JPH05286710A - Novel spherical fine k-zeolite particles and their production - Google Patents

Novel spherical fine k-zeolite particles and their production

Info

Publication number
JPH05286710A
JPH05286710A JP12788692A JP12788692A JPH05286710A JP H05286710 A JPH05286710 A JP H05286710A JP 12788692 A JP12788692 A JP 12788692A JP 12788692 A JP12788692 A JP 12788692A JP H05286710 A JPH05286710 A JP H05286710A
Authority
JP
Japan
Prior art keywords
type zeolite
added
suspension
reaction
particle size
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12788692A
Other languages
Japanese (ja)
Inventor
Kanemasa Takadou
銀優 高堂
Tatsuo Murakami
達夫 村上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Chemical Industries Co Ltd
Original Assignee
Fuji Chemical Industries Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Chemical Industries Co Ltd filed Critical Fuji Chemical Industries Co Ltd
Priority to JP12788692A priority Critical patent/JPH05286710A/en
Publication of JPH05286710A publication Critical patent/JPH05286710A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B39/00Compounds having molecular sieve and base-exchange properties, e.g. crystalline zeolites; Their preparation; After-treatment, e.g. ion-exchange or dealumination
    • C01B39/02Crystalline aluminosilicate zeolites; Isomorphous compounds thereof; Direct preparation thereof; Preparation thereof starting from a reaction mixture containing a crystalline zeolite of another type, or from preformed reactants; After-treatment thereof
    • C01B39/46Other types characterised by their X-ray diffraction pattern and their defined composition

Abstract

PURPOSE:To easily produce spherical fine K-zeolite particles having narrow particle size distribution. CONSTITUTION:An aluminum salt is added to an aq. soln. of a potassium salt, colloidal silica is added to the resulting suspension and they are brought into a reaction. A suspension of a product obtd. by the reaction is aged at pH 14 and the solid matter is separated by filtration, washed and dried to produce spherical fine K-zeolite particles having narrow particle size distribution.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、新規な粒度分布の範囲
の狭い、かつ、球状のK型ゼオライト微粒子物質及びそ
の新規な製造法に関する
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a new spherical K-type zeolite fine particle substance having a narrow particle size distribution and a novel method for producing the same.

【0002】[0002]

【従来の技術】従来の球状ゼオライト粒子の製造法とし
ては、シリカーアルミナゾルを噴霧する方法が公知であ
る。この方法は、ゼオライト粉末を粉砕して微粉状とし
たものを噴霧し又は転動式などにより球状に造粒し、次
いで篩分工程を経て球状ゼオライト粒子を得る方法であ
る(特開昭54−62992公報参照)。
BACKGROUND ART As a conventional method for producing spherical zeolite particles, a method of spraying silica-alumina sol is known. This method is a method in which zeolite powder is pulverized into a fine powder, sprayed or granulated into a spherical shape by a rolling method, and then a spherical zeolite particle is obtained through a sieving step (JP-A-54-54). 62992).

【0003】しかしながら、上記の方法で得られる球状
のゼオライト粒子は、一次粒径が比較的粗大であり、か
つ粒度分布も広いものであった。このため、例えばこの
球状粒子をそのまま吸着用充填剤として使用すると、充
填時に細粒と粗粒の偏在化が起こり、均一な充填層が形
成されない。またそのまま化粧料用填料に使用すると粒
子間に空隙が生じ展開性に欠け、ザラツキとして感じら
れるなどの問題があり、必然的に篩分などの二次的操作
により粒径を揃えるなどの前処理を必要とし、球状のゼ
オライト粒子の工業的な製造法としては好ましいもので
はない。
However, the spherical zeolite particles obtained by the above method had a relatively large primary particle size and a wide particle size distribution. Therefore, for example, if the spherical particles are used as they are as an adsorbing filler, fine particles and coarse particles are unevenly distributed at the time of filling, and a uniform packed layer is not formed. In addition, when it is used as it is as a filler for cosmetics, there is a problem that voids are generated between particles and it lacks developability and it feels as graininess. Is required, which is not preferable as an industrial method for producing spherical zeolite particles.

