and a center angle of 40 degrees, so that the cross section of the piston was cross-shaped. In a room at 23°C, the cylinder was filled to the brim with paste-like composite restorative material, taking care not to introduce any air bubbles. Then, push the piston at a speed of 1 mm per second,
The length of the paste-like composite restorative material flowing out from the outlet of the cylinder was measured. This operation was repeated five times, the average value of the outflow length was taken as Lmm, and the pressure filling rate was calculated using the following formula. Pressure filling rate = L / 12 × 100 (%) Composite restoration materials that are difficult to build up or give shapes to, and are difficult to apply pressure to, tend to flow out from the piston groove, and the amount of composite restoration material that flows out to the cylinder outlet is As a result, the pressure welding filling rate becomes low. (12) Detailed filling material content A fresh bovine tooth was cut approximately 5 mm from the root side and the pulp was extracted. The pulp cavity was etched with a 35% orthophosphoric acid aqueous solution for 30 minutes, washed with water, and then washed with water in an ultrasonic cleaner for 10 minutes. Furthermore, after washing with methanol, it was dried with air blow. Five bovine teeth treated in this way were filled with a paste-like composite restorative material from the tooth root side using a dental restorative filling syringe, and then raised to a thickness of 3 mm, and then covered with polypropylene film (50 μm thick). did. A load of 5 kg was applied from above the cover for 1 minute, and then depending on the type of polymerization initiator, polymerization was carried out by irradiating it with light for 1 minute using a visible light irradiator, or polymerization was carried out at 37° C. for 12 hours. This was left in a 12N hydrochloric acid aqueous solution at 25°C for 7 days to completely dissolve and remove the dentin, thereby recovering only the hardened composite restorative material.After washing with water, the thin fibrous parts corresponding to dentinal tubules were recovered. and the part corresponding to the dental pulp cavity. Among these, the thin fibrous portion was further washed with methanol, air-dried, and then dried under reduced pressure for 12 hours. The fibrous hardened product obtained in this way was placed on a thermobalance (DT-30, manufactured by Shimadzu Corporation).
Using this, the content of the inorganic filler contained in the cured product was calculated as a percentage from the weight loss rate at 700°C, and this was defined as the detailed filler content. (13) Polymerization shrinkage rate One end has an inner diameter of 2mm, the other end has an inner diameter of 1.5mm,
A Pyrex glass tube with a length of 24,000 mm was coated with mold release agent and silicone oil and wiped off thoroughly. The glass tube was filled to the brim with the composite restorative material kneaded in a room at 23°C and stored in a heated greenhouse at 37°C for 3 hours or irradiated with light for 1 minute. 37℃
When stored in a constant temperature room, the composite restoration material was taken out after 3 hours and cooled to room temperature in a room at 23°C, and its length was measured with a micrometer. The difference between this length and the length of the glass tube divided by the length of the glass tube was multiplied by 100, which was taken as the polymerization shrinkage rate. Example 1 A surface-treated filler ( A-1). Zirconia powder (non-spherical particles) with an average particle size of 17 μm and an average symmetry value of 0.37 (manufactured by Hanui Chemical Co., Ltd., reagent special grade)
is surface-treated in the same manner as (A-1), and is used as a surface-treated filler (A-2). Surface treated filler (B
−1). Ethyl silicate (manufactured by Nippon Colcoat) 350
A solution of g dissolved in 20 methanol is called solution A.
Solution B is a mixed solution of 0.9% of 28% ammonia water and 3.6% of methanol. Keep liquid A and liquid B at 20°C.
While stirring Solution B with a stirrer equipped with a bladed stirring rod, Solution A was added dropwise to Solution B at a rate of 7 ml per minute. As the amount dropped increased, the color of liquid B became white. The white solution was rotary evaporated to remove the solvent and yield a white powder. This powder is calcined at 1000℃ for 1 hour, and the particle size range is
0.21~0.35μm, average particle size 0.25μm, standard deviation value
It was a spherical powder with an average uniformity value of 1.08 and 0.99. This powder was surface-treated with 5% by weight of γ-methacryloxypropyltrimethoxysilane, and this was designated as a surface-treated filler (C-1). 28 parts by weight of triethylene glycol dimethacrylate (hereinafter referred to as TEGDMA) and 2,2-bis[P-(γ-methacryloxy-P-hydroxypropoxy)phenyl]propane (hereinafter referred to as Bis-GMA)
