JPH05283106A - Battery positive electrode sheet, its manufacture, fully-solid secondary battery - Google Patents

Battery positive electrode sheet, its manufacture, fully-solid secondary battery

Info

Publication number
JPH05283106A
JPH05283106A JP4102398A JP10239892A JPH05283106A JP H05283106 A JPH05283106 A JP H05283106A JP 4102398 A JP4102398 A JP 4102398A JP 10239892 A JP10239892 A JP 10239892A JP H05283106 A JPH05283106 A JP H05283106A
Authority
JP
Japan
Prior art keywords
positive electrode
polymer
fine particles
electrode sheet
battery positive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4102398A
Other languages
Japanese (ja)
Inventor
Morihiko Matsumoto
守彦 松本
Toshihiro Ichino
敏弘 市野
Shiro Nishi
史郎 西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP4102398A priority Critical patent/JPH05283106A/en
Publication of JPH05283106A publication Critical patent/JPH05283106A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To provide a battery positive electrode sheet easy to manufacture and having a high positive electrode utilization factor by forming the positive electrode sheet with a mixture of positive electrode active material particulates using a polymer solid electrode as a binder and electron conducting material particulates. CONSTITUTION:A polymer particulate dispersion liquid containing a polymer soluble in a dispersion medium made of water and a polar solvent and a surface active agent and containing positive electrode active material particulates and electron conducting material particulates is heated and removed with the dispersion medium to form a sheet. It is then impregnated with a metal salt electrolyte to form a positive electrode sheet. A polymer solid electrolyte can be also formed with a dispersion liquid. When a high-ion conductivity polymer electrolyte using a metal salt electrolyte is used for an ion transmission path, the ion diffusion in the sheet is accelerated. The polymer matrix in the solid electrolyte is separated from the ion transmission path, thus the plasticization due to the infiltration of the electrolyte can be suppressed. The positive electrode utilization factor is improved, and the manufacture is facilitated.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、特に、リチウム二次電
池等の高エネルギー密度電池等に適用できる、高効率
で、製造がしやすい電池正極シート、並びに該電池正極
シートで構成された全固体二次電池に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention is particularly applicable to high energy density batteries such as lithium secondary batteries and the like, has high efficiency and is easy to manufacture, and a battery positive electrode sheet composed of the battery positive electrode sheet. The present invention relates to a solid secondary battery.

【0002】[0002]

【従来の技術】近年、小型、携帯電子機器用の電源とし
て、高エネルギー密度を有する電池のニーズが高まって
いる。このようなニーズを満たす電池の代表的なものと
して、アルカリ金属、特にリチウムを負極に使った電池
が挙げられる。現在リチウム電池は、電解質にリチウム
塩を溶解した有機電解液を用いているため、液漏れ、デ
ンドライトショートなど、安全面での信頼性が十分とは
いえない。このため無機物や高分子でできた固体電解質
を用いた全固体電池の実現が期待されている。高分子固
体電解質型の電池は、電解質がシート状の高分子材料で
あり、また正極は正極活物質微粒子、電子伝導性物質微
粒子を高分子電解質中に分散したシートで構成される。
高分子材料は加工性がよく、電解質、電極が共に大面積
シートで構成できることから、高分子固体電解質をベー
スとした大容量電池の実現が期待され、近年盛んに検討
が進められている。このような高分子固体電解質には従
来、ポリエチレンオキシド(PEO)等のポリエーテル
化合物中に金属塩を溶解させた系が盛んに研究されてき
たが〔渡辺、緒方、金属表面技術、第37巻、第5号、
第214〜221頁(1986)参照〕、室温付近にお
いて10-4S/cm以上のイオン伝導率を発現すること
は不可能であった。また近年、極性高分子に金属塩電解
質溶液を含浸させた電解液含浸型の高分子固体電解質が
注目を浴び〔例えば、コックスバン( Koksbang ) ほ
か、ジャーナル オブ パワー ソーセス( Journal o
f Power Sources ) 、第32巻、第175〜185頁
(1990)参照〕、そのイオン伝導率は10-3S/c
m台に達しているが、放射線照射等の危険で、コストの
かかる工程を経るなど製造工程に問題点を有していた。
一方、従来の正極シートの研究例として、PEOに金属
塩を溶解した高分子固体電解質を正極活物質、電子伝導
性物質のバインダーに用いた例〔例えば、M.Z.A.
ムンシ( M.Z.A.Munshi ) ほか、ソリッド ステート
イオニックス( Solid State Ionics ) 、第41巻、第
41〜46頁(1988)〕があるが、PEOが軟化す
る60℃以上ではシート内のイオン拡散が速く、良好な
特性を示すものの、電池作動温度である室温付近におい
ては、正極シート中のイオン拡散が遅く、更に正極活物
質と高分子固体電解質との界面の接触が悪く、正極の利
用率が低くなるという欠点を有していた。
2. Description of the Related Art In recent years, there has been an increasing need for batteries having a high energy density as a power source for small and portable electronic devices. As a typical battery that meets such needs, a battery using an alkali metal, particularly lithium, as a negative electrode can be given. At present, lithium batteries use an organic electrolytic solution in which a lithium salt is dissolved as an electrolyte, and therefore safety cannot be said to be sufficient in terms of liquid leakage, dendrite short circuit, etc. Therefore, realization of an all-solid-state battery using a solid electrolyte made of an inorganic material or a polymer is expected. In the polymer solid electrolyte type battery, the electrolyte is a sheet-shaped polymer material, and the positive electrode is composed of a sheet in which fine particles of positive electrode active material and fine particles of electron conductive material are dispersed in the polymer electrolyte.
Since polymer materials have good workability and both the electrolyte and the electrodes can be composed of large-area sheets, it is expected that a large-capacity battery based on a polymer solid electrolyte will be realized, and in recent years vigorous studies have been made. For such a polymer solid electrolyte, a system in which a metal salt is dissolved in a polyether compound such as polyethylene oxide (PEO) has been extensively studied in the past [Watanabe, Ogata, Metal Surface Technology, Vol. 37. , No. 5,
214-221 (1986)], it was impossible to develop an ionic conductivity of 10 -4 S / cm or more near room temperature. In recent years, electrolyte-impregnated polymer solid electrolytes in which polar polymers are impregnated with a metal salt electrolyte solution have attracted attention [eg Koksbang, Journal of Power Sources (Journal of Power
f Power Sources), Vol. 32, pp. 175-185 (1990)], and its ionic conductivity is 10 -3 S / c.
Although the number has reached m, there is a problem in the manufacturing process such as a risk of radiation irradiation and a costly process.
On the other hand, as a research example of a conventional positive electrode sheet, an example in which a solid polymer electrolyte in which a metal salt is dissolved in PEO is used as a binder for a positive electrode active material and an electron conductive material [eg, M. Z. A.
MZAMunshi and solid state
Solid State Ionics, Vol. 41, pp. 41-46 (1988)], but at 60 ° C or higher at which PEO softens, the ion diffusion in the sheet is fast and good characteristics are exhibited, but the battery operates. In the vicinity of room temperature, which is the temperature, the ion diffusion in the positive electrode sheet is slow, and the contact between the positive electrode active material and the solid polymer electrolyte is poor, so that the positive electrode has a low utilization rate.

