JPH0528519Y2 - - Google Patents

Info

Publication number
JPH0528519Y2
JPH0528519Y2 JP11647286U JP11647286U JPH0528519Y2 JP H0528519 Y2 JPH0528519 Y2 JP H0528519Y2 JP 11647286 U JP11647286 U JP 11647286U JP 11647286 U JP11647286 U JP 11647286U JP H0528519 Y2 JPH0528519 Y2 JP H0528519Y2
Authority
JP
Japan
Prior art keywords
crucible
oxygen
sample
crucibles
double
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP11647286U
Other languages
Japanese (ja)
Other versions
JPS6323648U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP11647286U priority Critical patent/JPH0528519Y2/ja
Publication of JPS6323648U publication Critical patent/JPS6323648U/ja
Application granted granted Critical
Publication of JPH0528519Y2 publication Critical patent/JPH0528519Y2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【考案の詳細な説明】[Detailed explanation of the idea]

〔産業上の利用分野〕 本考案は金属等の試料中に含まれる酸素、窒
素、水素等のガス成分を定量するために用いられ
るガス分析用るつぼに関するものである。 〔従来の技術〕 この種のるつぼは主として黒鉛からなり、第4
図に示すようにるつぼ本体1からなる単一構造の
ものと、第5図に示すように外るつぼ11と、該
外るつぼ11内に挿着される内るつぼ12とから
なる二重構造のものとがある。 第4図に示す単一構造のるつぼ1は内部に試料
を投入して不活性ガス気流中におき、該るつぼ1
を構成する黒鉛を抵抗体として電流を流し、該る
つぼ1を発熱せしめることにより内部の試料を融
解または分解して試料中に含まれるガス成分を抽
出し、該ガス成分のうち酸素はCOまたはCO2
して赤外線吸収検出器または熱伝導度検出器で検
出し、窒素または水素は熱伝導度検出器で夫々検
出する方法が行われている。 第5図に示す二重構造のるつぼ1Aは外るつぼ
11を抵抗発熱体として電流を流し、内るつぼ1
2は外るつぼ11により間接的に加熱される。 したがつて第4図に示す単一構造のるつぼ1よ
りも第5図に示す二重構造のるつぼ1Aの方が試
料が均一に加熱され一定の抽出條件が得られるの
でより精度の高い定量が出来る。 〔考案が解決しようとする問題点〕 上記るつぼ1,1Aを用いてガス分析を行なう
にはまず試料を投入しないるつぼ1,1Aのみを
不活性ガス雰囲気で一般には2500〜3000℃の高温
に加熱しるつぼ1,1Aの周囲あるいはるつぼ
1,1A中に含まれるガスを脱ガスする。次いで
るつぼ1,1Aに流す電流を若干下げて脱ガス温
度より若干低い温度にしてからるつぼ1,1A内
に分析しようとする試料を投入し前記したような
ガス分析を行なう。 るつぼ1,1Aを上記のように2500〜3000℃に
加熱して所定時間の脱ガスを行なつた後、温度を
若干下げて試料を投入せずにブランクのガス分析
(酸素)を行なつた。るつぼ1の場合を第6図、
るつぼ1Aの場合を第7図に示す。るつぼ1の場
合は第6図にみるように脱ガス後の分析中に発生
する酸素は殆んど存在しないが、るつぼ1Aの場
合は第7図にみるように脱ガス後の分析中におい
て発生する酸素が検出される。該酸素は時間の経
過と共に徐々に低下しているのが、このような酸
素の発生状況は場合により例えばグラフイ,ロの
ようにばらつきを生ずる。したがつて二重構造の
るつぼ1Aは酸素を比較的高含有率含む試料でブ
ランクの変動が無視される場合においては試料が
均一に加熱されることにより、高い分析精度が得
られるが、微量分析の場合には上記したようなブ
ランクの変動によつて分析精度が逆に悪くなる。 〔問題点を解決するための手段〕 本考案は上記従来の問題点を解決するための手
段として、外るつぼと、該外るつぼ内に挿着され
る内るつぼとからなる二重構造のるつぼにおい
て、該外るつぼと該内るつぼとにより形成される
空間と外界とを通づる導通手段とを設けるもので
ある。 〔実施例〕 本考案を第1図および第2図に示す一実施例に
よつて説明すれば、るつぼ1Bは外るつぼ11と
該外るつぼ11内に挿着される内るつぼ12とか
らなり、該内るつぼ12の外周には外るつぼ11
と内るつぼ12とにより形成される空間13と外
界とを通づる縦溝12Aが形成されている。 第3図は他の実施例を示すもので、本実施例の
るつぼ1Cにおいては外るつぼ11の周壁に外る
つぼ11と内るつぼ12とにより形成される空間
13と外界とを通づる横孔11Aが設けられる。 更に上記実施例以外、例えば外るつぼ11の内
周に縦溝を設けてもよい。 〔作用〕 本考案のるつぼ1B,1Cを加熱して脱ガスを
行なうと外るつぼ11と内るつぼ12とにより形
成される空間13中に存在する酸素は縦溝12A
あるいは横孔11A等の導通手段により外界へ逃
散する。 第5図に示す従来の二重構造のるつぼ1Aと第
1図および第3図に示す本考案のるつぼ1B,1
Cとについて酸素の定量にブランクの変動が与え
る影響を調べた。その結果は第1表に示される。
第1表において用いられるガス分析のための試料
は鋼材である。
[Industrial Application Field] The present invention relates to a gas analysis crucible used for quantifying gas components such as oxygen, nitrogen, and hydrogen contained in samples such as metals. [Prior art] This type of crucible is mainly made of graphite,
A single structure consisting of a crucible body 1 as shown in the figure, and a double structure consisting of an outer crucible 11 and an inner crucible 12 inserted into the outer crucible 11 as shown in FIG. There is. A crucible 1 having a single structure shown in FIG.
A current is passed through the graphite constituting the crucible 1 as a resistor to generate heat in the crucible 1, thereby melting or decomposing the sample inside and extracting the gas components contained in the sample. 2 is detected using an infrared absorption detector or a thermal conductivity detector, and nitrogen or hydrogen is detected using a thermal conductivity detector, respectively. The double-structured crucible 1A shown in FIG.