42 parts by weight of TMM3A) and 30 parts by weight of tetramethylolmethane triacrylate (hereinafter referred to as TMM3A) were mixed and divided into two parts. Thereafter, 1.5 parts by weight of N,N-diethanol-P-toluidine was mixed in one part, and 1.8 parts by weight of benzoyl peroxide was mixed in the other part. These are used as polymerizable monomers for paste A and paste B, respectively. 40 parts by weight of the filler is (A-1), 20 parts by weight is (A-2), 20 parts by weight is (B-1), and further 20 parts by weight is (C-1), A polymerizable monomer for Paste A or a polymerizable monomer for Paste B was blended and sufficiently kneaded in an alumina mortar to obtain a Paste A or Paste B composite repair material, respectively. At this time, the content of the silanized filler in the composite restorative material was 86.2% by weight, and the viscosity of the paste was appropriate for operation. The paste flow rate of this composite restorative material is 1.7 mm,
The pressure filling rate was 93.5%, the detail filler content was 73%, and the polymerization shrinkage rate was 0.16%. The properties of paste A and paste B were taken in equal amounts and kneaded at room temperature for 30 seconds and cured. As a result, the coefficient of thermal expansion was 18.0 ppm/°C, and the water absorption rate was
0.18mg/cm 2 , surface hardness 70.0, compressive strength 3820Kg/
cm 2 , tensile strength of 620 Kg/cm 2 , and bending strength of 1210 Kg/cm 2 . Examples 2 to 10 Barium sulfate (manufactured by Wako Pure Chemical Industries, reagent special grade) with an average particle diameter of 5 μm and an average uniformity value of 0.33 was added to 1% by weight of γ.
- A surface treated filler (A-3) that has been surface treated with methacryloxypropyltrimethoxysilane.
shall be. (A-4) is α-quartz (manufactured by Ryumori Co., Ltd., Crystallite) having an average particle diameter of 40 μm and an average symmetry value of 0.35, which was surface-treated in the same manner as (A-1). Zirconia (manufactured by Magnesium Electron) with an average particle diameter of 20 μm and an average symmetry value of 0.46 was (A-
(A-5) which was surface treated in the same manner as in 1).
shall be. Alumina (manufactured by Harima Firebrick Co., Ltd.) having an average particle diameter of 50 μm and an average uniformity value of 0.97 was surface-treated in the same manner as (A-1) and is designated as (B-2). Silica (manufactured by Harima Firebrick Co., Ltd.) having an average particle diameter of 10 μm and an average uniformity value of 0.97 was surface-treated in the same manner as (A-1) and is referred to as (B-3). Glass beads (manufactured by Toshiba Balloteini) having an average particle diameter of 18 μm and an average symmetry value of 0.95 were surface-treated in the same manner as (A-1) and are designated as (B-4). In the method for producing (C-1) described in Example 1,
A particle size range of 0.20 to 0.60 μm, average particle Spherical particles were obtained with a diameter of 0.31 μm, a standard deviation value of 1.61, and an average symmetry value of 0.80. After that, (C-
(C-
2). Surface treated filler (A-1) and/or (C-1) of Example 1 and polymerizable monomer, Bis-GMA and TEGDMA, and/or (A-3), (A-
4), (A-5), (B-2), (B-3), (B-4
),
and/or (C-2), and/or tetramethylolmethanetetraacrylate (hereinafter
TMM4A) was used to prepare a paste in the same manner as in Example 1, and the paste flow rate, pressure filling rate, and detail filler content were measured. Furthermore, the physical properties of the cured composite restorative material were measured, and the results are summarized in Table 1. Example 11 Ethyl silicate (manufactured by Nippon Colcoat Co., Ltd.) 350
Dissolve g in methanol 2.0, add 30 g of water,
The solution heated to 60°C and then cooled to room temperature is referred to as Solution A. 22 g of strontium metal (manufactured by Hanui Chemical Co., Ltd.) is added to 500 ml of purified methanol, and the strontium and methanol are reacted. This reaction solution will be referred to as Solution B. 28% ammonia water 0.9
A mixed solution of 3.6 methanol and 3.6 methanol is called liquid C. Solution B was added to solution A while stirring. This solution was called Solution D, and while keeping Solution C and Solution D at 20°C, stirring Solution C with a stirring rod equipped with a bladed stirring rod,
Solution D was added dropwise to Solution C at a rate of 7 ml per minute. As the amount dropped increased, the color of liquid C became white. The white solution was rotary evaporated to remove the solvent and yield a white powder. This powder was heated to 1000℃ for 1
For time-calcined products, the particle size range is 0.25~
They were spherical particles with an average particle size of 0.40 μm, an average particle diameter of 0.33 μm, a standard deviation value of 1.10, and an average symmetry value of 0.99. This powder was surface-treated with 5% by weight of γ-methacryloxypropyltrimethoxysilane, and this was used as a surface-treated filler (C-3). Surface treated fillers (A-1) and (B-
1), a polymerizable monomer, and (C-3),
A paste was prepared in the same manner as in Example 1, and the paste flow rate, pressure filling rate, and detail filler content were measured. Furthermore, the physical properties of the cured composite restorative material were measured, and the results are summarized in Table 1.