【0003】[0003]

【発明が解決しようとする課題】本発明はこのような現
状にかんがみてなされたものであり、その目的は、リチ
ウム電池等の高エネルギー密度を有する電池等に適用で
き、正極利用効率が高く、製造法が容易な電池正極シー
ト、並びに該電池正極シートを用いて構成される全固体
二次電池を提供することにある。
SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and an object thereof is to be applicable to a battery having a high energy density such as a lithium battery and having a high positive electrode utilization efficiency. An object of the present invention is to provide a battery positive electrode sheet that can be easily manufactured, and an all-solid secondary battery configured using the battery positive electrode sheet.

【0004】[0004]

【課題を解決するための手段】本発明を概説すれば、本
発明の第1の発明は電池正極シートに関する発明であ
り、高分子固体電解質中に電池正極活物質微粒子及び電
子伝導性物質微粒子が分散した電池正極シートにおい
て、前記高分子固体電解質が、第1成分として架橋構造
を含む高分子マトリクス、第2成分として金属塩電解
液、更に第3成分として高分子、界面活性剤あるいは両
者の混合物から構成され、かつ第3成分が水、極性溶媒
あるいは両者の混合物に可溶であり、第1成分と第2成
分の相互分散を安定させていることを特徴としている。
本発明の第2の発明は前記電池正極シートの製造方法に
関する発明であって、水、極性溶媒あるいは両者の混合
物を分散媒体として、該分散媒体中に可溶な高分子、界
面活性剤あるいは両者の混合物を安定剤として含有する
と共に、電池正極活物質微粒子及び電子伝導性物質微粒
子を含有した自己架橋性低極性高分子微粒子の分散液か
ら、加熱により前記水、極性溶媒あるいは両者の混合物
を除去することにより、高分子微粒子同志を融着し、架
橋反応させて前記電池正極活物質微粒子及び電子伝導性
物質微粒子を内部に分散した電池正極シート前駆体構造
を形成させ、その後、該電池正極シート前駆体構造中に
金属塩電解液を含浸させることを特徴としている。本発
明の第3の発明は前記電池正極シートの製造方法に関す
る発明であって、水、極性溶媒あるいは両者の混合物を
分散媒体として、該分散媒体中に可溶な高分子、界面活
性剤あるいは両者の混合物を安定剤として含有すると共
に金属塩、電池正極活物質微粒子及び電子伝導性物質微
粒子を含有した自己架橋性低極性高分子微粒子の分散液
から、加熱により前記水、極性溶媒あるいは両者の混合
物を除去することにより、高分子微粒子同志を融着し、
架橋反応させて前記金属塩、電池正極活物質微粒子及び
電子伝導性物質微粒子を内部に分散した電池正極シート
前駆体構造を形成させ、その後、該電池正極シート前駆
体構造中に水、溶媒あるいは両者の混合物を含浸させる
ことを特徴としている。そして、本発明の第4の発明は
全固体二次電池に関する発明であって、負極、高分子固
体電解質、正極からなる全固体二次電池において、前記
高分子固体電解質が上記第1の発明の高分子固体電解質
であること、並びに前記正極が上記第1の発明の電池正
極シートであることを特徴としている。
The present invention will be summarized. The first invention of the present invention is an invention relating to a battery positive electrode sheet, in which a battery positive electrode active material fine particle and an electron conductive material fine particle are contained in a polymer solid electrolyte. In a dispersed battery positive electrode sheet, the polymer solid electrolyte comprises a polymer matrix containing a crosslinked structure as a first component, a metal salt electrolyte as a second component, and a polymer as a third component, a surfactant or a mixture of both. And the third component is soluble in water, a polar solvent or a mixture of both, and stabilizes the mutual dispersion of the first component and the second component.
A second invention of the present invention is an invention relating to the method for producing a battery positive electrode sheet, comprising water, a polar solvent or a mixture of both as a dispersion medium, a polymer soluble in the dispersion medium, a surfactant or both. The dispersion of self-crosslinking low-polarity polymer fine particles containing the battery positive electrode active material fine particles and the electron conductive material fine particles, while containing the mixture as a stabilizer, removes the water, the polar solvent, or a mixture of both by heating. In this way, the polymer fine particles are fused and crosslinked to form a battery positive electrode sheet precursor structure having the battery positive electrode active material fine particles and the electron conductive material fine particles dispersed therein, and then the battery positive electrode sheet. It is characterized in that a metal salt electrolyte is impregnated into the precursor structure. A third invention of the present invention is an invention relating to a method for producing the battery positive electrode sheet, wherein water, a polar solvent or a mixture of both is used as a dispersion medium, and a polymer soluble in the dispersion medium, a surfactant or both are used. From a dispersion of self-crosslinking low-polarity polymer fine particles containing a mixture of a metal salt as a stabilizer, fine particles of a battery positive electrode active material and fine particles of an electron conductive material, and water by heating, a polar solvent or a mixture of both. By removing the, the polymer particles are fused together,
A cross-linking reaction is performed to form a battery positive electrode sheet precursor structure having the metal salt, battery positive electrode active material particles and electron conductive material particles dispersed therein, and then water, solvent or both in the battery positive electrode sheet precursor structure. It is characterized in that it is impregnated with the mixture of. A fourth invention of the present invention relates to an all-solid-state secondary battery, wherein in the all-solid-state secondary battery including a negative electrode, a polymer solid electrolyte, and a positive electrode, the polymer solid electrolyte is the same as the first invention. It is characterized in that it is a polymer solid electrolyte and that the positive electrode is the battery positive electrode sheet of the first invention.

【0005】本発明の電池正極シートは、高分子固体電
解質をバインダーに用いた正極活物質微粒子、電子伝導
性物質微粒子混合体のシートで構成される。この高分子
固体電解質からなるバインダーには、イオン伝導路に金
属塩電解液を用いた高イオン伝導性の高分子電解質を用
いているため、シート中のイオン拡散が速く、電池を構
成した際の正極活物質の利用率並びに比容量の増大が期
待できる。また、本発明の正極シートのバインダーであ
る高分子固体電解質中の高分子マトリクスとイオン伝導
路とが相分離しているため、電解液侵入による高分子マ
トリクスの可塑化は抑えられ、更に高分子マトリクス中
には架橋構造を有するため、シート中への電解液含浸量
が多くても機械的強度の低下が抑えられる。
The battery positive electrode sheet of the present invention is composed of a sheet of positive electrode active material fine particles using a solid polymer electrolyte as a binder, and an electron conductive material fine particle mixture. The binder consisting of this polymer solid electrolyte uses a polymer electrolyte with high ion conductivity, which uses a metal salt electrolyte in the ion conduction path, so that the ion diffusion in the sheet is fast, and when a battery is constructed. An increase in the utilization rate of the positive electrode active material and the specific capacity can be expected. Further, since the polymer matrix in the polymer solid electrolyte that is the binder of the positive electrode sheet of the present invention and the ion conduction path are phase-separated, plasticization of the polymer matrix due to the invasion of the electrolytic solution is suppressed, and further polymer Since the matrix has a cross-linking structure, the mechanical strength can be prevented from lowering even if the amount of electrolyte impregnated into the sheet is large.

【0006】また本発明の電池正極シートの作製プロセ
スを述べれば、高分子微粒子分散液中に正極活物質微粒
子及び電子伝導性物質微粒子を含有した分散液、あるい
はあらかじめ金属塩を溶解した高分子分散液中に正極活
物質微粒子及び電子伝導性物質微粒子を含有した分散液
から、分散媒体を加熱除去してシートを形成し、その後
電解液あるいは電解液溶媒を含浸させて作製する。高分
子固体電解質も、上述した正極シートの作製方法と同様
のプロセスで、高分子微粒子分散液から作製可能である
ことから、固体電池の製造効率が良く、低い製造コスト
が期待できる。
The process for producing the battery positive electrode sheet of the present invention will be described. A dispersion liquid containing positive electrode active material particles and electron conductive material particles in a polymer particle dispersion liquid, or a polymer dispersion in which a metal salt is previously dissolved. The dispersion medium is heated and removed from the dispersion liquid containing the positive electrode active material fine particles and the electron conductive material fine particles in the liquid to form a sheet, which is then impregnated with an electrolytic solution or an electrolytic solution solvent. Since the polymer solid electrolyte can also be produced from the polymer particle dispersion liquid by the same process as the above-mentioned method for producing the positive electrode sheet, the production efficiency of the solid battery is good, and a low production cost can be expected.