【0004】[0004]

【発明が解決しようとする課題】本発明は、球状で、か
つ、粒度分布の範囲が狭いK型ゼオライト微粒子物質及
びその簡便なる製法を提供することにある。より詳細に
は、上記従来法の様な二次的手法で粒形や粒度分布を制
御することなく、球状で、かつ、粒度分布範囲の狭いK
型ゼオライト微粒子物質及びその簡便な新規製造法を提
供することを目的とする。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a K-type zeolite fine particle substance having a spherical shape and a narrow particle size distribution range, and a simple production method thereof. More specifically, it is spherical and has a narrow particle size distribution range without controlling the particle shape and particle size distribution by a secondary method such as the conventional method.
An object of the present invention is to provide a type zeolite fine particle substance and a simple new production method thereof.

【0005】[0005]

【課題を解決するための手段】本発明者らは、上記問題
点を解決するために鋭意検討した結果、カリウム塩の水
溶液にアルミニウム塩を加え、得られた懸濁液にコロイ
ダルシリカを加え反応させる。次いで、この反応の結果
得られる生成物の懸濁液を、pH14の範囲で熟成した
のち、固体物質をろ別し、水洗し、乾燥することにより
得られる無機粉体物質が、球状でかつ、粒度分布範囲の
狭いK型ゼオライト微粒子からなることを見いだした。
本発明は係る知見に基づいてなされたものである。
Means for Solving the Problems As a result of intensive studies to solve the above problems, the present inventors have found that an aluminum salt is added to an aqueous solution of potassium salt, and colloidal silica is added to the obtained suspension to react. Let The suspension of the product obtained as a result of this reaction is then aged in the range of pH 14, the solid substance is filtered off, washed with water and dried to obtain a spherical inorganic powder substance, and It was found that they consist of K-type zeolite fine particles having a narrow particle size distribution range.
The present invention has been made based on such findings.

【0006】本発明に係る新規なK型ゼオライト微粒子
物質は以下に示す組成で表される白色の球状の無機粉体
物質である。 Al:15〜30重量%、 SiO:AlとSiOのモル比は1:1〜
5、 KO :10〜30重量%
The novel K-type zeolite fine particle substance according to the present invention is a white spherical inorganic powder substance having the following composition. Al 2 O 3: 15 to 30 wt%, SiO 2: Al 2 O 3 molar ratio of SiO 2 is 1: 1
5, K 2 O: 10 to 30% by weight

【0007】本発明のK型ゼオライト微粒子物質の粒子
の一次粒径は、3.0μm以下、50%平均粒子径は1
〜5μmの範囲、B.E.T.比表積は5〜20m
g、屈折率は、1.48〜1.53である。
The primary particle size of the K-type zeolite fine particle material of the present invention is 3.0 μm or less, and the 50% average particle size is 1
˜5 μm range, B.I. E. T. The specific surface area is 5 to 20 m 2 /
g, the refractive index is 1.48 to 1.53.

【0008】本発明の球状で、かつ、粒度分布範囲の狭
いK型ゼオライト微粒子物質の製法を以下に述べる。
The method for producing the spherical K-type zeolite fine particle substance of the present invention having a narrow particle size distribution range will be described below.