【表】【table】

【表】 実施例 12〜16 実施例1〜11記載の表面処理充填材(A−1)、
(A−3)、(A−4)、(B−3)、(C−1)、(

−2)、及び(C−3)と、TEGDMA28重量部
と、Bis−GMA42重量部とTMM3A30重量部と
からなる重合性単量体に、表−2記載の重合開始
剤を溶解せしめたものを用い、実施例1と同様な
方法でペーストを調製し、ペースト流動量、圧接
充填率及び細部充填材含有率を測定した。さらに
硬化させた複合修復材の物性を測定し、その結果
をまとめて、表−2に示す。
[Table] Examples 12 to 16 Surface treated filler (A-1) described in Examples 1 to 11,
(A-3), (A-4), (B-3), (C-1), (
C
-2) and (C-3), 28 parts by weight of TEGDMA, 42 parts by weight of Bis-GMA, and 30 parts by weight of TMM3A, in which the polymerization initiator listed in Table 2 is dissolved. A paste was prepared in the same manner as in Example 1, and the paste flow rate, pressure filling rate, and detail filler content were measured. Furthermore, the physical properties of the cured composite restorative material were measured, and the results are summarized and shown in Table 2.

【表】【table】

【表】 比較例 1〜4 超微粒子シリカ(エアロジル社製、エロジル
130)、BET比表面積130m2/gで平均粒子径約
16μmを、γ−メタクリロキシプロピルトリメト
キシシラン10重量%で表面処理したものを表面処
理エロジルとする。 重合性単量体、Bis−GMA、TEGDMA、
TMM3A及び表面処理充填材(A−1)、(B−
3)、(B−4)、(C−1)、(C−2)、及び/ま
たは表面処理エロジルを用い、実施例1と同様の
方法でペーストを調製し、ペースト流動量、圧接
充填率及び細部充填材含有率、重合収縮率を測定
した。さらに、硬化させた複合修復材の物性を測
定した結果をまとめて表−2に示す。
[Table] Comparative Examples 1 to 4 Ultrafine particle silica (manufactured by Aerosil Co., Ltd., Aerosil
130), BET specific surface area of 130 m 2 /g and average particle size of approx.
Surface-treated Erosil was obtained by surface-treating 16 μm with 10% by weight of γ-methacryloxypropyltrimethoxysilane. Polymerizable monomer, Bis-GMA, TEGDMA,
TMM3A and surface treated filler (A-1), (B-
3), (B-4), (C-1), (C-2), and/or surface-treated Erosil, a paste was prepared in the same manner as in Example 1, and the paste flow rate and pressure filling rate were Also, the detailed filler content and polymerization shrinkage were measured. Furthermore, the results of measuring the physical properties of the cured composite restorative material are summarized in Table 2.