【0007】本発明の電池正極シートに用いる正極活物
質には、例えばV2 5 、MnO2、TiS2 、V6
13、Cr3 8 、MoS2 、MoS3 、NbSeあるい
はこれらの混合物等が、また電子伝導性物質には熱分解
黒鉛やアセチレンブラックあるいはこれらの混合物等
が、それぞれ好適に用いられる。
Examples of the positive electrode active material used for the battery positive electrode sheet of the present invention include V 2 O 5 , MnO 2 , TiS 2 and V 6 O.
13 , 13 , Cr 3 O 8 , MoS 2 , MoS 3 , NbSe, or a mixture thereof, and the electron conductive material is preferably pyrolytic graphite, acetylene black, a mixture thereof, or the like.

【0008】本発明の電池正極シート中の高分子固体電
解質を製造するときに使用する高分子微粒子の成分とし
ては、固体電解質を形成したときにイオン伝導路が相分
離するものであればどのようなものでもよいが、極性が
低い高分子、例えば、安価な炭化水素系高分子又はその
共重合体を成分とするものが好適である。高分子微粒子
中の高分子成分としては、例えば、次のようなものの単
独あるいは混合物が挙げられる:ポリスチレン、ポリプ
ロピレン、ポリイソブテン、ポリエチレン、ポリブタジ
エン、ポリイソプレン、ポリ(α−メチルスチレン)、
ポリブチルメタクリレート、ポリブチルアクリレート、
ポリ(2−エチルヘキシルアクリレート)、ポリジブチ
ルフタレート、ポリビニルブチルエーテル、ポリビニル
ブチラール、ポリビニルホルマール及びこれらの成分を
含む共重合体。
As the component of the polymer fine particles used in the production of the polymer solid electrolyte in the battery positive electrode sheet of the present invention, what is necessary is that the ionic conduction paths undergo phase separation when the solid electrolyte is formed. However, a polymer having a low polarity, for example, one containing an inexpensive hydrocarbon polymer or a copolymer thereof as a component is preferable. Examples of the polymer component in the polymer fine particles include the following alone or as a mixture: polystyrene, polypropylene, polyisobutene, polyethylene, polybutadiene, polyisoprene, poly (α-methylstyrene),
Polybutyl methacrylate, polybutyl acrylate,
Poly (2-ethylhexyl acrylate), polydibutyl phthalate, polyvinyl butyl ether, polyvinyl butyral, polyvinyl formal and copolymers containing these components.

【0009】架橋構造については、エステル化反応、ア
ミド化反応、エポキシ基開環反応等により得ることがで
きる。この架橋を分子間あるいは分子内で行わせるには
(自己架橋)、アミド基、水酸基、カルボキシル基、エ
ポキシ基2種類以上を高分子鎖に持たせればよい。例え
ば、前述の高分子微粒子成分のモノマーと以下の重合性
モノマー2種類以上を共重合させれば、自己架橋性の高
分子を得ることができる:アクリルアミド、ジアセトン
アクリルアミド、ヒドロキシエチルアクリレート、ヒド
ロキシエチルメタクリレート、ヒドロキシプロピルアク
リレート、アクリル酸、メタクリル酸、イタコン酸、グ
ルシジルアクリレート、グリシジルメタクリレート、ア
リルグリシジルエーテル等。高分子微粒子は、異なる成
分を持つ複数種の微粒子の混合でも良い。高分子微粒子
の粒径は、0.01〜50μmのものが好適に用いられ
る。
The crosslinked structure can be obtained by an esterification reaction, an amidation reaction, an epoxy group ring opening reaction and the like. In order to carry out this cross-linking between molecules or within the molecule (self-crosslinking), it is sufficient that the polymer chain has two or more kinds of amide groups, hydroxyl groups, carboxyl groups, and epoxy groups. For example, a self-crosslinking polymer can be obtained by copolymerizing the above-mentioned polymer fine particle component monomer with two or more of the following polymerizable monomers: acrylamide, diacetone acrylamide, hydroxyethyl acrylate, hydroxyethyl. Methacrylate, hydroxypropyl acrylate, acrylic acid, methacrylic acid, itaconic acid, glycidyl acrylate, glycidyl methacrylate, allyl glycidyl ether, etc. The polymer fine particles may be a mixture of plural kinds of fine particles having different components. The particle size of the polymer particles is preferably 0.01 to 50 μm.

【0010】高分子微粒子分散液の安定剤には、界面活
性剤が好適に使われ、例えば、次のようなものが挙げら
れる:脂肪酸金属塩、アルキルベンゼンスルホン酸金属
塩、アルキル硫酸金属塩、ジオクチルスルホコハク酸金
属塩、ポリオキシエチレンノニルフェニルエーテル、ポ
リオキシエチレンステアリン酸エステル、ポリオキシエ
チレンソルビタンモノラウリン酸エステル、ポリオキシ
エチレン−ポリオキシプロピレンブロック共重合体、ポ
リエーテル変性シリコーンオイル等の単独あるいは混合
物。また、安定剤に分散媒体溶解性高分子等を使用し
て、高分子微粒子を分散させても良い。このような高分
子としては、分散媒体によって異なるが、水が分散媒体
の場合、ヒドロキシエチルセルロース、ポリビニルアル
コール、ポリアクリル酸金属塩、メチルセルロースなど
が挙げられる。高分子微粒子分散液の分散媒体には、水
が好適に用いられるが、アルコール類など極性有機溶媒
を使用することができる。
Surfactants are preferably used as stabilizers for the fine polymer particle dispersion, and examples thereof include the following: fatty acid metal salts, alkylbenzenesulfonic acid metal salts, alkylsulfate metal salts, dioctyl. Metal sulfosuccinate, polyoxyethylene nonyl phenyl ether, polyoxyethylene stearic acid ester, polyoxyethylene sorbitan monolauric acid ester, polyoxyethylene-polyoxypropylene block copolymer, polyether modified silicone oil, etc., alone or in a mixture. Further, the polymer fine particles may be dispersed by using a polymer which is soluble in a dispersion medium as a stabilizer. Examples of such a polymer include hydroxyethyl cellulose, polyvinyl alcohol, polyacrylic acid metal salt, and methyl cellulose when water is the dispersion medium, although it depends on the dispersion medium. Water is preferably used as the dispersion medium of the polymer particle dispersion, but polar organic solvents such as alcohols can be used.

【0011】イオン伝導路となる電解液の構成要素であ
る金属塩は、作製する高分子電解質の用途によって異な
るが、例としてリチウム電池への適用を考えると、Li
ClO4 、LiAlCl4 、LiBF4 、LiPF6
LiAsF6 、LiNbF6、LiSCN、LiCl、
Li(CF3 SO3 )、Li(C6 5 SO3 )等のリ
チウム塩及びこれらの混合物が例として挙げられる。
The metal salt, which is a component of the electrolytic solution forming the ionic conduction path, differs depending on the intended use of the polymer electrolyte to be produced.
ClO 4 , LiAlCl 4 , LiBF 4 , LiPF 6 ,
LiAsF 6 , LiNbF 6 , LiSCN, LiCl,
Examples include lithium salts such as Li (CF 3 SO 3 ), Li (C 6 H 5 SO 3 ), and mixtures thereof.

