JPH05282629A - Magneto-resistance effect type magnetic head - Google Patents

Magneto-resistance effect type magnetic head

Info

Publication number
JPH05282629A
JPH05282629A JP4076594A JP7659492A JPH05282629A JP H05282629 A JPH05282629 A JP H05282629A JP 4076594 A JP4076594 A JP 4076594A JP 7659492 A JP7659492 A JP 7659492A JP H05282629 A JPH05282629 A JP H05282629A
Authority
JP
Japan
Prior art keywords
film
magnetoresistive
alloy
shunt
magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4076594A
Other languages
Japanese (ja)
Inventor
Kazuhiro Yamamoto
和弘 山本
Masahiro Kitada
正弘 北田
Noboru Shimizu
昇 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP4076594A priority Critical patent/JPH05282629A/en
Publication of JPH05282629A publication Critical patent/JPH05282629A/en
Pending legal-status Critical Current

Links

Landscapes

  • Magnetic Heads (AREA)

Abstract

PURPOSE:To decrease the fluctuations in electromagnetic intensity for biasing by forming the above head of two-layered films; a magneto-resistance effect film consisting of an alloy contg. Ni, Fe and Co as essential components and a shunt film consisting of an alloy contg. Ta as an essential component. CONSTITUTION:A lower magnetic shielding layer 4 is laminated via an inflating layer 13 on a substrate 2 and an insulating layer 5 forming a gap layer is then formed thereon. The magneto-resistance effect film 6, a diaferromagnetic film 7 for stabilizing magnetic domains and the Ta alloy shunt film 6 are continuously formed by using a vapor deposition method and a sputtering method thereon. After an electrode film 9 is formed, a soft magnetic bias film 10 is laminated and further, an insulating layer 11, an upper magnetic shielding film 12 and an insulating layer 13 are laminated. An NiFe alloy film or NiCo alloy film or NiFeCo alloy film is used for the film 6 and a Ta alloy film is used for the film 8. An FeMnRu alloy film or FeMn alloy film is used for the film 7. As a result, head characteristics, such as S/N are improved.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は磁気記録装置用磁気ヘッ
ドに係り、特に、バイアス印加用シャント膜を有するシ
ャントバイアス型磁気抵抗効果素子を用いる磁気ヘッド
に係り、高密度磁気記録の読み取りに適した磁気抵抗効
果型磁気ヘッドに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetic head for a magnetic recording device, and more particularly to a magnetic head using a shunt bias type magnetoresistive effect element having a bias applying shunt film, which is suitable for reading high density magnetic recording. And a magnetoresistive effect magnetic head.

【0002】[0002]

【従来の技術】従来のシャントバイアス型磁気抵抗効果
型ヘッドのシャント膜には、例えば米国特許第694,764
号の明細書に記載されているように、Ti,Ta,M
o,Nb等が、特開平2−68706号公報にはTi,Cr,
Ta,Zr,Hf,TiW合金等が、特開平2−220213
号公報にはCr,Ta,W,Nb等が用いられている。
2. Description of the Related Art A shunt film of a conventional shunt bias type magnetoresistive head is disclosed in, for example, US Pat. No. 6,94,764.
, Ti, Ta, M
o, Nb, etc. are described in JP-A-2-68706 as Ti, Cr,
Ta, Zr, Hf, TiW alloys, etc. are disclosed in JP-A-2-220213.
Cr, Ta, W, Nb, etc. are used in the publication.

【0003】磁気抵抗効果膜には、通常Ni−Fe合金
膜やNi−Co合金膜あるいはNi−Fe−Co膜が用
いられているが、シャント膜はこれらの磁気抵抗効果膜
と2層膜の状態で使用されており、これに通常106
/cm2以上の電流を流し、両膜に分流させてシャント膜
ではバイアス磁界を発生させ、磁気抵抗効果膜では磁気
抵抗による抵抗変化を発生させる。シャント膜に必要な
性質は、磁気抵抗効果膜との2層膜において、バイアス
磁界が最適になるような分流が生じるように電気抵抗値
が磁気抵抗効果膜に対して適当な値であること,磁気抵
抗効果型素子の作製工程において磁気抵抗効果膜を劣化
させるような反応を起こさないこと,耐食性がすぐれて
いること,膜の形成が容易であること,電気抵抗のばら
つきが少ないこと、などの条件を満たさなければならな
い。
A Ni-Fe alloy film, a Ni-Co alloy film or a Ni-Fe-Co film is usually used as the magnetoresistive effect film, but the shunt film is composed of these magnetoresistive effect film and two-layer film. Used in the state, usually 10 6 A
A current of / cm 2 or more is caused to flow in both films to generate a bias magnetic field in the shunt film and a resistance change due to magnetoresistance in the magnetoresistive film. The property required for the shunt film is that the electric resistance value is an appropriate value for the magnetoresistive film so that a shunt current that optimizes the bias magnetic field occurs in the two-layer film including the magnetoresistive film. In the manufacturing process of the magnetoresistive effect element, there is no reaction that deteriorates the magnetoresistive effect film, the corrosion resistance is excellent, the film is easily formed, and the variation in electric resistance is small. The condition must be met.