2 is indirectly heated by the outer crucible 11. Therefore, the double-structured crucible 1A shown in FIG. 5 can heat the sample more uniformly and obtain constant extraction conditions than the single-structured crucible 1 shown in FIG. 4, allowing for more accurate quantification. I can do it. [Problems to be solved by the invention] To perform gas analysis using the above-mentioned crucibles 1 and 1A, first, only the crucibles 1 and 1A, into which no sample is placed, are heated to a high temperature, generally 2500 to 3000°C, in an inert gas atmosphere. Gas contained around or in the crucibles 1 and 1A is degassed. Next, the current flowing through the crucibles 1 and 1A is slightly lowered to a temperature slightly lower than the degassing temperature, and then the sample to be analyzed is introduced into the crucibles 1 and 1A, and the gas analysis as described above is performed. After heating crucibles 1 and 1A to 2,500 to 3,000°C as described above and degassing them for a predetermined period of time, the temperature was lowered slightly and a blank gas analysis (oxygen) was performed without adding a sample. . Figure 6 shows the case of crucible 1.
The case of crucible 1A is shown in FIG. In the case of crucible 1, as shown in Figure 6, there is almost no oxygen generated during analysis after degassing, but in the case of crucible 1A, oxygen is generated during analysis after degassing, as shown in Figure 7. Oxygen is detected. Although the oxygen level gradually decreases with the passage of time, the state of oxygen generation may vary depending on the situation, as shown in graphs and graphs. Therefore, the double-structured crucible 1A can provide high analysis accuracy by uniformly heating the sample when the sample contains a relatively high oxygen content and blank fluctuations are ignored. In this case, the analysis accuracy deteriorates due to the above-mentioned blank fluctuations. [Means for Solving the Problems] The present invention, as a means for solving the above-mentioned conventional problems, provides a crucible with a double structure consisting of an outer crucible and an inner crucible inserted into the outer crucible. , a conduction means is provided for communicating the space formed by the outer crucible and the inner crucible with the outside world. [Embodiment] The present invention will be described with reference to an embodiment shown in FIGS. 1 and 2. The crucible 1B consists of an outer crucible 11 and an inner crucible 12 inserted into the outer crucible 11. An outer crucible 11 is disposed around the outer periphery of the inner crucible 12.
A vertical groove 12A is formed which communicates between the space 13 formed by the inner crucible 12 and the outside world. FIG. 3 shows another embodiment, in which the crucible 1C of this embodiment has a horizontal hole 11A in the peripheral wall of the outer crucible 11 through which the space 13 formed by the outer crucible 11 and the inner crucible 12 communicates with the outside world. will be provided. Further, in addition to the embodiments described above, for example, vertical grooves may be provided on the inner periphery of the outer crucible 11. [Operation] When the crucibles 1B and 1C of the present invention are heated and degassed, the oxygen present in the space 13 formed by the outer crucible 11 and the inner crucible 12 is removed from the vertical groove 12A.
Alternatively, it escapes to the outside world through a conductive means such as the horizontal hole 11A. A conventional double-structured crucible 1A shown in FIG. 5 and crucibles 1B and 1 of the present invention shown in FIGS. 1 and 3.
The influence of blank fluctuations on the determination of oxygen with respect to C was investigated. The results are shown in Table 1.
The samples for gas analysis used in Table 1 are steel materials.