【0012】また、同様に例としてリチウム電池への適
用を想定すると、電解液の溶媒には、プロピレンカーボ
ネート、エチレンカーボネート、γ−ブチロラクトン、
ジメチルカーボネート、ジメチルスルホキシド、アセト
ニトリル、スルホラン、ジメチルホルムアミド、ジメチ
ルアセトアミド、1,2−ジエトキシエタン、1,2−
ジメトキシエタン、テトラヒドロフラン、2−メチルテ
トラヒドロフラン、ジオキソラン、メチルアセテート等
の非プロトン性極性溶媒及びこれらの混合物が例として
挙げられる。上記金属塩と溶媒の混合比は、高分子固体
電解質中に形成されたイオン伝導路で、金属塩濃度で
0.01〜5mol/lとなるよう調製することが好適
である。
Similarly, assuming the application to a lithium battery as an example, the solvent of the electrolytic solution is propylene carbonate, ethylene carbonate, γ-butyrolactone,
Dimethyl carbonate, dimethyl sulfoxide, acetonitrile, sulfolane, dimethylformamide, dimethylacetamide, 1,2-diethoxyethane, 1,2-
Examples include aprotic polar solvents such as dimethoxyethane, tetrahydrofuran, 2-methyltetrahydrofuran, dioxolane, methyl acetate, and mixtures thereof. The mixing ratio of the metal salt and the solvent is preferably adjusted so that the metal salt concentration is 0.01 to 5 mol / l in the ion conduction path formed in the solid polymer electrolyte.

【0013】高分子微粒子分散液は、高分子溶液を分散
媒体中に展開・分散させて微粒子化し、界面活性剤又は
分散媒体に可溶性の高分子を用いて安定化させて製造す
ることができるが、水系分散媒体中で乳化重合法で製造
するのが好適である。また、高分子微粒子分散液は、ア
ルコールなどの極性溶媒中、分散重合で製造することも
できる〔例えば、Y.アルモグ( Y. Almog ) ほか、ブ
リティッシュ ポリマー ジャーナル( British Polym
er Journal )、第14巻、第131頁(1982)参
照〕。
The polymer fine particle dispersion can be produced by developing and dispersing a polymer solution in a dispersion medium to form fine particles, and stabilizing it with a surfactant or a soluble polymer in the dispersion medium. It is preferable to manufacture by an emulsion polymerization method in an aqueous dispersion medium. The polymer fine particle dispersion can also be produced by dispersion polymerization in a polar solvent such as alcohol [eg, Y. Y. Almog, as well as British Polymer Journal
er Journal), Vol. 14, p. 131 (1982)].

【0014】高分子微粒子分散液、あるいは金属塩をあ
らかじめ溶解した高分子微粒子分散液中に、正極活物質
微粒子及び電子伝導性物質微粒子を分散させる方法は通
常の方法でよく、正極活物質微粒子及び電子伝導性物質
微粒子を高分子微粒子分散液、あるいは金属塩をあらか
じめ溶解した高分子微粒子分散液中に入れて、かくはん
すればよい。
The method for dispersing the positive electrode active material fine particles and the electron conductive material fine particles in the polymer fine particle dispersion or the polymer fine particle dispersion in which a metal salt is previously dissolved may be an ordinary method. The fine particles of the electron conductive substance may be placed in a polymer particle dispersion liquid or a polymer particle dispersion liquid in which a metal salt is previously dissolved, and agitated.

【0015】大容量の電池を得るためには、正極活物質
の混合比を大きく、またシートとして十分な機械的強度
を得るには、逆に高分子微粒子の混合比を大きくする必
要がある。そのため、十分な機械的強度を有し、かつ電
池の大容量化が図れる正極シートを得るには、これらの
相反する関係を満足させるために、混合分散液中の正極
活物質、電子伝導性物質、高分子微粒子の重量混合比
を、それぞれx、y、zとするとき、x+y+z=1か
つ0.3≦x≦0.8、0.05≦y≦0.2、0.2
≦z≦0.6の範囲にする必要がある。
In order to obtain a battery having a large capacity, it is necessary to increase the mixing ratio of the positive electrode active material, and to increase the mixing ratio of the polymer fine particles to obtain sufficient mechanical strength as a sheet. Therefore, in order to obtain a positive electrode sheet having sufficient mechanical strength and capable of increasing the capacity of a battery, in order to satisfy these contradictory relationships, a positive electrode active material and an electron conductive material in a mixed dispersion liquid are used. , X, y, and z are the weight mixing ratios of the polymer particles, respectively, x + y + z = 1 and 0.3 ≦ x ≦ 0.8, 0.05 ≦ y ≦ 0.2, 0.2
It is necessary to set the range of ≦ z ≦ 0.6.

【0016】正極活物質微粒子及び電子伝導性物質微粒
子を含有する上記高分子微粒子分散液から、水、極性溶
媒あるいは両者の混合物を除去する方法は通常の方法で
よく、例えば加熱、減圧あるいはその組合せで蒸発させ
ればよい。このプロセスにより、分散していた高分子微
粒子はお互いに融着し高分子マトリクスが形成され、正
極活物質微粒子、電子伝導性物質微粒子のバインダーと
なり、本発明の電池正極シートの前駆体構造が作製され
る。作製は、高分子マトリクスのガラス転移温度以上か
つ正極活物質、金属塩が分解しない温度領域で行う必要
がある。また必要に応じて加圧プレスして、シートを任
意の形状に成形することも可能である。分散媒体の水あ
るいは溶媒が、固体電解質適用先の電池等に悪影響を与
えるときには、この分散媒体の沸点以上に加熱するか、
加熱と減圧処理を組合せて、分散媒体を取り除かなけれ
ばならない。
The method of removing water, the polar solvent, or a mixture of both from the above-mentioned polymer particle dispersion containing the cathode active material particles and the electron conductive material particles may be an ordinary method, for example, heating, depressurizing or a combination thereof. It can be evaporated with. By this process, the dispersed polymer fine particles are fused with each other to form a polymer matrix, which serves as a binder for the positive electrode active material fine particles and the electron conductive material fine particles, and the precursor structure of the battery positive electrode sheet of the present invention is produced. To be done. The production needs to be performed in a temperature range not lower than the glass transition temperature of the polymer matrix and at which the positive electrode active material and the metal salt are not decomposed. If necessary, the sheet can be pressed into a desired shape by pressurizing. When the water or solvent of the dispersion medium adversely affects the battery or the like to which the solid electrolyte is applied, heat the dispersion medium to the boiling point or higher, or
A combination of heating and vacuum treatment must be used to remove the dispersion medium.

【0017】電解液の含浸は通常の方法でよく、例えば
本発明の第2の発明方法で作製する場合は、正極シート
前駆体構造を電解液中に浸漬すればよい。電解液の含浸
量は浸漬時の温度、並びに浸漬時間の長さで制御できる
が、高分子固体電解質成分に対して10重量%以上含浸
させることが好適である。
The impregnation with the electrolytic solution may be carried out by an ordinary method. For example, in the case of the second inventive method of the present invention, the positive electrode sheet precursor structure may be immersed in the electrolytic solution. The impregnation amount of the electrolytic solution can be controlled by the temperature at the time of immersion and the length of the immersion time, but it is preferable to impregnate the polymer solid electrolyte component with 10% by weight or more.