【0004】上記従来技術では磁気抵抗効果膜との反応
を考慮すると、特開昭62−183003号公報に記載のように
Tiは175〜200℃で磁気抵抗効果膜と反応し、M
o,Zrは350℃程度まで反応しないが耐食性が劣り
電気抵抗も高く、Crやその合金はTiと同様に反応温
度が低く、他の従来技術もTaを除けばシャント膜と同
様な特性を示す。Taは磁気抵抗効果膜との反応開始温
度も高く、耐食性も優れており、シャント膜として優れ
た材料ではある。通常、蒸着やスパッタリング等で作製
されたTa膜の電気抵抗は10から25μΩcmである
が、膜形成雰囲気中の残留酸素や窒素の影響で電気抵抗
の変動しやすい欠点がある。また、磁気抵抗効果型ヘッ
ドの出力の向上のためには、より薄い磁気抵抗効果膜を
使用することが必要であり、シャント膜の厚さもこれに
応じて薄くしなければならない。磁気抵抗効果膜の厚さ
は5〜50nmであるが、金属膜中の電子の平均自由行
程は30nm程度であり、磁気抵抗効果膜の厚さが30
nm前後になると、膜の表面に電子が衝突して散乱され
る現象が顕著になる。したがって、30nm以下のシャ
ント膜では、電気抵抗のばらつきも極めて顕著になる。
バイアス磁界の制御には膜厚と電気抵抗の制御が必須で
あるが、Ta膜を通常の形成方法で作製したものでは、
この膜厚領域での電気抵抗のばらつきが20から30%
にも達する。これに膜厚のばらつきも重なるので、磁気
抵抗効果膜との分流の制御にも大きな影響を与え、ばら
つきのない良好な特性のシャントバイアス型磁気抵抗効
果型ヘッドの製造は極めて難かしい。
Considering the reaction with the magnetoresistive effect film in the above-mentioned prior art, Ti reacts with the magnetoresistive effect film at 175 to 200 ° C. as described in JP-A-62-183003, and M
Although o and Zr do not react up to about 350 ° C., they have poor corrosion resistance and high electric resistance, Cr and their alloys have low reaction temperatures like Ti, and other conventional techniques also show the same characteristics as the shunt film except Ta. .. Ta has a high reaction initiation temperature with the magnetoresistive film and also has excellent corrosion resistance, and is an excellent material as a shunt film. Usually, the electric resistance of a Ta film formed by vapor deposition or sputtering is 10 to 25 μΩcm, but there is a drawback that the electric resistance is likely to change due to the influence of residual oxygen and nitrogen in the film forming atmosphere. Further, in order to improve the output of the magnetoresistive head, it is necessary to use a thinner magnetoresistive film, and the shunt film must be thin accordingly. The magnetoresistive film has a thickness of 5 to 50 nm, but the mean free path of electrons in the metal film is about 30 nm, and the magnetoresistive film has a thickness of 30 nm.
At about nm, the phenomenon in which electrons collide with the surface of the film and are scattered becomes remarkable. Therefore, in the shunt film having a thickness of 30 nm or less, the variation in electric resistance becomes extremely remarkable.
Although control of the film thickness and electric resistance is indispensable for controlling the bias magnetic field, in the case where the Ta film is manufactured by a normal forming method,
Variation in electrical resistance in this film thickness region is 20 to 30%
Also reaches. Since the variation in the film thickness also overlaps with this, it has a great influence on the control of the shunt current with the magnetoresistive effect film, and it is extremely difficult to manufacture a shunt bias type magnetoresistive effect head having good characteristics with no variation.

【0005】[0005]

【発明が解決しようとする課題】上述したように、従来
の磁気抵抗効果型ヘッドでは、磁気抵抗効果膜が5〜3
0nmと極めて薄くなったときのシャント膜の電気抵抗
のばらつき低減については考慮されておらず、ばらつき
のない良好な特性を有するシャントバイアス型磁気抵抗
効果型ヘッドとその製造方法はなかった。
As described above, in the conventional magnetoresistive head, the magnetoresistive film has 5 to 3 parts.
No consideration was given to the reduction of variations in the electrical resistance of the shunt film when it became extremely thin as 0 nm, and there was no shunt bias type magnetoresistive head having good characteristics with no variations and a manufacturing method thereof.

【0006】本発明の目的は、シャントバイアス型磁気
抵抗効果型ヘッドの中、特に磁気抵抗効果膜が薄い高出
力のヘッドに最適なシャント膜を提供することにある。
An object of the present invention is to provide a shunt film most suitable for a high output head of a shunt bias type magnetoresistive head, particularly a thin magnetoresistive film.

【0007】[0007]

【課題を解決するための手段】上記目的を達成するため
に、本発明の磁気抵抗効果型ヘッドではTaに高融点の
金属を添加してTaのもつ高耐食性や磁気抵抗効果膜と
の良好な反応特性を損なうことなく、電気抵抗の値を調
整し、従来技術であるTaの有する欠点を解決するもの
である。
In order to achieve the above object, in the magnetoresistive head of the present invention, a high melting point metal is added to Ta to obtain a high corrosion resistance and a favorable magnetoresistive film. The object is to adjust the electric resistance value without impairing the reaction characteristics and solve the drawbacks of the conventional Ta.

【0008】Taに第2元素を添加してシャント膜とす
る場合、磁気抵抗効果膜との分流に適した添加量の範囲
としなければならない。この値は磁気抵抗効果膜の電気
抵抗の3倍程度までがよい。抵抗が高すぎるとシャント
膜の厚さを大きくしなければならないので、電流による
発熱の放散が悪くなり素子の寿命が非常に短くなる。ま
た、シールド型磁気抵抗効果素子のギャップの低減がで
きなくなる。
When the shunt film is formed by adding the second element to Ta, the addition amount must be in a range suitable for shunting with the magnetoresistive film. This value is preferably up to about three times the electric resistance of the magnetoresistive film. If the resistance is too high, the thickness of the shunt film must be increased, so that the dissipation of heat generated by the current is deteriorated and the life of the element is extremely shortened. Also, the gap of the shield type magnetoresistive effect element cannot be reduced.

【0009】Taに元素を添加すると一般に添加量の少
ないときは固溶体になるが、全率固溶の合金系を除けば
合金系に特有の金属間化合物とTaの固溶体からなる2
相組織となり、電気抵抗の増大やそのばらつきの増大,
耐食性の劣化などが生じる。従って、固溶体の状態であ
ることが必要である。すなわち、2相組織は熱処理条件
によって大きく変化するので、電気抵抗の変化も著し
い。磁気抵抗効果膜との反応に関しては、Taの合金化
によって合金の融点が低くなると反応開始温度が低くな
るので、Ta合金の融点は約2000℃以上であること
が必要である。
When an element is added to Ta, it generally becomes a solid solution when the addition amount is small, but it is composed of an intermetallic compound peculiar to the alloy system and a solid solution of Ta except for the alloy system of total solid solution.
It becomes a phase structure, and the increase of electric resistance and its variation,
Corrosion resistance is deteriorated. Therefore, it needs to be in a solid solution state. That is, since the two-phase structure changes greatly depending on the heat treatment conditions, the change in electric resistance is remarkable. Regarding the reaction with the magnetoresistive film, the melting point of the alloy becomes lower due to the alloying of Ta, so that the reaction start temperature becomes lower. Therefore, the melting point of the Ta alloy needs to be about 2000 ° C. or higher.

【0010】2000℃以下になると磁気抵抗効果膜と
の反応開始温度が350℃以下となり、耐熱性の点で好
ましくなくなる。これらの条件を満たすTa合金の元素
添加量の範囲は添加元素によって異なり、合金系ごとに
その電気抵抗や耐食性,磁気抵抗効果膜との反応開始温
度などを詳細に調べて決定しなければならない。
If the temperature is 2000 ° C. or lower, the reaction initiation temperature with the magnetoresistive film becomes 350 ° C. or lower, which is not preferable in terms of heat resistance. The range of the element addition amount of the Ta alloy satisfying these conditions varies depending on the addition element, and the electrical resistance, the corrosion resistance, the reaction initiation temperature with the magnetoresistive effect film, and the like must be determined in detail for each alloy system.

【0011】[0011]

【作用】Taに第2元素を添加することにより、純Ta
に比較して電気抵抗は増大する。単位添加量あたりのT
a合金の電気抵抗の増大量は添加元素の種類によって異
なるが、一般には図1で示すように添加量の少ない領域
では直線的であり、添加量が増えてくると直線から外れ
てくる。前述のようにTa膜の電気抵抗は作製方法によ
って異なるが、そのほかに用いるTa及び添加元素の純
度によっても大きく変化する。以下では、通常工業的に
使用される純度が99.9〜99.999wt%の原料を
使用した場合を基準にして述べる。
[Function] By adding the second element to Ta, pure Ta
The electric resistance is increased as compared with. T per unit amount added
Although the amount of increase in the electrical resistance of the alloy a depends on the type of the additive element, it is generally linear in the region where the amount of addition is small as shown in FIG. 1, and deviates from the straight line as the amount of addition increases. As described above, the electric resistance of the Ta film varies depending on the manufacturing method, but also greatly changes depending on the purity of Ta and the additive element used. In the following, description will be given with reference to the case where a raw material having a purity of 99.9 to 99.999 wt% which is usually used industrially is used.

【0012】図1で示した電気抵抗の中で、シャント膜
に使用できる電気抵抗値の範囲は前述のように磁気抵抗
効果膜の3倍までである。前述の磁気抵抗効果膜におい
て、その膜厚が5〜30nmの場合の電気抵抗は15〜
30μΩcmでありシャント膜としてのTa合金膜の電気
抵抗は、約90μΩcmまでで、この範囲であればシャン
ト膜として使用できる。
Among the electric resistances shown in FIG. 1, the range of electric resistance values that can be used for the shunt film is up to three times that of the magnetoresistive film as described above. In the above-mentioned magnetoresistive film, the electric resistance when the film thickness is 5 to 30 nm is 15 to
The electric resistance of the Ta alloy film as the shunt film is 30 μΩcm, and the electric resistance is up to about 90 μΩcm. Within this range, the Ta alloy film can be used as the shunt film.

【0013】次に、磁気抵抗効果膜との反応に関して
は、合金化によって種々の融点をもつTa合金膜と上述
の磁気抵抗効果膜との反応を調べた結果、図2で示すよ
うに、両者の反応開始温度は合金の融点に比例し、磁気
抵抗効果型ヘッドの作製行程での必要加熱温度を300
℃とすれば、これより反応開始温度が1〜2割高いこと
が必要であり、この温度を350℃とすれば、これを満
足する合金組成を選定しなければならない。図2で示し
た関係から反応温度350℃を満足するTa合金の融点
は2000℃以上である。
Next, regarding the reaction with the magnetoresistive effect film, as a result of investigating the reaction between the Ta alloy film having various melting points by alloying and the above-mentioned magnetoresistive effect film, as shown in FIG. The reaction start temperature of is proportional to the melting point of the alloy, and the required heating temperature in the manufacturing process of the magnetoresistive head is 300
If the temperature is set to 0 ° C, the reaction initiation temperature must be 10 to 20% higher than that, and if the temperature is set to 350 ° C, an alloy composition satisfying this must be selected. From the relationship shown in FIG. 2, the melting point of Ta alloy satisfying the reaction temperature of 350 ° C. is 2000 ° C. or higher.

【0014】電気抵抗のばらつきに関しては、図3で示
すようにTaに対してTa合金の電気抵抗の膜厚依存性
は、全体として高抵抗側にシフトする。図3において、
Taの電気抵抗の膜厚依存性のない領域の抵抗値をρ0
膜厚依存性のある領域の抵抗値をρt ,Ta合金の膜厚
依存性のない領域の抵抗値をρ01,膜厚依存性のある領
域の抵抗値をρt1とすれば、 (ρt−ρ0)/ρ0 に比較して (ρt1−ρ01)/ρ01 は小さくなる。また、膜厚依存性のある領域でのTa膜
の電気抵抗のばらつきΔρ0とTa合金のΔρ01を比較
するとΔρ01のほうが小さくなる。
Regarding the variation of the electric resistance, as shown in FIG. 3, the film thickness dependence of the electric resistance of the Ta alloy with respect to Ta shifts to the high resistance side as a whole. In FIG.
The resistance value of the region where the electric resistance of Ta does not depend on the film thickness is ρ 0
Let ρ t be the resistance value of the film thickness dependent region, ρ 01 be the resistance value of the Ta alloy film thickness independent region, and ρ t1 be the film thickness dependent region resistance value of (ρ (ρ t1 −ρ 01 ) / ρ 01 is smaller than t −ρ 0 ) / ρ 0 . Also, more of the [Delta] [rho] 01 Comparing the [Delta] [rho] 01 of the Ta film of the electric resistance variation [Delta] [rho] 0 and Ta alloy in the region where a film thickness dependency is reduced.

【0015】磁気記録装置の高密度化に対応するには、
磁気抵抗効果膜の膜厚を低減して、高電流化する必要が
あり、膜厚の低減とともにシャント膜と磁気抵抗膜の分
流比は上述のような原因でばらついてくる。このばらつ
きの低減には、素子に通電するための電源にばらつきを
低減するような回路機能を持たせることが必要である。
しかし、本発明により電源への負担も大幅に軽くなる。
これと同時に記録再生における信号の再生誤り率も低減
されるので、エラーコレクションの回路への負担も大幅
に軽くなる。したがって、誤り率の非常に低い磁気記憶
装置が実現される。
In order to cope with the high density of the magnetic recording device,
It is necessary to reduce the film thickness of the magnetoresistive film to increase the current, and the diversion ratio of the shunt film and the magnetoresistive film varies due to the above-mentioned causes as the film thickness decreases. In order to reduce this variation, it is necessary for the power supply for energizing the device to have a circuit function for reducing the variation.
However, the present invention significantly reduces the burden on the power supply.
At the same time, the reproduction error rate of the signal during recording and reproduction is also reduced, so that the load on the error correction circuit is significantly reduced. Therefore, a magnetic memory device having an extremely low error rate is realized.

【0016】以上のような作用で、Ta膜に比較して、
Ta合金膜の電気抵抗のばらつきが低減され、磁気抵抗
効果素子のバイアス磁界強度や出力特性のばらつきが低
減される。
Due to the above-mentioned actions, as compared with the Ta film,
Variations in the electrical resistance of the Ta alloy film are reduced, and variations in the bias magnetic field strength and output characteristics of the magnetoresistive effect element are reduced.

【0017】[0017]

【実施例】【Example】

<実施例1>Taに1〜35at%のTiを添加したT
a−Ti合金を真空溶解法で作製し、これから電子ビー
ム蒸着用のソースおよびスパッタリング用ターゲットを
切り出した。これらを使用してガラス基板上に電子ビー
ム蒸着およびスパッタリングで堆積した薄膜の電気抵抗
のTi添加量依存性を図4に示す。膜厚は代表例として
電気抵抗の膜厚依存性のない領域の100nmと膜表面
により電子が散乱される膜厚依存性のある領域の20n
mの場合を示した。ここで電気抵抗はTaの電気抵抗を
基準にして示してある。
<Example 1> T obtained by adding 1 to 35 at% of Ti to Ta
An a-Ti alloy was produced by a vacuum melting method, and a source for electron beam evaporation and a sputtering target were cut out from this. FIG. 4 shows the Ti addition amount dependency of the electrical resistance of a thin film deposited by electron beam evaporation and sputtering on a glass substrate using these materials. The film thickness is typically 100 nm in a region where the electric resistance does not depend on the film thickness and 20 n in a region where the film surface depends on which electrons are scattered by the film surface.
The case of m is shown. Here, the electric resistance is shown with reference to the electric resistance of Ta.

【0018】Ta−Ti合金膜の電気抵抗はTi量が1
at%までは顕著な増加を示さず、1at%以上になる
と増加が明瞭となり、25at%まではほぼ直線的に増
大し、25at%以上になると急激な増大がみられる。
前述のように、磁気抵抗効果素子のシャント膜に使用す
る金属膜の抵抗は磁気抵抗効果膜の抵抗の1〜3倍が望
ましく、通常作製される磁気抵抗効果膜の抵抗が15〜
30μΩcmであるから、シャント膜に使えるTa合金の
抵抗は約90μΩcmであり、これを上限とすればシャン
ト膜に使用できるTi添加量は1〜25at%である。
また、上述の (ρt1−ρ01)/ρ01 の効果が顕著になる領域でTiの添加量を考えると、T
iの添加量は5〜25at%がより有効である。Ti添
加量が低い場合に抵抗増大がすくないのは、蒸着等の膜
形成の過程でTiが雰囲気中の酸素などの残留ガスと反
応してTaに混入する不純物ガス量を低減するゲッター
効果のためと推定される。
The electric resistance of the Ta-Ti alloy film is such that the Ti content is 1
No significant increase is shown up to at%, the increase becomes clear at 1 at% or more, increases almost linearly up to 25 at%, and increases sharply at 25 at% or more.
As described above, the resistance of the metal film used for the shunt film of the magnetoresistive effect element is preferably 1 to 3 times the resistance of the magnetoresistive effect film, and the resistance of the normally manufactured magnetoresistive effect film is 15 to
Since it is 30 μΩcm, the resistance of Ta alloy that can be used for the shunt film is about 90 μΩcm, and if this is the upper limit, the Ti addition amount that can be used for the shunt film is 1 to 25 at%.
In addition, considering the amount of addition of Ti in the region where the effect of (ρ t1 −ρ 01 ) / ρ 01 becomes remarkable, T
More effective addition amount of i is 5 to 25 at%. The reason why the increase in resistance is small when the amount of addition of Ti is low is that the Ti reacts with residual gas such as oxygen in the atmosphere during the film formation process such as vapor deposition to reduce the amount of impurity gas mixed into Ta. It is estimated to be.

【0019】Ti量が1〜5at%の範囲では、Ta合
金膜の抵抗増加は顕著ではないが、Tiのゲッター効果
のため抵抗のばらつきはTa膜に比較して約1/3〜1
/2に低減する。したがって、Tiを添加した場合には
ゲッター効果によるシャント膜の電気抵抗ばらつきの低
減効果がある。
When the amount of Ti is in the range of 1 to 5 at%, the resistance increase of the Ta alloy film is not remarkable, but the variation in resistance is about 1/3 to 1 as compared with the Ta film due to the gettering effect of Ti.
It is reduced to / 2. Therefore, when Ti is added, there is an effect of reducing variations in the electric resistance of the shunt film due to the getter effect.

【0020】一方、図5で示すように磁気抵抗効果膜で
あるNi−19at%Fe合金膜とTa−Ti合金膜と
の反応を真空中で熱処理して調べたところ、反応温度は
Tiの添加量増大とともにTa−28at%Ti近傍で
350℃以下になる。したがって、28at%Ti以上
のTa−Ti合金はヘッド作製工程での最高熱処理温度
にもよるが、300℃を超えた場合はシャント膜として
実用的でない。
On the other hand, as shown in FIG. 5, the reaction between the Ni-19at% Fe alloy film, which is the magnetoresistive film, and the Ta-Ti alloy film was examined by heat treatment in vacuum. The reaction temperature was Ti addition. As the amount increases, it becomes 350 ° C. or lower near Ta-28 at% Ti. Therefore, a Ta-Ti alloy containing 28 at% Ti or more is not practical as a shunt film when the temperature exceeds 300 ° C, although it depends on the maximum heat treatment temperature in the head manufacturing process.

【0021】以上の検討をしたのち、Ta,Ta−1a
t%Ti,Ta−5at%Ti,Ta−10at%T
i,Ta−20at%Ti,Ta−25at%Ti,T
a−39at%Ti膜をシャント膜に使用し、磁気抵抗
効果膜としてNi−19at%Fe,Ni−50at%C
o,Ni−10at%Fe−9at%Coを使って磁気
抵抗効果型ヘッドを作製した。その結果、シャント膜の
電気抵抗ばらつきによるヘッドのバイアス磁界強度のば
らつきは、ヘッド出力の波形の上下非対称性で比較し
て、Ta−Ti合金の場合はTaの場合に比較していず
れもばらつきが1/3から1/2以下に減少した。
After the above examination, Ta, Ta-1a
t% Ti, Ta-5 at% Ti, Ta-10 at% T
i, Ta-20 at% Ti, Ta-25 at% Ti, T
An a-39 at% Ti film is used as a shunt film, and as a magnetoresistive effect film, Ni-19 at% Fe, Ni-50 at% C is used.
A magnetoresistive head was produced using o, Ni-10 at% Fe-9 at% Co. As a result, variations in the bias magnetic field strength of the head due to variations in the electrical resistance of the shunt film are compared by the vertical asymmetry of the waveform of the head output, and in the case of the Ta-Ti alloy, variations in both are found compared with the case of Ta. It decreased from 1/3 to 1/2 or less.

【0022】同様の検討をFeを7〜27at%含むN
i−Fe磁気抵抗効果膜,Coを30〜50at%含む
Ni−Co磁気抵抗効果膜,Feを3〜18at%,C
oを3〜15at%,残余NiからなるNi−Fe−C
o磁気抵抗効果膜を用いてヘッドを作製し評価したとこ
ろ、シャント膜の電気抵抗ばらつきの低減効果によるヘ
ッド特性のばらつきの低減が確認された。
A similar study was conducted on N containing 7 to 27 at% Fe.
i-Fe magnetoresistive film, Ni-Co magnetoresistive film containing 30 to 50 at% Co, 3 to 18 at% Fe, and C
Ni of 3 to 15 at% and Ni-Fe-C consisting of the balance Ni
o When a head was manufactured using a magnetoresistive effect film and evaluated, it was confirmed that the variation in head characteristics was reduced by the effect of reducing the variation in electric resistance of the shunt film.

【0023】<実施例2>実施例1と同様の方法でTa
に0.5 〜35at%のZrを添加したTa−Zr合金
の電気抵抗およびそのばらつきを調べた。図6に示すよ
うにTa−Zr合金膜の場合はZr量が0.5at%ま
では顕著な増加を示さず、0.5at%以上になると増
加が明瞭となり、15at%まではほぼ直線的に増大
し、15at%以上になると急激な増大がみられる。こ
のような抵抗の急激な増大は2相組織が形成されるため
とみられるが、前述のように、磁気抵抗効果素子のシャ
ント膜に使用する金属膜の抵抗は磁気抵抗効果膜の抵抗
の1〜3倍が望ましく、シャント膜に使えるTa合金の
抵抗の上限を約90μΩcmとすれば、シャント膜に使用
できるZr添加量は0.5 〜15at%である。
<Embodiment 2> Ta in the same manner as in Embodiment 1
The electrical resistance and variation of Ta-Zr alloy in which 0.5 to 35 at% of Zr was added were investigated. As shown in FIG. 6, in the case of the Ta-Zr alloy film, the Zr amount does not show a significant increase up to 0.5 at%, and the increase becomes clear when the Zr amount is 0.5 at% or more, and is almost linear up to 15 at%. It increases, and a sharp increase is seen at 15 at% or more. It is considered that such a rapid increase in resistance is due to the formation of a two-phase structure, but as described above, the resistance of the metal film used for the shunt film of the magnetoresistive effect element is 1 to 1 3 times is desirable, and if the upper limit of the resistance of Ta alloy that can be used for the shunt film is about 90 μΩcm, the amount of Zr addition that can be used for the shunt film is 0.5 to 15 at%.

【0024】また、上述の (ρt1−ρ01)/ρ01 の効果が顕著になる領域でZrの添加量を考えると、Z
rの添加量は2.5 〜15at%がより有効である。
Zr添加量が低い場合に抵抗増大がすくないのは、蒸着
等の膜形成の過程でTiの場合と同様にZrが雰囲気中
の酸素などの残留ガスと反応してTaに混入する不純物
ガス量を低減するゲッター効果のためと推定される。
Considering the added amount of Zr in the region where the effect of (ρ t1 −ρ 01 ) / ρ 01 becomes remarkable, Z
More effective addition amount of r is 2.5 to 15 at%.
When the amount of added Zr is low, the increase in resistance is not so great that the amount of impurity gas mixed in Ta by reacting with residual gas such as oxygen in the atmosphere of Zr reacts with Ti in the process of film formation such as vapor deposition. It is estimated that the getter effect is reduced.

【0025】Zr量が0.5〜2.5at%の範囲では、
Ta合金膜の抵抗増加は顕著ではないが、Zrのゲッタ
ー効果のため抵抗のばらつきはTa膜に比較して約1/
3〜1/2に低減する。したがって、Zrを添加した場
合もゲッター効果によるシャント膜の電気抵抗ばらつき
の低減効果がある。一方、磁気抵抗効果膜であるNi−
19at%Fe合金膜とTa−Zr合金膜との反応を真
空中で熱処理して調べたが、反応温度はZrの添加量増
大でもとくに大きな変化はなく350℃以上を保ってい
る。しかし、17at%Zr以上のTa−Zr合金は耐
食性が大幅に低下するためシャント膜として実用的でな
い。
When the amount of Zr is in the range of 0.5 to 2.5 at%,
Although the increase in resistance of the Ta alloy film is not remarkable, the variation in resistance is about 1 / compared to that of the Ta film due to the getter effect of Zr.
It is reduced to 3 to 1/2. Therefore, the addition of Zr also has the effect of reducing the variation in the electric resistance of the shunt film due to the getter effect. On the other hand, the magnetoresistive film Ni-
The reaction between the 19 at% Fe alloy film and the Ta-Zr alloy film was examined by heat treatment in a vacuum, and the reaction temperature was maintained at 350 ° C or higher without any significant change even when the amount of Zr added was increased. However, a Ta-Zr alloy of 17 at% Zr or more is not practical as a shunt film because its corrosion resistance is significantly reduced.

【0026】以上の検討をしたのち、Ta,Ta−0.
5at%Zr,Ta−2.5at%Zr,Ta−5at%
Zr,Ta−7.5at%Zr ,Ta−10at%Z
r,Ta−12.5at%Zr,Ta−15at%Zr
をシャント膜に使用し、磁気抵抗膜としてNi−19a
t%Fe,Ni−50at%Co,Ni−10at%F
e−9at%Coを使って磁気抵抗効果型ヘッドを作製
した。その結果、シャント膜の電気抵抗ばらつきによる
ヘッドのバイアス磁界強度のばらつきは、ヘッド出力の
波形の上下非対称性で比較して、Ta−Zr合金の場合
はTaの場合に比較していずれもばらつきが1/3から
1/2以下に減少した。
After the above examination, Ta, Ta-0.
5 at% Zr, Ta-2.5 at% Zr, Ta-5 at%
Zr, Ta-7.5 at% Zr, Ta-10 at% Z
r, Ta-12.5 at% Zr, Ta-15 at% Zr
Is used for the shunt film and Ni-19a is used as the magnetoresistive film.
t% Fe, Ni-50at% Co, Ni-10at% F
A magnetoresistive head was manufactured using e-9 at% Co. As a result, variations in the bias magnetic field strength of the head due to variations in the electrical resistance of the shunt film are compared by the vertical asymmetry of the waveform of the head output, and in the case of Ta-Zr alloy, the variations are inferior to those in the case of Ta. It decreased from 1/3 to 1/2 or less.

【0027】同様の検討をFeを7〜27at%含むN
i−Fe磁気抵抗効果膜,Coを30〜50at%含む
Ni−Co磁気抵抗効果膜,Feを3〜18at%,C
oを3〜15at%,残余NiからなるNi−Fe−C
o磁気抵抗効果膜を用いてヘッドを作製し評価したとこ
ろ、シャント膜の電気抵抗ばらつきの低減効果によるヘ
ッド特性のばらつきの低減が確認された。
A similar study was conducted on N containing 7 to 27 at% Fe.
i-Fe magnetoresistive film, Ni-Co magnetoresistive film containing 30 to 50 at% Co, 3 to 18 at% Fe, and C
Ni of 3 to 15 at% and Ni-Fe-C consisting of the balance Ni
o When a head was manufactured using a magnetoresistive effect film and evaluated, it was confirmed that the variation in head characteristics was reduced by the effect of reducing the variation in electric resistance of the shunt film.

【0028】<実施例3>実施例1および実施例2と同
様の方法でTaに1〜35at%のVを添加したTa−
V合金の電気抵抗およびそのばらつきを調べ、シャント
膜に使用できるV添加量を検討した結果、Vの場合は3
〜20at%の範囲が有効である(図6)。V添加の場合
も20at%以上になると抵抗が大幅に増大し、またN
i−19at%Fe合金膜とNb−V合金膜との反応を
真空中で熱処理して調べたところ、反応温度はVの添加
量増大とともに低下しTa−22at%V近傍で350
℃以下になる。したがって、22at%V以上のTa−
V合金はヘッド作製工程での最高熱処理温度にもよる
が、300℃を超えた場合はシャント膜として実用的で
ない。また、Ta膜の抵抗変化は3at%以下のV添加
では少ないものの、シャント膜の電気抵抗ばらつき低減
の大きな効果は3at%以上添加しないとみられない。
<Embodiment 3> In the same manner as in Embodiments 1 and 2, Ta- in which 1 to 35 at% of V is added to Ta-
The electric resistance of the V alloy and its variation were examined, and the amount of V added that could be used in the shunt film was examined.
A range of -20 at% is effective (Fig. 6). In the case of adding V as well, the resistance increases drastically at 20 at% or more.
When the reaction between the i-19 at% Fe alloy film and the Nb-V alloy film was heat-treated in a vacuum and examined, the reaction temperature decreased with an increase in the addition amount of V, and the reaction temperature was 350 at around Ta-22 at% V.
It becomes below ℃. Therefore, Ta- of 22 at% V or more
The V alloy is not practical as a shunt film when it exceeds 300 ° C., although it depends on the maximum heat treatment temperature in the head manufacturing process. Further, the resistance change of the Ta film is small when V is added at 3 at% or less, but the large effect of reducing the variation in the electric resistance of the shunt film cannot be seen without adding 3 at% or more.

【0029】Vの場合も添加量の少ない範囲における抵
抗のばらつき低減は、主にVのゲッター効果によるとみ
られるが、TiやZrに比較するとVのゲッター効果は
弱いためやや添加量を増加する必要があるものと思われ
る。しかし、3at%以上添加した時の抵抗のばらつき
は、Ti,Zr添加と同様にTa膜に比較して約1/3
〜1/2になった。
In the case of V as well, the reduction in resistance variation in the range where the amount of addition is small is considered to be mainly due to the gettering effect of V, but the gettering effect of V is weaker than that of Ti or Zr, so the amount of addition needs to be increased slightly. It seems that there is. However, the variation in resistance when adding 3 at% or more is about 1/3 of that of the Ta film as in the case of adding Ti and Zr.
It has become ~ 1/2.

【0030】以上の検討ののちTi,Zr添加の場合と
同様に、Ta−V合金膜をシャント膜に使用し、磁気抵
抗膜としてNi−19at%Fe,Ni−50at%C
o,Ni−10at%Fe−9at%Coを使って磁気
抵抗効果型ヘッドを作製した結果、シャント膜の電気抵
抗ばらつきによるヘッドのバイアス磁界強度のばらつき
は、ヘッド出力の波形の上下非対称性で比較して、Ta
膜の場合に比較していずれも1/3から1/2以下に減
少した。
After the above examination, as in the case of adding Ti and Zr, a Ta-V alloy film was used for the shunt film, and Ni-19 at% Fe and Ni-50 at% C were used as the magnetoresistive film.
As a result of manufacturing a magnetoresistive head using o, Ni-10 at% Fe-9 at% Co, the variation in the bias magnetic field strength of the head due to the variation in the electrical resistance of the shunt film is compared by the vertical asymmetry of the waveform of the head output. And Ta
Compared to the case of the film, it was reduced from 1/3 to 1/2 or less.