【表】【table】

【表】【table】

Claims (1)

【特許請求の範囲】 1 重合性単量体、充填材、及び重合開始剤を含
む複合修復材において、充填材として、 (a) 平均粒径が1.0〜100μmである非球形状粒子
(A)10〜90重量%と (b) 平均粒径が1.0〜100μmである球形状粒子(B)
45〜5重量%と (c) 平均粒径が0.1〜1.0μmである球形状粒子(c)45
〜5重量% とを含有する充填材を用いることを特徴とする歯
科用複合修復材。 2 非球形状粒子(A)がX線不透過性無機化合物で
ある特許請求の範囲1記載の歯科用複合修復材。 3 X線不透過性無機化合物が酸化ジルコニウ
ム、酸化バリウム、硫酸バリウム、酸化ランタ
ン、酸化ハフニウム又はこれらの少くとも1成分
を含有する複合酸化物である特許請求の範囲2記
載の歯科用複合修復材。 4 非球形状粒子(A)がX線不透過性無機化合物と
X線透過性無機化合物との混合物である特許請求
の範囲1記載の歯科用複合修復材。 5 球形状粒子(C)の標準偏差値が1.30以下である
特許請求の範囲1記載の歯科用複合修復材。
[Scope of Claims] 1. In a composite restorative material containing a polymerizable monomer, a filler, and a polymerization initiator, as a filler, (a) non-spherical particles having an average particle size of 1.0 to 100 μm;
(A) 10 to 90% by weight and (b) spherical particles with an average particle size of 1.0 to 100 μm (B)
45 to 5% by weight and (c) spherical particles with an average particle size of 0.1 to 1.0 μm (c)45
A dental composite restorative material characterized by using a filler containing ~5% by weight. 2. The dental composite restorative material according to claim 1, wherein the non-spherical particles (A) are an X-ray opaque inorganic compound. 3. The dental composite restorative material according to claim 2, wherein the X-ray opaque inorganic compound is zirconium oxide, barium oxide, barium sulfate, lanthanum oxide, hafnium oxide, or a composite oxide containing at least one component thereof. . 4. The dental composite restorative material according to claim 1, wherein the non-spherical particles (A) are a mixture of an X-ray opaque inorganic compound and an X-ray transparent inorganic compound. 5. The dental composite restorative material according to claim 1, wherein the standard deviation value of the spherical particles (C) is 1.30 or less.
JP60010926A 1985-01-25 1985-01-25 Complex restorative dental material Granted JPS61171404A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60010926A JPS61171404A (en) 1985-01-25 1985-01-25 Complex restorative dental material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60010926A JPS61171404A (en) 1985-01-25 1985-01-25 Complex restorative dental material

Publications (2)

Publication Number Publication Date
JPS61171404A JPS61171404A (en) 1986-08-02
JPH0528683B2 true JPH0528683B2 (en) 1993-04-27

Family

ID=11763839

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60010926A Granted JPS61171404A (en) 1985-01-25 1985-01-25 Complex restorative dental material

Country Status (1)