【0018】また、本発明の第3の発明のように、あら
かじめ高分子微粒子分散液中に金属塩を溶解させている
場合は、溶媒あるいは水又は両者の混合物を通常の方法
で含浸させればよく、例えば作製した正極シート前駆体
構造を溶媒あるいは水又は両者の混合物の中に浸漬すれ
ばよい。溶媒あるいは水又は両者の混合物の含浸量は浸
漬時の温度、並びに浸漬時間の長さで制御できるが、高
分子マトリクス成分に対して10重量%以上含浸させる
ことが好適である。
When the metal salt is previously dissolved in the fine polymer particle dispersion as in the third aspect of the present invention, the solvent or water or a mixture of both may be impregnated by a usual method. Well, for example, the prepared positive electrode sheet precursor structure may be immersed in a solvent, water, or a mixture of both. The impregnated amount of the solvent or water or the mixture of both can be controlled by the temperature at the time of immersion and the length of the immersion time, but it is preferable to impregnate the polymer matrix component with 10% by weight or more.

【0019】一方、本発明の全固体二次電池の構成につ
いてその特徴を述べれば、本発明の全固体二次電池に用
いる負極は、例えばリチウム二次電池への適用を考える
と、リチウム金属箔、リチウム/アルミニウム合金、あ
るいはリチウム/炭素等の低電位層間化合物が好適に用
いられる。
On the other hand, the characteristics of the structure of the all-solid-state secondary battery of the present invention will be described. The negative electrode used in the all-solid-state secondary battery of the present invention is a lithium metal foil in consideration of application to, for example, a lithium secondary battery. A low potential intercalation compound such as a lithium / aluminum alloy, or lithium / carbon is preferably used.

【0020】本発明の全固体二次電池を構成する高分子
固体電解質で使用する高分子微粒子、安定剤及び電解液
を構成する金属塩、溶媒は、本発明の電池正極シートの
バインダーに用いた高分子固体電解質を構成する物質と
同様なものでよい。また、作製は特願平3−35439
3号明細書に記載されている方法で行われる。基本的に
は高分子マトリクスを高分子微粒子分散液から形成し、
金属塩電解液を高分子マトリクスに含浸させる方法等で
作製する。
The polymer fine particles used in the polymer solid electrolyte constituting the all-solid secondary battery of the present invention, the stabilizer and the metal salt constituting the electrolytic solution, and the solvent were used as the binder of the battery positive electrode sheet of the present invention. It may be the same as the substance constituting the polymer solid electrolyte. In addition, the fabrication is Japanese Patent Application No. 3-35439.
The method described in the specification No. 3 is used. Basically, a polymer matrix is formed from a polymer particle dispersion liquid,
It is prepared by a method of impregnating a polymer matrix with a metal salt electrolyte.

【0021】本発明の全固体二次電池を構成する正極
は、本発明の第1の発明の電池正極シートが用いられ
る。
As the positive electrode constituting the all solid state secondary battery of the present invention, the battery positive electrode sheet of the first invention of the present invention is used.

【0022】本発明の全固体二次電池は、前記負極、前
記高分子固体電解質、前記正極をこの順に積層すること
により作製される。該電池を構成するその他の構造材料
は従来公知のものでよい。
The all-solid secondary battery of the present invention is manufactured by stacking the negative electrode, the solid polymer electrolyte, and the positive electrode in this order. Other structural materials that constitute the battery may be conventionally known materials.

【0023】[0023]

【実施例】以下、本発明を実施例により更に具体的に説
明するが、本発明はこれら実施例に限定されない。
EXAMPLES The present invention will now be described in more detail with reference to examples, but the present invention is not limited to these examples.

【0024】実施例1 高分子微粒子分散液として、界面活性剤及び自己架橋性
の高分子微粒子を含む日本ゼオン社製スチレン・ブタジ
エン系ラテックス(商品名:Nipol 2570×
5)10gをとり、10gの水で希釈した。リチウムイ
オンに置換したイオン交換樹脂(ローム・アンド・ハー
ス社製アンバーライトIR−120B)でラテックス中
のアルカリ金属イオンをリチウムイオンに置換した。こ
のラテックス中に、五酸化二バナジウム(関東化学社
製)3g、並びにアセチレンブラック(電気化学工業社
製)0.6gを分散させた。60℃の温度下、分散液中
の固形分が約70%になるまで乾燥させた後、塗布厚さ
100μmのフィルムアプリケータでシート状に引き延
ばした。常温で7時間、90℃で24時間真空乾燥さ
せ、正極シート前駆体構造を得た。次にγ−ブチロラク
トン/1,2−ジメトシキエタンの等容積混合溶媒中に
過塩素酸リチウムを1mol/lの濃度で溶解させた電
解液を調製し、ここに作製した正極シート前駆体構造を
24時間浸漬し、本発明の正極シートを得た。得られた
正極シートは、十分な機械的強度を有するシートであ
り、含浸された電解液は、本シートを加圧してもしみ出
すことはなかった。
Example 1 A styrene-butadiene latex (trade name: Nipol 2570 × manufactured by Nippon Zeon Co.) containing a surfactant and self-crosslinking polymer particles as a polymer particle dispersion liquid.
5) 10 g was taken and diluted with 10 g of water. The alkali metal ions in the latex were replaced with lithium ions with an ion exchange resin (Amberlite IR-120B manufactured by Rohm and Haas Co.) replaced with lithium ions. 3 g of divanadium pentoxide (manufactured by Kanto Chemical Co., Inc.) and 0.6 g of acetylene black (manufactured by Denki Kagaku Kogyo Co., Ltd.) were dispersed in this latex. It was dried at a temperature of 60 ° C. until the solid content in the dispersion became about 70%, and then spread into a sheet with a film applicator having a coating thickness of 100 μm. It was vacuum dried at room temperature for 7 hours and at 90 ° C. for 24 hours to obtain a positive electrode sheet precursor structure. Next, an electrolyte solution was prepared by dissolving lithium perchlorate at a concentration of 1 mol / l in an equal volume mixed solvent of γ-butyrolactone / 1,2-dimethoxyethane, and the positive electrode sheet precursor structure prepared here was prepared for 24 hours. It was dipped to obtain the positive electrode sheet of the present invention. The obtained positive electrode sheet was a sheet having sufficient mechanical strength, and the impregnated electrolytic solution did not exude even when the sheet was pressed.

【0025】次に、本発明の正極シートを用いてコイン
型電池を作製した。構成成分は負極にリチウム金属箔
(厚さ70μm)、電解質にγ−ブチロラクトン、1,
2−ジメトキシエタン、ポリアクリロニトリル、ポリエ
チレングリコールジアクリレート、過塩素酸リチウムが
35:40:16:1:8の重量比からなる組成物に紫
外線を照射(ウシオ電機社製Hg−Xeランプで10m
W/cm2 、30分間)し、硬化させて得られた固体電
解質(厚さ32μm)、そして正極に本発明の正極シー
ト(厚さ98μm)をそれぞれ用いた。負極、電解質、
正極をこの順に積層し、これをコインセルケース内に封
入した。上記電池作製の全行程はアルゴン雰囲気のグロ
ーブボックス内で行った。この電池を電圧範囲3.5〜
1.8V、放電電流1mA、充電電流1mAの条件で充
放電試験を行った結果、比容量148mAh/gが得ら
れた。
Next, a coin type battery was produced using the positive electrode sheet of the present invention. The constituent components are lithium metal foil (thickness 70 μm) for the negative electrode, γ-butyrolactone for the electrolyte, 1,
A composition comprising 2-dimethoxyethane, polyacrylonitrile, polyethylene glycol diacrylate and lithium perchlorate in a weight ratio of 35: 40: 16: 1: 8 is irradiated with ultraviolet rays (using a Hg-Xe lamp manufactured by USHIO INC. For 10 m).
Then, the solid electrolyte (thickness: 32 μm) obtained by curing was performed at W / cm 2 for 30 minutes, and the positive electrode sheet of the present invention (thickness: 98 μm) was used as a positive electrode. Negative electrode, electrolyte,
The positive electrode was laminated in this order, and this was enclosed in a coin cell case. All the steps for producing the battery were performed in a glove box in an argon atmosphere. This battery has a voltage range of 3.5-
As a result of conducting a charge / discharge test under the conditions of 1.8 V, discharge current 1 mA and charge current 1 mA, a specific capacity of 148 mAh / g was obtained.