【0009】本発明のK型ゼオライト微粒子物質は、先
ず、カリウム塩の水溶液にアルミニウム塩を加え、得ら
れた懸濁液にコロイダルシリカを加え反応させる。次い
で、この反応の結果得られる生成物の懸濁液を、pH1
4で熟成したのち、固体物質をろ別し、水洗し、乾燥す
ることにより得られる。より具体的には、例えば、上記
カリウム塩の水溶液に、アルミニウム塩を加え、得られ
た懸濁液(この時のpHは14)にコロイダルシリカ
(SiO:20%) を加え反応させる。次いで、こ
の反応の結果得られる生成物の懸濁液(この時のpHは
14)を熟成したのち、固体物質をろ別し、水洗し、乾
燥することにより得られる。
In the K-type zeolite fine particle material of the present invention, first, an aluminum salt is added to an aqueous solution of potassium salt, and colloidal silica is added to the obtained suspension to react. The product suspension resulting from this reaction is then brought to pH 1
After aging in 4, the solid substance is filtered off, washed with water and dried. More specifically, for example, an aluminum salt is added to the above potassium salt aqueous solution, and colloidal silica (SiO 2 : 20%) is added to the obtained suspension (pH at this time is 14) to cause a reaction. Then, the product suspension obtained as a result of this reaction (pH at this time is 14) is aged, and then the solid substance is filtered off, washed with water, and dried.

【0010】本発明において用いられるカリウム塩の例
としては、カリウムの水酸化物、炭酸塩、重炭酸塩など
であり、例えば水酸化カリウム、炭酸カリウム、炭酸水
素カリウムなどであり、特に水酸化カリウムが好まし
い。
Examples of the potassium salt used in the present invention include potassium hydroxide, carbonate and bicarbonate, such as potassium hydroxide, potassium carbonate and potassium hydrogen carbonate, and especially potassium hydroxide. Is preferred.

【0011】アルミニウム塩としては、水酸化アルミニ
ウム、塩化アルミニウム、硫酸アルミニウム、硝酸アル
ミニウム、燐酸アルミニウムなどの無機塩であり、これ
ら塩を単独または併用して用いることもできる。上記ア
ルミニウム塩は水に溶解又は懸濁し、又はそのまま、攪
拌しながら前記カリウム塩の水溶液に加える。
The aluminum salt is an inorganic salt such as aluminum hydroxide, aluminum chloride, aluminum sulfate, aluminum nitrate or aluminum phosphate, and these salts may be used alone or in combination. The aluminum salt is dissolved or suspended in water, or is added as it is to the aqueous solution of the potassium salt with stirring.

【0012】コロイダルシリカとしては、珪酸、水性シ
リカなどがあげられる。コロイダルシリカを反応系に加
える際に温度は特に制限はなく、通常は室温で反応系に
滴下する。また、無定形固体シリカを用いる場合には、
予め前述のカリウム塩の水溶液に懸濁し、又はそのまま
反応系に攪拌しながら加える。
Examples of colloidal silica include silicic acid and aqueous silica. The temperature when adding colloidal silica to the reaction system is not particularly limited, and is usually added dropwise to the reaction system at room temperature. When using amorphous solid silica,
It is suspended in advance in an aqueous solution of the above-mentioned potassium salt, or added as it is to the reaction system while stirring.

【0013】コロイダルシリカの濃度としては、酸化物
で表されるシリカの組成が、20〜30%の範囲が好ま
しい。
The concentration of colloidal silica is preferably such that the composition of silica represented by an oxide is in the range of 20 to 30%.

【0014】熟成の温度は、室温〜450゜Cの間の適
宜な温度で、好ましくは50〜150°Cで行う。この
際に熟成温度が100゜C以上の時は、密閉容器にて行
う。熟成の時間は、反応条件により異なるが、30分〜
240時間、好ましくは2〜24時間である。
The aging temperature is from room temperature to 450 ° C, and preferably from 50 to 150 ° C. At this time, when the aging temperature is 100 ° C. or higher, it is carried out in a closed container. The aging time varies depending on the reaction conditions, but is 30 minutes to
It is 240 hours, preferably 2 to 24 hours.

【0015】得られた反応物は、常法に従って、ろ別
し、水洗し、乾燥する。
The obtained reaction product is filtered, washed with water and dried according to a conventional method.

【0016】水洗は洗浄液のpHが10以下になるまで
行う。
Washing with water is carried out until the pH of the washing liquid becomes 10 or less.

【0017】乾燥温度は、50〜200°Cの間の温
度、好ましくは60〜120゜Cである。乾燥時間は、
乾燥温度などにより異なるが、一般的に1〜24時間で
ある。
The drying temperature is between 50 and 200 ° C, preferably between 60 and 120 ° C. The drying time is
Although it varies depending on the drying temperature and the like, it is generally 1 to 24 hours.

【0018】上記製造法で得られた無機粉体物質の物理
化学的性質は、常法に従って求めた。例えば化学的組成
は原子吸光法により、強熱減量(Igloss)は試料
1g取り500゜Cで恒量となった時を測定し、粉末X
線回折スペクトルは、粉末X線回折(XRD;理学電機
社製)を用いて測定し、平均粒径は、日機装(株)マイ
クロトラックMK−IIを用いて測定した。
The physicochemical properties of the inorganic powder substance obtained by the above-mentioned production method were determined by a conventional method. For example, the chemical composition is measured by an atomic absorption method, and the loss on ignition (Igloss) is measured when a constant weight is obtained at 500 ° C. for 1 g of the sample.
The line diffraction spectrum was measured using powder X-ray diffraction (XRD; manufactured by Rigaku Denki Co., Ltd.), and the average particle diameter was measured using Nikkiso Co., Ltd. Microtrack MK-II.

【0019】また、一次粒子径は、走査型電子顕微鏡に
て電子顕微鏡写真を撮影し、写真の中の球状粒子像の径
をスケールを用いて測定し、一次粒子径とした。
The primary particle diameter was determined by taking an electron micrograph with a scanning electron microscope and measuring the diameter of the spherical particle image in the photograph using a scale.

【0020】比表面積は、B.E.T多点法により測定
し、屈折率は、アッペ屈折計にて測定し、嵩密度は、J
IS K 6220・6・8に準じて測定した。
The specific surface area is E. T multipoint method, refractive index was measured by Appe refractometer, and bulk density was J
It was measured according to IS K 6220.6.8.

【0021】本発明により得られた球状のK型ゼオライ
ト微粒子は、1.48 〜1.53の屈折率を有し、比
表面積も小さいので種々の用途に使用することができ
る。例えば、ポリエチレン、ポリプロピレン、塩化ビニ
ルなどの熱可塑性樹脂に配合して、形成される樹脂成型
品、例えば二軸延伸フィルムなどにスリップ性又はアン
チブロッキング性を付与する目的に使用できる。
Since the spherical K-type zeolite fine particles obtained by the present invention have a refractive index of 1.48 to 1.53 and a small specific surface area, they can be used for various purposes. For example, it can be mixed with a thermoplastic resin such as polyethylene, polypropylene or vinyl chloride to be used for the purpose of imparting slip property or anti-blocking property to a resin molded product formed, for example, a biaxially stretched film.

【0022】また、成形用熱硬化型樹脂や被覆形成用塗
料に対する充填剤乃至補強剤又はセラミック基材として
の用途に用いること、又は各種紙に対する内填剤や紙に
対するコート用充填剤として使用できる。
Further, it can be used as a filler or a reinforcing agent for a thermosetting resin for molding or a coating for forming a coating, or as a ceramic base material, or as an internal filler for various papers or a coating filler for papers. ..

【0023】また、ファンデーション、パウダー、クリ
ームなどの種々の化粧料基剤、研磨剤、歯磨き基剤、医
薬、農薬、香料、芳香剤などを担持させるための担体又
は各種クロマトグラフィー用担体として有用である。以
下の実施例において本発明を詳細に説明する。
It is also useful as a carrier for carrying various cosmetic bases such as foundations, powders, creams, abrasives, toothpaste bases, pharmaceuticals, agricultural chemicals, fragrances, aromatics, etc. or various chromatography carriers. is there. The invention is explained in detail in the following examples.