〔考案の効果〕[Effect of idea]

したがつて本考案においては試料を均一に加熱
出来ると云う二重構造のるつぼの利点はそのまゝ
生かし、かつ二重構造のるつぼの有するブランク
の変動が大きいと云う欠点が解消され、精度の高
いガス分析が出来る。
Therefore, in the present invention, the advantage of the double-structured crucible in that the sample can be heated uniformly is taken advantage of, while the disadvantage of the double-structured crucible, which has large blank fluctuations, is eliminated, and accuracy is improved. High quality gas analysis is possible.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図および第2図は本考案の一実施例を示す
ものであり、第1図は側断面図、第2図は内るつ
ぼの斜視図、第3図は他の実施例の側断面図、第
4図は従来の単一構造るつぼの側断面図、第5図
は従来の二重構造るつぼの側断面図、第6図は縦
軸に計数値、横軸に時間(秒)をとつたるつぼ1
のブランクのガス分析グラフ、第7図は縦軸に計
数値、横軸に時間(秒)をとつたるつぼ1Aのブ
ランクのガス分析グラフである。 図中、1,1A,1B,1C……るつぼ、11
……外るつぼ、12……内るつぼ、11A……横
孔、12A……縦溝。
Figures 1 and 2 show one embodiment of the present invention; Figure 1 is a side sectional view, Figure 2 is a perspective view of the inner crucible, and Figure 3 is a side sectional view of another embodiment. , Fig. 4 is a side sectional view of a conventional single structure crucible, Fig. 5 is a side sectional view of a conventional double structure crucible, and Fig. 6 shows count values on the vertical axis and time (seconds) on the horizontal axis. vine melting pot 1
FIG. 7 is a blank gas analysis graph of the crucible 1A with count values on the vertical axis and time (seconds) on the horizontal axis. In the figure, 1, 1A, 1B, 1C... crucible, 11
...Outer crucible, 12...Inner crucible, 11A...Horizontal hole, 12A...Vertical groove.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 外るつぼと、該外るつぼ内に挿着される内るつ
ぼとからなり、該外るつぼと該内るつぼとにより
形成される空間と外界とを通づる導通手段が設け
られたことを特徴とするガス分析用るつぼ。
A gas comprising an outer crucible and an inner crucible inserted into the outer crucible, and provided with a conduction means for passing the space formed by the outer crucible and the inner crucible to the outside world. Analytical crucible.
JP11647286U 1986-07-29 1986-07-29 Expired - Lifetime JPH0528519Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11647286U JPH0528519Y2 (en) 1986-07-29 1986-07-29

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11647286U JPH0528519Y2 (en) 1986-07-29 1986-07-29

Publications (2)

Publication Number Publication Date
JPS6323648U JPS6323648U (en) 1988-02-16
JPH0528519Y2 true JPH0528519Y2 (en) 1993-07-22

Family

ID=31001094

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11647286U Expired - Lifetime JPH0528519Y2 (en) 1986-07-29 1986-07-29

Country Status (1)

Country Link
JP (1) JPH0528519Y2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022091748A1 (en) * 2020-11-02 2022-05-05 株式会社堀場製作所 Element analysis method, element analysis device, and program for element analysis device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022091748A1 (en) * 2020-11-02 2022-05-05 株式会社堀場製作所 Element analysis method, element analysis device, and program for element analysis device

Also Published As

Publication number Publication date
JPS6323648U (en) 1988-02-16

Similar Documents

Publication Publication Date Title
Booth et al. Developments in the micro vacuum fusion method with particular reference to the determination of oxygen, nitrogen and hydrogen in beryllium, titanium, zirconium, thorium and uranium
Brenninkmeijer et al. A batch process for direct conversion of organic oxygen and water to CO2 for 18O16O analysis
JPH0528519Y2 (en)
US3946228A (en) Method and apparatus for determining gas content in inorganic substances
US4971438A (en) Graphite tube furnace with specimen support for atomic absorption spectroscopy
Stanley et al. Determination of Oxygen in Zirconium Metal by Vacuum Fusion Method
Langmyhr et al. Atomic absorption spectrometric determination of aluminium in whole blood
Wood et al. The determination of oxygen in titanium-manganese alloys
JP2582997Y2 (en) Molten metal sampling probe
JP2536494B2 (en) Sample-only heat flux type differential scanning calorimeter
SU539262A1 (en) Device for the determination of gases in metals
Winge et al. Studies on the DC carbon arc, gas-chromatographic technique for the determination of gases in metal
JPS642210B2 (en)
Huffman et al. Analysis of lead in evaporated milk by flameless atomic absorption spectroscopy
Horrigan et al. Determination of Oxygen in Yttrium Fluoride by Vaccum Distillation Technique
McMahon et al. The vacuum fusion method for determining minute quantities of gases in metals
Fricioni et al. Inert gas fusion
Bois et al. Use of Analysis of Carbon Content for Determining the Processes Taking Place During the Sintering of Iron--Graphite Mixtures
McCamley et al. The determination of sodium in aluminium and its alloys by vacuum distillation
JPH04104054A (en) Oxygen determining graphite crucible
Yurin et al. Temperature Dependence of Nitrogen Solubility in Liquid Iron
SU817525A1 (en) Graphite capsule for determining gases in metals
JPS61107091A (en) Vessel for processing material
Fedoroff et al. Simultaneous determination of nitrogen and carbon in silicon by photon activation
JP2848680B2 (en) Pyrolysis tube for determination of oxygen in organic compounds