【0026】実施例2 高分子微粒子分散液として、界面活性剤及び自己架橋性
の高分子微粒子を含む日本ゼオン社製スチレン・ブタジ
エン系ラテックス(商品名:Nipol 2570×
5)10gをとり、10gの水で希釈した。リチウムイ
オンに置換したイオン交換樹脂(ローム・アンド・ハー
ス社製アンバーライトIR−120B)でラテックス中
のアルカリ金属イオンをリチウムイオンに置換した。こ
のラテックス中に、五酸化二バナジウム(関東化学社
製)3g、並びにアセチレンブラック(電気化学工業社
製)0.6gを分散させた。この分散液中に過塩素酸リ
チウム0.07gを溶解させ、60℃の温度下、分散液
中の固形分が約70%になるまで乾燥させた後、塗布厚
さ100μmのフィルムアプリケータでシート状に引き
延ばした。常温で7時間、90℃で24時間真空乾燥さ
せ、正極シート前駆体構造を得た。次にγ−ブチロラク
トン/1,2−ジメトシキエタンの等容積混合溶媒中
に、作製した正極シート前駆体構造を20分間浸漬し、
本発明の正極シートを得た。得られた正極シートは、十
分な機械的強度を有するシートであり、含浸された電解
液は、本シートを加圧してもしみ出すことはなかった。
Example 2 A styrene-butadiene latex (trade name: Nipol 2570 × manufactured by Nippon Zeon Co., Ltd.) containing a surfactant and self-crosslinking polymer particles as a polymer particle dispersion liquid.
5) 10 g was taken and diluted with 10 g of water. The alkali metal ions in the latex were replaced with lithium ions with an ion exchange resin (Amberlite IR-120B manufactured by Rohm and Haas Co.) replaced with lithium ions. 3 g of divanadium pentoxide (manufactured by Kanto Chemical Co., Inc.) and 0.6 g of acetylene black (manufactured by Denki Kagaku Kogyo Co., Ltd.) were dispersed in this latex. Lithium perchlorate (0.07 g) was dissolved in this dispersion, and the mixture was dried at a temperature of 60 ° C. until the solid content in the dispersion was about 70%, and then the sheet was coated with a film applicator having a coating thickness of 100 μm. I stretched it out. It was vacuum dried at room temperature for 7 hours and at 90 ° C. for 24 hours to obtain a positive electrode sheet precursor structure. Then, the prepared positive electrode sheet precursor structure is immersed in an equal volume mixed solvent of γ-butyrolactone / 1,2-dimethyoxyethane for 20 minutes,
A positive electrode sheet of the present invention was obtained. The obtained positive electrode sheet was a sheet having sufficient mechanical strength, and the impregnated electrolytic solution did not exude even when the sheet was pressed.

【0027】次に、本発明の正極シートを用いてコイン
型電池を作製した。構成成分は負極にリチウム金属箔
(厚さ70μm)、電解質にγ−ブチロラクトン、1,
2−ジメトキシエタン、ポリアクリロニトリル、ポリエ
チレングリコールジアクリレート、過塩素酸リチウムが
35:40:16:1:8の重量比からなる組成物に紫
外線を照射(ウシオ電機社製Hg−Xeランプで10m
W/cm2 、30分間)し、硬化させて得られた固体電
解質(厚さ38μm)、そして正極に本発明の正極シー
ト(厚さ92μm)をそれぞれ用いた。負極、電解質、
正極をこの順に積層し、これをコインセルケース内に封
入した。上記電池作製の全行程はアルゴン雰囲気のグロ
ーブボックス内で行った。この電池を電圧範囲3.5〜
1.8V、放電電流1mA、充電電流1mAの条件で充
放電試験を行った結果、比容量152mAh/gが得ら
れた。
Next, a coin type battery was produced using the positive electrode sheet of the present invention. The constituent components are lithium metal foil (thickness 70 μm) for the negative electrode, γ-butyrolactone for the electrolyte, 1,
A composition comprising 2-dimethoxyethane, polyacrylonitrile, polyethylene glycol diacrylate and lithium perchlorate in a weight ratio of 35: 40: 16: 1: 8 is irradiated with ultraviolet rays (using a Hg-Xe lamp manufactured by USHIO INC. For 10 m).
The solid electrolyte (thickness: 38 μm) obtained by curing the resulting solid electrolyte (W / cm 2 , 30 minutes) and the positive electrode sheet of the present invention (thickness: 92 μm) were used as positive electrodes. Negative electrode, electrolyte,
The positive electrode was laminated in this order, and this was enclosed in a coin cell case. All the steps for producing the battery were performed in a glove box in an argon atmosphere. This battery has a voltage range of 3.5-
As a result of conducting a charge / discharge test under the conditions of 1.8 V, discharge current 1 mA and charge current 1 mA, a specific capacity of 152 mAh / g was obtained.

【0028】実施例3 正極シートは、実施例1に示した方法で作製した。ま
た、高分子固体電解質は以下の方法で作製した。高分子
微粒子分散液として、界面活性剤及び自己架橋性の高分
子微粒子を含む日本ゼオン社製スチレン・ブタジエン系
ラテックス(商品名:Nipol 2570×5)10
gをとり、10gの水で希釈した。リチウムイオンに置
換したイオン交換樹脂(ローム・アンド・ハース社製ア
ンバーライトIR−120B)でラテックス中のアルカ
リ金属イオンをリチウムイオンに置換した後、常圧95
℃で加熱し、固形分が95重量%になるまで乾燥した
後、塗布厚さ30μmのフィルムアプリケータでシート
状に引き延ばした。更に105℃で1時間乾燥した後、
100℃、0.1Torrで20時間減圧乾燥し、高分
子マトリクスシートを得た。次に、γ−ブチロラクトン
/1,2−ジメトシキエタンの等容積混合溶媒中に過塩
素酸リチウムを1mol/lの濃度で溶解させた電解質
を調製し、ここに作製した高分子マトリクスを2時間浸
漬し、高分子固体電解質を得た。
Example 3 A positive electrode sheet was produced by the method shown in Example 1. The solid polymer electrolyte was prepared by the following method. Styrene-butadiene latex (trade name: Nipol 2570 × 5) manufactured by Nippon Zeon Co., Ltd. containing a surfactant and self-crosslinking polymer particles as a polymer particle dispersion liquid 10
g was taken and diluted with 10 g of water. After replacing the alkali metal ions in the latex with lithium ions with an ion exchange resin (Amberlite IR-120B manufactured by Rohm and Haas Co.) substituted with lithium ions, the atmospheric pressure was set to 95.
After heating at 0 ° C. and drying until the solid content became 95% by weight, it was drawn into a sheet shape with a film applicator having a coating thickness of 30 μm. After further drying at 105 ° C for 1 hour,
It was dried under reduced pressure at 100 ° C. and 0.1 Torr for 20 hours to obtain a polymer matrix sheet. Next, an electrolyte was prepared by dissolving lithium perchlorate at a concentration of 1 mol / l in an equal volume mixed solvent of γ-butyrolactone / 1,2-dimethyoxyethane, and the polymer matrix prepared here was immersed for 2 hours. A polymer solid electrolyte was obtained.

【0029】次に、リチウム金属箔(厚さ70μm)、
上記高分子固体電解質(厚さ27μm)、及び上記正極
シート(厚さ99μm)をこの順に積層し、これをコイ
ンセルケース内に封入した。上記電池作製の全行程はア
ルゴン雰囲気のグローブボックス内で行った。この電池
を電圧範囲3.5〜1.8V、放電電流1mA、充電電
流1mAの条件で充放電試験を行った結果、比容量18
5mAh/gが得られた。
Next, a lithium metal foil (thickness 70 μm),
The polymer solid electrolyte (thickness: 27 μm) and the positive electrode sheet (thickness: 99 μm) were laminated in this order, and this was enclosed in a coin cell case. All the steps for producing the battery were performed in a glove box in an argon atmosphere. This battery was subjected to a charge / discharge test under the conditions of a voltage range of 3.5 to 1.8 V, a discharge current of 1 mA and a charge current of 1 mA, and as a result, a specific capacity of 18
5 mAh / g was obtained.

【0030】実施例4 正極シートは、実施例2に示した方法で作製した。ま
た、高分子固体電解質は以下の方法で作製した。高分子
微粒子分散液として、界面活性剤及び自己架橋性の高分
子微粒子を含む日本ゼオン社製スチレン・ブタジエン系
ラテックス(商品名:Nipol 2570×5)10
gをとり、10gの水で希釈した。リチウムイオンに置
換したイオン交換樹脂(ローム・アンド・ハース社製ア
ンバーライトIR−120B)でラテックス中のアルカ
リ金属イオンをリチウムイオンに置換した後、過塩素酸
リチウム0.4gを溶解し、常圧95℃で加熱し、固形
分が95重量%になるまで乾燥した後、塗布厚さ30μ
mのフィルムアプリケータでシート状に引き延ばした。
更に105℃で1時間乾燥した後、100℃、0.1T
orrで20時間減圧乾燥し、高分子マトリクスシート
を得た。次に、γ−ブチロラクトン/1,2−ジメトシ
キエタンの等容積混合溶媒中に作製した高分子マトリク
スシートを20分間浸漬し、高分子固体電解質を得た。
Example 4 A positive electrode sheet was produced by the method shown in Example 2. The solid polymer electrolyte was prepared by the following method. Styrene-butadiene latex (trade name: Nipol 2570 × 5) manufactured by Nippon Zeon Co., Ltd. containing a surfactant and self-crosslinking polymer particles as a polymer particle dispersion liquid 10
g was taken and diluted with 10 g of water. After the alkali metal ions in the latex were replaced with lithium ions with an ion exchange resin (Amberlite IR-120B manufactured by Rohm and Haas Co.) replaced with lithium ions, 0.4 g of lithium perchlorate was dissolved under normal pressure. After heating at 95 ° C and drying until the solid content reaches 95% by weight, the coating thickness is 30μ
The film was stretched into a sheet with a m film applicator.
After further drying at 105 ° C for 1 hour, 100 ° C at 0.1T
It was dried under reduced pressure at orr for 20 hours to obtain a polymer matrix sheet. Next, the polymer matrix sheet prepared in an equal volume mixed solvent of [gamma] -butyrolactone / 1,2-dimethoxyethane was immersed for 20 minutes to obtain a polymer solid electrolyte.

【0031】次に、リチウム金属箔(厚さ70μm)、
上記高分子固体電解質(厚さ27μm)、及び上記正極
シート(厚さ99μm)をこの順に積層し、これをコイ
ンセルケース内に封入した。上記電池作製の全行程はア
ルゴン雰囲気のグローブボックス内で行った。この電池
を電圧範囲3.5〜1.8V、放電電流1mA、充電電
流1mAの条件で充放電試験を行った結果、比容量18
8mAh/gが得られた。
Next, a lithium metal foil (thickness 70 μm),
The polymer solid electrolyte (thickness: 27 μm) and the positive electrode sheet (thickness: 99 μm) were laminated in this order, and this was enclosed in a coin cell case. All the steps for producing the battery were performed in a glove box in an argon atmosphere. This battery was subjected to a charge / discharge test under the conditions of a voltage range of 3.5 to 1.8 V, a discharge current of 1 mA and a charge current of 1 mA, and as a result, a specific capacity of 18
8 mAh / g was obtained.

【0032】[0032]