Country Link
JP (1) JPS61171404A (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0651735B2 (en) * 1988-07-04 1994-07-06 徳山曹達株式会社 Curable composition
DE4029230C2 (en) * 1990-09-14 1995-03-23 Ivoclar Ag Polymerizable dental material
JP4148332B2 (en) * 1998-07-02 2008-09-10 株式会社トクヤマ Light-curing dental restoration material
JP4148334B2 (en) * 1998-08-06 2008-09-10 株式会社トクヤマ Light-curing dental restoration material
WO2002005752A1 (en) * 2000-07-19 2002-01-24 Tokuyama Corporation Photo-curable reparative material for dental use
JP2005170813A (en) * 2003-12-09 2005-06-30 Tokuyama Corp Dental curable composition
JP5762405B2 (en) * 2010-06-18 2015-08-12 株式会社トクヤマデンタル Dental composite restoration material
AU2016218284A1 (en) * 2015-02-09 2017-07-27 Zest Ip Holdings, Llc Dental compositions and methods of use

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5573605A (en) * 1978-11-24 1980-06-03 Bayer Ag Dental substance based on xxray impermeable pasty organic plastics
JPS56133205A (en) * 1980-03-07 1981-10-19 Rohm & Haas Artificial tooth material for permanent tooth
JPS57120506A (en) * 1980-12-03 1982-07-27 Ici Ltd Liquid dental composition, manufacture and manufacturing package
JPS59104306A (en) * 1982-12-08 1984-06-16 Tokuyama Soda Co Ltd Composite composition for polymerization
JPS61148109A (en) * 1984-12-24 1986-07-05 Tokuyama Soda Co Ltd Compound reparative material

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5573605A (en) * 1978-11-24 1980-06-03 Bayer Ag Dental substance based on xxray impermeable pasty organic plastics
JPS56133205A (en) * 1980-03-07 1981-10-19 Rohm & Haas Artificial tooth material for permanent tooth
JPS57120506A (en) * 1980-12-03 1982-07-27 Ici Ltd Liquid dental composition, manufacture and manufacturing package
JPS59104306A (en) * 1982-12-08 1984-06-16 Tokuyama Soda Co Ltd Composite composition for polymerization
JPS61148109A (en) * 1984-12-24 1986-07-05 Tokuyama Soda Co Ltd Compound reparative material

Also Published As

Publication number Publication date
JPS61171404A (en) 1986-08-02

Similar Documents

Publication Publication Date Title
EP2034948B1 (en) Fiber-reinforced composites and method for the manufacture thereof
JP4451501B2 (en) Dental materials containing nanoscale fillers
JP2925155B2 (en) Curable resin composition
JP2008019183A (en) Dental cement
CN101605524B (en) Dental composition
Al-Harthi et al. Laboratory study of micro-shear bond strength of two resin cements to leucite ceramics using different ceramic primers
EP2598101A1 (en) Kit of parts, method of producing and use thereof
JPH0528683B2 (en)
CN108024913B (en) Curable composition, curable composition for dentistry, and organic-inorganic composite particle for dentistry
US10449124B2 (en) Polymerizable composition for dental use
JPH0314282B2 (en)
WO2009142340A1 (en) Dental composition containing organic nanotube
US10799429B2 (en) Kit of parts for producing a paste type glass ionomer cement, process of production and use thereof
EP4082514A1 (en) Paste-like composition for dental use, and method for producing the same
JP2003095837A (en) Glass powder for glass ionomer cement
JPH0755883B2 (en) Composite restorative material
JPH0791171B2 (en) Photocurable resin composite composition for straightening
JP5183976B2 (en) Dental cement
JP2656162B2 (en) Curable composition
Dhanasomboon et al. Bonding amalgam to enamel: Shear bond strength and SEM morphology
Asia An in-vitro study of the physical properties of core build-up materials
Devi et al. The Evaluation of Shear Bond Strength of Different Restorative Composite Resins and Glass Ionomer Cement to White Mineral Trioxide Aggregate: An in Vitro Study
Mahmoud Shear Bond Strength of a New Self Adhesive Resin Composite Restorative Material (An In-Vitro Study)
JP2004067597A (en) Dental composition
JP2578212B2 (en) Maleic acid monoester compounds and adhesives containing them

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees