JPH05285589A - Production of shell core - Google Patents

Production of shell core

Info

Publication number
JPH05285589A
JPH05285589A JP8569192A JP8569192A JPH05285589A JP H05285589 A JPH05285589 A JP H05285589A JP 8569192 A JP8569192 A JP 8569192A JP 8569192 A JP8569192 A JP 8569192A JP H05285589 A JPH05285589 A JP H05285589A
Authority
JP
Japan
Prior art keywords
sand
shell
discharged
core
room temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8569192A
Other languages
Japanese (ja)
Inventor
Hideki Yamaura
秀樹 山浦
Nozomi Kageyama
望 影山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP8569192A priority Critical patent/JPH05285589A/en
Publication of JPH05285589A publication Critical patent/JPH05285589A/en
Pending legal-status Critical Current

Links

Landscapes

  • Casting Devices For Molds (AREA)

Abstract

PURPOSE:To prevent the degradation in a sand discharge rate at the time of production of the shell core by cooling the discharged shell sand to a specific temp. and reusing the sand. CONSTITUTION:The shell sand is blown into a metallic mold and is calcined by which the shell sand is cured inward from the surface in contact with the metallic mold; thereafter, the internal uncured shell sand is discharged. The discharged shell sand is cooled to the temp. exceeding room temp. and below room temp. +10 deg.C and is reused. The melt sticking of the shell sand decreases to approximately the same level as the fusibility of the fresh sand and, therefore, the sand discharge rate does not fall. About the same sand discharge rate is thereby obtd. in spite of repetitive use. The formation of the cured layer to a smaller thickness is possible and the collapsing property of the shell core is improved.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、鋳物に中空部を形成す
るためのシェル中子の製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a shell core for forming a hollow portion in a casting.

【0002】[0002]

【従来の技術】周知のように鋳物に中空部を形成すると
きは中子が使用される。そしてこの中子はレジンを粘結
剤としたシェル砂を用い、シェルマシンにより成形され
たシェル中子が多く使用されている。すなわち、シェル
マシンに取り付けた中子成形用の金型を200〜300
℃に加熱し、この加熱した金型内にシェルマシンのブロ
ーヘッドを介してシェル砂を吹き込んで金型内で焼成す
る。
2. Description of the Related Art As is well known, a core is used when forming a hollow portion in a casting. And this core uses shell sand which made resin a binder, and the shell core shape | molded by the shell machine is used often. That is, the core molding die attached to the shell machine is 200 to 300
The mixture is heated to 0 ° C., shell sand is blown into the heated mold through a blow head of a shell machine, and firing is performed in the mold.

【0003】この焼成によってシェル砂は金型の内面に
接する面から内方に向かって硬化するので、シェル中子
として必要な厚さ硬化させたところで焼成を止め、硬化
部分よりも内部の未硬化のシェル砂を、金型を傾動する
等によりその排出口より排出する。そして、この排出し
たシェル砂(以下排砂という)はシェルマシンの砂タン
クに戻し、この砂タンクに別途補給された新砂(未使用
のシェル砂)とともに、上記のようにしてシェル中子を
製造するために再び(繰り返し)使用する。
By this firing, the shell sand hardens inward from the surface in contact with the inner surface of the mold, so when the shell sand is hardened to the required thickness, the firing is stopped, and the uncured portion inside the hardened portion is uncured. The shell sand of is discharged from the discharge port by tilting the mold. Then, the discharged shell sand (hereinafter referred to as "sand discharge") is returned to the sand tank of the shell machine, and the shell core is manufactured as described above together with fresh sand (unused shell sand) separately supplied to this sand tank. Use again (repeat) to do.

【0004】[0004]

【発明が解決しようとする課題】しかして、シェル中子
は鋳造時に必要な強度が得られる限度において硬化部分
の厚さは薄いことが望ましい。これは鋳造後砂落としの
際のシェル中子の崩壊性を良好にするとともに、排砂率
(排砂の重量と吹き込んだシェル砂の重量との比率
(%))を高くして砂落とし作業の能率向上とシェル砂
の消費量の節減を図るためである。そして特に、軽合金
鋳物の鋳造に際してはシェル中子製造時に排砂を多くす
ることが検討されている。
However, it is desirable that the thickness of the hardened portion of the shell core is thin as far as the strength required during casting can be obtained. This improves the disintegration of the shell core during sand removal after casting, and increases the sand removal rate (ratio (%) of the weight of discharged sand to the weight of blown shell sand) to remove sand. This is for the purpose of improving efficiency and reducing shell sand consumption. And, in particular, when casting a light alloy casting, it has been considered to increase the amount of sand discharged during shell core production.

【0005】しかしながら、シェル砂の再使用を繰り返
していると、排砂の温度が高いため(排砂直後は約10
0℃程度)砂タンクに戻されたときでも45〜50℃と
なお相当に高く、砂タンク内で新砂(室温(約25℃)
程度の温度を保有する)と混合してもシェル砂の温度が
高温になる。そして、シェル砂の温度が高温になると、
シェル砂は互いに融着しやすくなる。すなわち、シェル
中子をシェルマシンにより製造する場合は、シェル中子
の形状、寸法等に応じて金型の加熱温度およびシェル砂
吹き込み後の保持時間を設定して作業管理を行っている
が、上記のようにシェル砂の温度が上昇して互いに融着
しやすくなると、早期に融着が始まって設定時間に達し
たときには、設計した厚さ以上に厚い硬化層が形成され
る。
However, when the shell sand is reused repeatedly, the temperature of the discharged sand is high (about 10
Even when it is returned to the sand tank, it is still considerably high at 45 to 50 ℃, and new sand (room temperature (about 25 ℃))
The temperature of the shell sand becomes high even if mixed with a certain temperature). And when the temperature of the shell sand becomes high,
The shell sands tend to fuse together. That is, when the shell core is manufactured by a shell machine, the work temperature is controlled by setting the mold heating temperature and the holding time after the shell sand is blown according to the shape, size, etc. of the shell core. As described above, when the temperature of the shell sand rises and it becomes easy to fuse with each other, when the fusion starts early and reaches the set time, a hardened layer thicker than the designed thickness is formed.

【0006】硬化層の厚さが厚くなると、排砂率が低下
するとともに、砂落とし時のシェル中子の崩壊性が悪く
なるという問題を生ずる。本発明は上記問題点を解消
し、硬化層を薄くすることによって排砂率を向上し、か
つ崩壊性の良好なシェル中子を得ることのできる製造方
法を提供することを目的とするものである。
When the thickness of the hardened layer is increased, the sand removal rate is reduced and the shell core disintegration property during sand removal is deteriorated. It is an object of the present invention to solve the above-mentioned problems, to improve the sand removal rate by thinning the hardened layer, and to provide a production method capable of obtaining a shell core having good disintegration property. is there.

【0007】[0007]

【課題を解決するための手段】上記目的を達成するため
の本発明方法における構成の第1は、シェルマシンに装
着して加熱した中子成形用の金型内にシェル砂を吹き込
み、該シェル砂を焼成して前記金型に接する面から内方
に向かって硬化せしめた後、内部の未硬化のシェル砂を
排出する工程を有するシェル中子の製造方法において、
前記排出したシェル砂を室温を超え室温+10℃以下の
温度に冷却して再使用することを特徴とするものであ
り、また構成の第2は、構成の第1にて排出後冷却した
シェル砂を未使用のシェル砂と混合して再使用すること
を特徴とするものである。
The first constitution of the method of the present invention for achieving the above object is to blow shell sand into a mold for core molding which is mounted on a shell machine and heated, and the shell sand is blown. In a method for manufacturing a shell core, which comprises a step of firing sand to cure it inward from a surface in contact with the mold, and discharging an uncured shell sand inside,
The discharged shell sand is cooled to a temperature higher than room temperature and not higher than room temperature + 10 ° C. and reused, and the second structure is the shell sand cooled after being discharged in the first structure. Is mixed with unused shell sand and reused.

【0008】[0008]

【作用】排砂を室温まで冷却することによってシェル砂
の融着性が減少し新砂と同程度になる。従って新砂とほ
ぼ同程度の排砂率が得られる。また、排砂の冷却は上記
室温よりも10℃高い温度までであれば、融着性が相当
に低下して上記室温まで冷却した場合とあまり変わりが
なく、ほぼ同程度の排砂率が得られものである。そして
このことは繰り返し再使用しても同様である。さらに、
室温を超え室温+10℃以下の温度に冷却した排砂を新
砂と混合して繰り返し再使しても上記同様の排砂率が得
られる。
[Function] By cooling the discharged sand to room temperature, the fusion property of the shell sand is reduced and becomes equal to that of the new sand. Therefore, it is possible to obtain a sand removal rate similar to that of fresh sand. Further, if the temperature of the discharged sand is up to 10 ° C. higher than the room temperature, the fusion property is considerably reduced and there is not much difference from the case of cooling to the room temperature, and the almost same degree of the discharged sand is obtained. It is a gift. This also applies to repeated reuse. further,
Even if the discharged sand that has been cooled to a temperature higher than room temperature and not higher than room temperature + 10 ° C. is mixed with fresh sand and reused repeatedly, the same ratio of discharged sand can be obtained.

【0009】[0009]

【実施例】以下、本発明の実施例を説明する。図1は試
験用シェル成形品(以下テスト品という)の正面断面図
であり、図2は試験結果を示すグラフである。まず、室
温(25℃)の新砂を用いて200℃に加熱した金型に
吹き込みを行い図1に示す形状、寸法(寸法線内の数
値)のテスト品1を成形した後排砂を行い、テスト品1
の融着点抗折力および排砂率等の砂性質を測定した。次
に上記排砂すなわち新砂の戻り砂を再び室温まで冷却し
た後、上記新砂の場合と同様にしてテスト品1を成形
し、その砂性質を測定して前記新砂により成形した場合
と比較した。その結果を表1に示す。
EXAMPLES Examples of the present invention will be described below. FIG. 1 is a front sectional view of a test shell molded product (hereinafter referred to as a test product), and FIG. 2 is a graph showing test results. First, using fresh sand at room temperature (25 ° C.), it is blown into a mold heated to 200 ° C. to form a test product 1 having the shape and dimensions (numerical values within the dimension line) shown in FIG. Test product 1
Sand properties such as fusion point transverse rupture strength and sand removal rate were measured. Next, after the discharged sand, that is, the returned sand of the fresh sand, was cooled to room temperature again, the test product 1 was molded in the same manner as in the case of the fresh sand, and the properties of the sand were measured and compared with the case of molding with the fresh sand. The results are shown in Table 1.

【0010】[0010]

【表1】 [Table 1]

【0011】表1に見られるように新砂を用いてテスト
品1を成形したときの砂性質と、新砂の戻り砂でテスト
品1を成形したときの砂性質とは殆んど変わりがなかっ
た。すなわち、これにより排砂を室温まで冷却すること
により、新砂と同様に繰り返し再使用できることがわか
った。また、その冷却は室温より10℃高い温度でも砂
性質は殆んど変わりがないことが別の実験でもわかっ
た。これらの結果、新砂の戻り砂だけを用いてシェル中
子を形成してもよく、また、新砂と新砂の戻り砂とを混
合して使用してもよいことがわかった(新砂を用いてテ
スト品1を形成したときの排砂率を示す図2の折線Aと
殆んど同じ結果が得られた)。
As can be seen from Table 1, there was almost no difference between the sand properties when the test product 1 was formed by using the new sand and the sand properties when the test product 1 was formed by the return sand of the new sand. .. That is, it was found that by cooling the discharged sand to room temperature, it can be reused repeatedly like new sand. Further, it was also found in another experiment that the sand properties were almost unchanged even when the cooling was 10 ° C. higher than room temperature. As a result, it was found that the shell core may be formed by using only the returned sand of the fresh sand, or the fresh sand and the returned sand of the fresh sand may be mixed and used. Almost the same result as the broken line A in FIG. 2 showing the sand removal rate when the product 1 was formed was obtained).

【0012】次に、室温(25℃)の新砂を用いてテス
ト品1を成形した後、その戻り砂(排砂)を冷却するこ
となく、従来どおり砂タンク(図示せず)にて室温の新
砂と混合しながら、新砂による成形(第1図)を含めて
18個テスト品1の成形を行った(成形タクト約3
0″)。このときの排砂率の変化の状況を図2に折線B
で示す。図2からわかるように、排砂の冷却を行わない
と成形個数がある個数(この場合は6個)を超えると急
速に排砂率が低下し、またある個数(この場合13個)
以上になるとこれ以上排砂率が低下せず、低下したまま
安定状態になっている。
Next, after molding the test product 1 using new sand at room temperature (25 ° C.), the returned sand (exhaust sand) is not cooled but kept at room temperature in a sand tank (not shown) as usual. While mixing with fresh sand, 18 test pieces 1 were molded including molding with fresh sand (Fig. 1) (molding tact about 3
0 ″). The change in sand removal rate at this time is shown in Fig. 2 by the broken line B.
Indicate. As can be seen from Fig. 2, if the number of moldings exceeds a certain number (6 in this case) without cooling the sand, the sand removal rate decreases rapidly, and a certain number (13 in this case)
When it is above, the sand removal rate does not decrease any more, and it remains stable.

【0013】このことは、排砂を冷却しないで使用して
いると、次第に砂の温度が上昇して融着開始の時間が早
くなり、設定時間に達したときの硬化層2の厚さtが次
第に厚くなって排砂率が低下することを示している。従
って、排砂を冷却して再使用すると排砂率の低下を抑制
できることがわかる。
This means that when the sand discharge is used without being cooled, the temperature of the sand gradually rises and the time to start the fusion becomes shorter, and the thickness t of the hardened layer 2 when the set time is reached. Indicates that the sand gradually becomes thicker and the sand removal rate decreases. Therefore, it is understood that if the discharged sand is cooled and reused, the decrease of the discharged sand ratio can be suppressed.

【0014】[0014]

【発明の効果】上述のように本発明によると、シェル中
子製造時の排砂率の低下を抑制して硬化層を薄くするこ
とにより、シェル中子の崩壊性を良好にして砂落としの
作業能率を向上するとともに、シェル砂の消費量を節減
して鋳物の原価低減等に寄与することができるものであ
る。なお、排砂の冷却は、例えば砂タンクに移送する途
中で、新砂と混合する前に行ってもよいし、また、別の
場所に移送して別途行ってもよい。
As described above, according to the present invention, it is possible to improve the collapsibility of the shell core and reduce the sand removal by suppressing the decrease of the sand removal rate during the production of the shell core and thinning the hardened layer. The work efficiency can be improved and the consumption of shell sand can be reduced to contribute to the cost reduction of castings. The discharged sand may be cooled, for example, while being transferred to a sand tank, before being mixed with fresh sand, or may be transferred to another place and separately.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例を示すテスト品の正面断面図
である。
FIG. 1 is a front sectional view of a test product showing an embodiment of the present invention.

【図2】シェル中子の成形個数と排砂率との関係を示す
グラフである。
FIG. 2 is a graph showing the relationship between the number of molded shell cores and the sand removal rate.

【符号の説明】[Explanation of symbols]

1 テスト品 2 硬化層 t 硬化層の厚さ 1 Test product 2 Hardened layer t Hardened layer thickness

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 シェルマシンに装着して加熱した中子成
形用の金型内にシェル砂を吹き込み、該シェル砂を焼成
して前記金型に接する面から内方に向かって硬化せしめ
た後、内部の未硬化のシェル砂を排出する工程を有する
シェル中子の製造方法において、前記排出したシェル砂
を室温を超え室温+10℃以下の温度に冷却して再使用
することを特徴とするシェル中子の製造方法。
1. After the shell sand is blown into a mold for core molding which is mounted on a shell machine and heated, and the shell sand is baked and hardened inward from the surface in contact with the mold. In the method for producing a shell core, which comprises the step of discharging the uncured shell sand inside, the shell is characterized in that the discharged shell sand is cooled to a temperature above room temperature and below room temperature + 10 ° C. and reused. Core manufacturing method.
【請求項2】 排出後冷却したシェル砂を未使用のシェ
ル砂と混合して再使用することを特徴とする請求項1に
記載のシェル中子の製造方法。
2. The method for producing a shell core according to claim 1, wherein the shell sand cooled after discharge is mixed with an unused shell sand and reused.
JP8569192A 1992-04-07 1992-04-07 Production of shell core Pending JPH05285589A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8569192A JPH05285589A (en) 1992-04-07 1992-04-07 Production of shell core

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8569192A JPH05285589A (en) 1992-04-07 1992-04-07 Production of shell core

Publications (1)

Publication Number Publication Date
JPH05285589A true JPH05285589A (en) 1993-11-02

Family

ID=13865872

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8569192A Pending JPH05285589A (en) 1992-04-07 1992-04-07 Production of shell core

Country Status (1)

Country Link
JP (1) JPH05285589A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6443221B1 (en) * 1999-03-03 2002-09-03 Nippon Steel Corporation Continuous casting apparatus for molten metal

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6443221B1 (en) * 1999-03-03 2002-09-03 Nippon Steel Corporation Continuous casting apparatus for molten metal

Similar Documents

Publication Publication Date Title
EP0255577B1 (en) Method of producing mold for slip casting
US3160931A (en) Core casting method
CN110732637A (en) turbine blade air film hole precision forming method
JP2003507192A (en) METHOD AND APPARATUS FOR PRODUCING METAL GRID NETWORK
JPH09253792A (en) Paper core for casting and its manufacture
JPH05285589A (en) Production of shell core
JPH0824996B2 (en) Water-soluble core and method for producing the same
JP5363216B2 (en) Casting core and casting method
JP2004106038A (en) Resin coated sand, method for producing the same, and casting mold
JP2003170245A (en) Method for coating core material and manufacturing method for hollow structure
JPS60145243A (en) Production of die
JP2002192305A (en) Method for manufacturing core for casting
JP3629640B2 (en) Method for producing collapsible sand core for casting and sand core thereof
JPS58128245A (en) Production of sand core for pressure casting
JP3545538B2 (en) Manufacturing method of core piece for forming cast holes
JPH06126376A (en) Special core for casting
JPH0318450A (en) Manufacture of ceramic mold
JP2004223529A (en) Method for manufacturing piece type tire mold
JPH08155588A (en) Molding formed using special core for molding
JPH06340467A (en) Production of ceramic molded body
JP3835973B2 (en) Manufacturing method of casting with thin wall
JPS58202944A (en) Production of metallic mold
US20040238146A1 (en) Method of manufacturing dies and molds by melting-spray
JP3460406B2 (en) Casting core, method of manufacturing casting core, and method of treating cast product
JPH05318024A (en) Collapsible placed core for die casting