【0024】[0024]

【実施例】【Example】

(実施例1)蒸留水100mlに水酸化カリウム(KO
H:95%)159.3gを溶解し、塩化アルミニウム
53.2gを蒸留水100mlに溶解した液を加え懸濁
液とする。さらに攪拌しながらコロイダルシリカ(Si
:20%、触媒化成工業(株)、品名 カタロイ
ド)64.8gを徐々に滴下する。得られた懸濁液に蒸
留水を加え全量400m1とした後、500mlステン
レススチール容器に移し、100゜Cで18時間攪拌し
た。上記反応の結果得られた懸濁液の化学的組成を酸化
物のモル比で表すと、HO/KO=10、SiO
/Al=2.0、KO/Al=12.5
であった。 反応終了後、反応液を冷却し、ろ過して得
られる固体物質を洗液のpHが10になるまで洗浄し、
次いで60゜Cで24時間乾燥し、白色の無機粉体物質
を得た。
(Example 1) 100 ml of distilled water was added with potassium hydroxide (KO
H: 95%) (159.3 g) is dissolved, and a solution in which 53.2 g of aluminum chloride is dissolved in 100 ml of distilled water is added to form a suspension. Colloidal silica (Si
O 2 : 20%, 64.8 g of Catalyst Kasei Kogyo Co., Ltd., product name: Cataloid) is gradually added dropwise. Distilled water was added to the obtained suspension to make the total amount 400 ml, and the mixture was transferred to a 500 ml stainless steel container and stirred at 100 ° C for 18 hours. The chemical composition of the suspension obtained as a result of the above reaction is expressed by the molar ratio of oxides: H 2 O / K 2 O = 10, SiO 2
/ Al 2 O 3 = 2.0, K 2 O / Al 2 O 3 = 12.5
Met. After completion of the reaction, the reaction solution is cooled and the solid substance obtained by filtration is washed until the pH of the washing solution becomes 10.
Then, it was dried at 60 ° C. for 24 hours to obtain a white inorganic powder substance.

【0025】上記製造法で得られた無機粉体物質の組成
分析の結果は、下記の表1に示す通りである。
The results of the composition analysis of the inorganic powder substance obtained by the above production method are shown in Table 1 below.

【0026】また、当該無機粉体物質の粉末X線回折ス
ペクトルのパターンから、上記生成物は高純度のK型ゼ
オライトであることが確認できる。粉末X線回折スペク
トルの結果は、図1に示す通りであった。
Further, it can be confirmed from the pattern of the powder X-ray diffraction spectrum of the inorganic powder substance that the product is a high-purity K-type zeolite. The result of the powder X-ray diffraction spectrum was as shown in FIG.

【0027】また、粒度分布測定の結果は、50%平均
粒子径が1.26μm,且つ、90%粒子径においても
1.93μmであり、当該無機粉体物質が、微粒子、か
つ、非常に狭い粒度分布範囲をもつものであることを示
している。その結果は図2に示す通りである。
The result of the particle size distribution measurement is that the 50% average particle size is 1.26 μm and the 90% particle size is 1.93 μm, and the inorganic powder substance is fine and very narrow. It shows that it has a particle size distribution range. The result is as shown in FIG.

【0028】また、上記無機粉体物質が球状の微粒子で
あることは、電子顕微鏡写真(倍率10000倍)によ
り確認することができた。その結果は図3に示す通りで
ある。
Further, it was possible to confirm from the electron micrograph (magnification: 10,000 times) that the above-mentioned inorganic powder substance was spherical fine particles. The result is as shown in FIG.

【0029】(実施例2)実施例1と同様の方法によ
り、懸濁液中の酸化物組成のモル比が、HO/K
=7.5、SiO/Al=2.0、KO/S
iO=6.25の懸濁液を調製した。反応終了後、反
応液を冷却し、以下実施例1と同様に後処理した。得ら
れた無機粉体物質の組成分析の結果は下記表1に示す通
りであった。
(Example 2) By the same method as in Example 1, the molar ratio of the oxide composition in the suspension was H 2 O / K 2 O.
= 7.5, SiO 2 / Al 2 O 3 = 2.0, K 2 O / S
A suspension of i0 2 = 6.25 was prepared. After completion of the reaction, the reaction solution was cooled and then post-treated in the same manner as in Example 1. The results of composition analysis of the obtained inorganic powder substance are as shown in Table 1 below.

【0030】[0030]

【表1】 [Table 1]

【0031】[0031]

【発明の効果】本発明により、球状、かつ、粒度分布範
囲の狭いK型ゼオライト微粒子物質及びその新規で簡便
な製造法を提供することができた。すなわち、当該物質
の新規な製造法は、球形の、かつ、粒度分布が狭いK型
ゼオライト微粒子を、従来法の様な二次的手法で粒形や
粒度分布を揃えるなどの操作を必要としない、簡便な方
法で製造することができるなど工業上極めて有利であ
る。
Industrial Applicability According to the present invention, it is possible to provide a K-type zeolite fine particle substance having a spherical shape and a narrow particle size distribution range, and a novel and simple production method thereof. That is, the novel method for producing the substance does not require operations such as making spherical K-shaped zeolite fine particles having a narrow particle size distribution uniform in particle shape and particle size distribution by a secondary method like the conventional method. It is industrially extremely advantageous in that it can be produced by a simple method.

【図面の簡単な説明】[Brief description of drawings]

【図1】K型ゼオライト微粒子の粉末X線回折スペクト
ルである。
FIG. 1 is a powder X-ray diffraction spectrum of K-type zeolite fine particles.

【図2】K型ゼオライト微粒子の粒度分布を示す。FIG. 2 shows a particle size distribution of K-type zeolite fine particles.

【図3】K型ゼオライト微粒子の電子顕微鏡写真(倍率
10000倍)を示す。この図中の白抜きの線の長さは
1μmである。
FIG. 3 shows an electron micrograph (magnification: 10,000 times) of K-type zeolite fine particles. The length of the white line in this figure is 1 μm.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 カリウム塩の水溶液にアルミニウム塩を
加え、得られた懸濁液にコロイダルシリカを加え反応さ
せる。次いで、この反応の結果得られる生成物の懸濁液
を、pH14で熟成したのち、固体物質をろ別し、水洗
し、乾燥することにより得られるK型ゼオライト微粒子
物質。
1. An aluminum salt is added to an aqueous solution of potassium salt, and colloidal silica is added to the obtained suspension to react. Next, a K-type zeolite fine particle substance obtained by aging the suspension of the product obtained as a result of this reaction at pH 14 and then filtering off the solid substance, washing with water and drying.
【請求項2】 カリウム塩が水酸化カリウムであること
を特徴とする請求項1記載のK型ゼオライト微粒子物
質。
2. The K-type zeolite fine particle material according to claim 1, wherein the potassium salt is potassium hydroxide.
【請求項3】 カリウム塩の水溶液にアルミニウム塩を
加え、得られた懸濁液にコロイダルシリカを加え反応さ
せる。次いで、この反応の結果得られる生成物の懸濁液
を、pH14で熟成したのち、固体物質をろ別し、水洗
し、乾燥することにより得られるK型ゼオライト微粒子
物質の製造法。
3. An aluminum salt is added to an aqueous solution of potassium salt, and colloidal silica is added to the obtained suspension to react. Next, a method for producing a K-type zeolite fine particle material obtained by aging the suspension of the product obtained as a result of this reaction at pH 14 and then filtering off the solid material, washing with water and drying.
【請求項4】 カリウム塩が水酸化カリウムであること
を特徴とする請求項3記載のK型ゼオライト微粒子物質
の製造法。
4. The method for producing a K-type zeolite fine particle substance according to claim 3, wherein the potassium salt is potassium hydroxide.
【請求項5】 熟成温度が室温〜450゜Cの範囲であ
る請求項1記載のK型ゼオライト微粒子物質。
5. The K-type zeolite fine particle material according to claim 1, wherein the aging temperature is in the range of room temperature to 450 ° C.
【請求項6】 熟成温度が室温〜450°Cの範囲であ
る請求項3記載のK型ゼオライト微粒子物質の製造法。
6. The method for producing a K-type zeolite fine particle material according to claim 3, wherein the aging temperature is in the range of room temperature to 450 ° C.
JP12788692A 1992-04-03 1992-04-03 Novel spherical fine k-zeolite particles and their production Pending JPH05286710A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12788692A JPH05286710A (en) 1992-04-03 1992-04-03 Novel spherical fine k-zeolite particles and their production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12788692A JPH05286710A (en) 1992-04-03 1992-04-03 Novel spherical fine k-zeolite particles and their production

Publications (1)

Publication Number Publication Date
JPH05286710A true JPH05286710A (en) 1993-11-02

Family

ID=14971091

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12788692A Pending JPH05286710A (en) 1992-04-03 1992-04-03 Novel spherical fine k-zeolite particles and their production

Country Status (1)

Country Link
JP (1) JPH05286710A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100482297B1 (en) * 2002-04-11 2005-04-14 코스모정밀화학 주식회사 Manufacturing Method Of Fine Particle Zeolite

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100482297B1 (en) * 2002-04-11 2005-04-14 코스모정밀화학 주식회사 Manufacturing Method Of Fine Particle Zeolite

Similar Documents

Publication Publication Date Title
KR0140869B1 (en) Amorphous silica-alumina spherical particles and process for preparation thereof
KR950011828B1 (en) Amorphous silica or silica-alumina spherical particles and process for preparation thereof
US5453260A (en) Amorphous silica or silica-alumina spherical particles and process for preparation thereof
US5236680A (en) Preparation of amorphous silica-alumina particles by acid-treating spherical P-type zeolite particles crystallized from a sodium aluminosilicate gel
Park et al. Understanding of homogeneous spontaneous precipitation for monodispersed TiO2 ultrafine powders with rutile phase around room temperature
FR2687658A1 (en) POROUS AND SPHERICAL SILICA OR SILICATE GRANULES, PROCESS FOR THEIR PRODUCTION, AND APPLICATIONS THEREOF
JPH1095617A (en) Plate-shaped titanium oxide, production thereof, and anti-sunburn cosmetic material, resin composition, coating material, adsorbent, ion exchanging resin, complex oxide precursor containing the same
JPS61174103A (en) Production of porous spherical and pulverous powder consisting of metallic oxide
CN1318300C (en) Inorganic oxide
KR950007159B1 (en) Tetra cosahedral siliceous particles and process for preparation thereof
JPH1081507A (en) Magnetic substance-amorphous silica composite particle and its production
Sukhorukov et al. Precipitation of inorganic salts inside hollow micrometer-sized polyelectrolyte shells
JPH05286710A (en) Novel spherical fine k-zeolite particles and their production
Do Kim et al. Synthesis and growth mechanism of TiO2-coated SiO2 fine particles
JP2701877B2 (en) Amorphous silica alumina particles and method for producing the same
JP6079950B1 (en) Method for producing plate-like hydrotalcite-type particles
JP3342905B2 (en) Porous spherical silicate particles, production method thereof and use thereof
JPH11236515A (en) Ultraviolet ray screening fine particle composition and application thereof
JP2003236800A (en) Ceramics nano structural body, composition thereof, and manufacturing method therefor
JPH0262483B2 (en)
JPH0692630A (en) Production of barium sulfate, platy barium sulfate obtaine thereby and cosmetic using the same
JPS59179112A (en) Manufacture of porous membrane body
JP3763987B2 (en) Method for producing aluminosilica composite particles
JP3469292B2 (en) Amorphous amorphous particles of amorphous silica titanate and method for producing the same
JP2553320B2 (en) Method for producing monodisperse ultrafine particles