【発明の効果】以上の説明で明らかなように、本発明の
電池正極シートで構成される電池の比容量は大きく、こ
の電池正極シートをリチウム二次電池のような高エネル
ギー電池に適用した場合、エネルギー密度が高く、高効
率で、しかも液漏れのない安全な固体電池が得られる利
点がある。
As is clear from the above description, the battery comprising the battery positive electrode sheet of the present invention has a large specific capacity, and when this battery positive electrode sheet is applied to a high energy battery such as a lithium secondary battery. In addition, there is an advantage that a safe solid battery with high energy density, high efficiency and no liquid leakage can be obtained.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 高分子固体電解質中に電池正極活物質微
粒子及び電子伝導性物質微粒子が分散した電池正極シー
トにおいて、前記高分子固体電解質が、第1成分として
架橋構造を含む高分子マトリクス、第2成分として金属
塩電解液、更に第3成分として高分子、界面活性剤ある
いは両者の混合物から構成され、かつ第3成分が水、極
性溶媒あるいは両者の混合物に可溶であり、第1成分と
第2成分の相互分散を安定させていることを特徴とする
電池正極シート。
1. A battery positive electrode sheet in which fine particles of a battery positive electrode active material and fine particles of an electron conductive material are dispersed in a solid polymer electrolyte, wherein the solid polymer electrolyte comprises a polymer matrix containing a crosslinked structure as a first component, It is composed of a metal salt electrolyte as the second component, a polymer, a surfactant or a mixture of both as the third component, and the third component is soluble in water, a polar solvent or a mixture of both, and the first component A battery positive electrode sheet, characterized in that the mutual dispersion of the second component is stabilized.
【請求項2】 水、極性溶媒あるいは両者の混合物を分
散媒体として、該分散媒体中に可溶な高分子、界面活性
剤あるいは両者の混合物を安定剤として含有すると共
に、電池正極活物質微粒子及び電子伝導性物質微粒子を
含有した自己架橋性低極性高分子微粒子の分散液から、
加熱により前記水、極性溶媒あるいは両者の混合物を除
去することにより、高分子微粒子同志を融着し、架橋反
応させて前記電池正極活物質微粒子及び電子伝導性物質
微粒子を内部に分散した電池正極シート前駆体構造を形
成させ、その後、該電池正極シート前駆体構造中に金属
塩電解液を含浸させることを特徴とする請求項1に記載
の電池正極シートの製造方法。
2. Water, a polar solvent, or a mixture of both as a dispersion medium, and a polymer soluble in the dispersion medium, a surfactant or a mixture of both as a stabilizer, and at the same time, fine particles of battery positive electrode active material and From a dispersion liquid of self-crosslinking low-polarity polymer particles containing electron conductive material particles,
By removing the water, the polar solvent or a mixture of both by heating, the polymer fine particles are fused together, and a cross-linking reaction is performed to disperse the battery positive electrode active material fine particles and the electron conductive material fine particles in the battery positive electrode sheet. The method for producing a battery positive electrode sheet according to claim 1, wherein a precursor structure is formed and then the battery positive electrode sheet precursor structure is impregnated with a metal salt electrolyte.
【請求項3】 水、極性溶媒あるいは両者の混合物を分
散媒体として、該分散媒体中に可溶な高分子、界面活性
剤あるいは両者の混合物を安定剤として含有すると共に
金属塩、電池正極活物質微粒子及び電子伝導性物質微粒
子を含有した自己架橋性低極性高分子微粒子の分散液か
ら、加熱により前記水、極性溶媒あるいは両者の混合物
を除去することにより、高分子微粒子同志を融着し、架
橋反応させて前記金属塩、電池正極活物質微粒子及び電
子伝導性物質微粒子を内部に分散した電池正極シート前
駆体構造を形成させ、その後、該電池正極シート前駆体
構造中に水、溶媒あるいは両者の混合物を含浸させるこ
とを特徴とする請求項1に記載の電池正極シートの製造
方法。
3. Water, a polar solvent or a mixture of both are used as a dispersion medium, and a polymer soluble in the dispersion medium, a surfactant or a mixture of both are contained as a stabilizer, and a metal salt and a battery positive electrode active material. From the dispersion liquid of the self-crosslinking low-polarity polymer fine particles containing the fine particles and the electron conductive substance fine particles, the water, the polar solvent, or a mixture of both are removed by heating to fuse the polymer fine particles to each other and crosslink them. The metal salt, the battery positive electrode active material fine particles and the electron conductive material fine particles are dispersed to form a battery positive electrode sheet precursor structure, and thereafter, water, a solvent or both of them is added to the battery positive electrode sheet precursor structure. The method for producing a battery positive electrode sheet according to claim 1, wherein the mixture is impregnated.
【請求項4】 負極、高分子固体電解質、正極からなる
全固体二次電池において、前記高分子固体電解質が請求
項1に記載の高分子固体電解質であること、並びに前記
正極が請求項1に記載の電池正極シートであることを特
徴とする全固体二次電池。
4. An all-solid secondary battery comprising a negative electrode, a solid polymer electrolyte and a positive electrode, wherein the solid polymer electrolyte is the solid polymer electrolyte according to claim 1, and the positive electrode is according to claim 1. An all-solid secondary battery, which is the battery positive electrode sheet described above.
JP4102398A 1992-03-30 1992-03-30 Battery positive electrode sheet, its manufacture, fully-solid secondary battery Pending JPH05283106A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4102398A JPH05283106A (en) 1992-03-30 1992-03-30 Battery positive electrode sheet, its manufacture, fully-solid secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4102398A JPH05283106A (en) 1992-03-30 1992-03-30 Battery positive electrode sheet, its manufacture, fully-solid secondary battery

Publications (1)

Publication Number Publication Date
JPH05283106A true JPH05283106A (en) 1993-10-29

Family

ID=14326350

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4102398A Pending JPH05283106A (en) 1992-03-30 1992-03-30 Battery positive electrode sheet, its manufacture, fully-solid secondary battery

Country Status (1)

Country Link
JP (1) JPH05283106A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2760292A1 (en) * 1997-03-03 1998-09-04 Alsthom Cge Alcatel METHOD FOR MANUFACTURING AN ORGANIC ELECTROLYTE ELECTROCHEMICAL GENERATOR HAVING A UNIT STRUCTURE
JP2002528863A (en) * 1998-10-20 2002-09-03 フラオンホッファー−ゲゼルシャフト ツーァ フェルデルング デーァ アンゲヴァンテン フォルシュング エー.ファオ. Paste material having inorganic liquid conductor, and layer and electrochemical element obtained therefrom
JP4599570B2 (en) * 1998-11-20 2010-12-15 東レ・ダウコーニング株式会社 Ion conductive composition and battery using the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2760292A1 (en) * 1997-03-03 1998-09-04 Alsthom Cge Alcatel METHOD FOR MANUFACTURING AN ORGANIC ELECTROLYTE ELECTROCHEMICAL GENERATOR HAVING A UNIT STRUCTURE
JP2002528863A (en) * 1998-10-20 2002-09-03 フラオンホッファー−ゲゼルシャフト ツーァ フェルデルング デーァ アンゲヴァンテン フォルシュング エー.ファオ. Paste material having inorganic liquid conductor, and layer and electrochemical element obtained therefrom
JP4970652B2 (en) * 1998-10-20 2012-07-11 ルクランシェ ソスィエテ アノニム Layer that can be applied to a substrate or self-supporting layer and method for producing the same, composite layer and method for producing the same, and method of using the layer and composite layer
JP4599570B2 (en) * 1998-11-20 2010-12-15 東レ・ダウコーニング株式会社 Ion conductive composition and battery using the same

Similar Documents

Publication Publication Date Title
EP0651455B1 (en) Manufacturing method of a separator for a lithium secondary battery and an organic electrolyte lithium secondary battery using the same separator
US6503661B1 (en) Lithium secondary battery
JP3872768B2 (en) Lithium secondary battery in which decomposition reaction of electrolyte is suppressed and method for manufacturing the same
KR101655627B1 (en) Organic-inorganic complex solid polymer electrolytes membrane, manufacturing method thereof and all solid battery including thereof
US6395419B1 (en) Solid polymer electrolyte, method of making, and electrochemical device using the same
JPH1135765A (en) Solid polyelectrolyte and its production
JP2003059535A (en) Lithium polymer cell
US6326105B1 (en) Composite polymer electrolytes for alkali metal electrochemical devices which contain a non-woven glass fiber net
CN110959221A (en) Solid polymer electrolyte for batteries
JPH05314965A (en) Battery positive electrode sheet, manufacture thereof and totally solid secondary battery
KR100362281B1 (en) Lithium ion polymer battery using cathod current collector coated electron-conductive polymer
JP3292220B2 (en) Lithium battery
JP3496287B2 (en) Battery using ion-conductive polymer compound
JP2003223931A (en) Polymer electrolyte base material, polymer electrolyte, polymer electrolyte sheet, and electrochemical element using them
JPH05283106A (en) Battery positive electrode sheet, its manufacture, fully-solid secondary battery
JPH05315008A (en) Battery positive electrode sheet and manufacture thereof, and all solid secondary battery
JP3503657B2 (en) Battery using ion-conductive polymer compound
JP3116596B2 (en) Battery
JP2001176551A (en) Non-aqueous electrolyte and lithium secondary battery
KR100407485B1 (en) Polymeric gel electrolyte and lithium battery employing the same
JPH0594818A (en) Battery positive electrode sheet and its manufacture
JP2000067855A (en) Manufacture of lithium secondary battery
JPH07240233A (en) High polymer solid electrolyte lithium secondary battery
JPH05101849A (en) All-solid secondary battery
JPH0799060A (en) Solid battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20050118

Free format text: JAPANESE INTERMEDIATE CODE: A621

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20050118

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20050118

A131 Notification of reasons for refusal

Effective date: 20080402

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080529

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20080702

Free format text: JAPANESE INTERMEDIATE CODE: A01

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080702

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110718

Year of fee payment: 3

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 3

Free format text: PAYMENT UNTIL: 20110718

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 4

Free format text: PAYMENT UNTIL: 20120718

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120718

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130718

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250