【0031】同様の検討をFeを7〜27at%含むN
i−Fe磁気抵抗効果膜,Coを30〜50at%含む
Ni−Co磁気抵抗効果膜,Feを3〜18at%,C
oを3〜15at%,残余NiからなるNi−Fe−C
o磁気抵抗効果膜を用いてヘッドを作製し評価したとこ
ろ、やはりシャント膜の電気抵抗ばらつきの低減効果に
よるヘッド特性のばらつきの低減が確認された。
A similar study was conducted on N containing 7 to 27 at% of Fe.
i-Fe magnetoresistive film, Ni-Co magnetoresistive film containing 30 to 50 at% Co, 3 to 18 at% Fe, and C
Ni of 3 to 15 at% and Ni-Fe-C consisting of the balance Ni
o When a head was manufactured using a magnetoresistive effect film and evaluated, it was confirmed that the variation in head characteristics was also reduced due to the effect of reducing the variation in electric resistance of the shunt film.

【0032】<実施例4>実施例1および実施例2と同
様の方法でTaに0.5〜35at%のHfを添加した
Ta−Hf合金の電気抵抗およびそのばらつきを調べ、
シャント膜に使用できるHf添加量を検討した結果、H
fの場合は1〜25at%の範囲が有効である(図
6)。Hf添加の場合も25at%以上になると抵抗が
大幅に増大する。また、 (ρt1−ρ01)/ρ01 の効果が顕著になる領域でHfの添加量を考えると、H
fの添加量は5〜25at%がより有効である。さら
に、Ni−19at%Fe合金膜とTa−Hf合金膜と
の反応を真空中で熱処理して調べたところ、反応温度は
Hfの添加量を増加していくとTa−27at%Hfの
近傍で350℃以下になる。したがって、27at%H
f以上のTa−Hf合金はヘッド作製工程での最高熱処
理温度が300℃を超えた場合はシャント膜として実用
的でない。また、Ta膜の抵抗変化は1at%以下のH
f添加では少ないものの、シャント膜の電気抵抗ばらつ
き低減の効果は1at%以上添加しないとみられない。
1at%以上添加した時の抵抗のばらつきは、Ti,Z
r添加と同様にTa膜に比較して約1/3〜1/2にな
る。
<Embodiment 4> In the same manner as in Embodiments 1 and 2, the electric resistance of Ta-Hf alloy in which 0.5 to 35 at% of Hf is added to Ta and its variation are examined.
As a result of examining the amount of Hf added that can be used in the shunt film,
In the case of f, the range of 1 to 25 at% is effective (FIG. 6). In the case of adding Hf as well, the resistance is significantly increased at 25 at% or more. Further, considering the amount of Hf added in the region where the effect of (ρ t1 −ρ 01 ) / ρ 01 becomes remarkable,
It is more effective that the addition amount of f is 5 to 25 at%. Furthermore, when the reaction between the Ni-19 at% Fe alloy film and the Ta-Hf alloy film was examined by heat treatment in a vacuum, the reaction temperature was in the vicinity of Ta-27 at% Hf as the amount of Hf added increased. It will be below 350 ° C. Therefore, 27 at% H
A Ta-Hf alloy of f or more is not practical as a shunt film when the maximum heat treatment temperature in the head manufacturing process exceeds 300 ° C. In addition, the resistance change of the Ta film is H of 1 at% or less.
Although the addition of f is small, the effect of reducing the variation in electric resistance of the shunt film cannot be seen unless 1 at% or more is added.
The variation in resistance when 1 at% or more is added is Ti, Z
Similar to the addition of r, it becomes about 1/3 to 1/2 as compared with the Ta film.

【0033】以上の検討ののちTi,Zr添加の場合と
同様に、Ta−Hf合金膜をシャント膜に使用し、磁気
抵抗膜としてNi−19at%Fe,Ni−50at%
Co,Ni−10at%Fe−9at%Coを使って磁
気抵抗効果型ヘッドを作製した結果、シャント膜の電気
抵抗ばらつきによるヘッドのバイアス磁界強度のばらつ
きは、ヘッド出力の波形の上下非対称性で比較して、T
a膜の場合に比較していずれも1/3から1/2以下に
減少した。
After the above examination, as in the case of adding Ti and Zr, a Ta-Hf alloy film was used as the shunt film, and Ni-19at% Fe and Ni-50at% were used as the magnetoresistive film.
As a result of manufacturing a magnetoresistive head using Co and Ni-10 at% Fe-9 at% Co, variations in the bias magnetic field strength of the head due to variations in the electrical resistance of the shunt film are compared by the vertical asymmetry of the waveform of the head output. And then T
Compared to the case of the film a, the values were reduced from 1/3 to 1/2 or less.

【0034】同様の検討をFeを7〜27at%含むN
i−Fe磁気抵抗効果膜,Coを30〜50at%含む
Ni−Co磁気抵抗効果膜,Feを3〜18at%,C
oを3〜15at%,残余NiからなるNi−Fe−C
o磁気抵抗効果膜を用いてヘッドを作製し評価したとこ
ろ、やはりシャント膜の電気抵抗ばらつき低減効果によ
るヘッド特性のばらつきの低減が確認された。
A similar study was conducted on N containing 7 to 27 at% Fe.
i-Fe magnetoresistive film, Ni-Co magnetoresistive film containing 30 to 50 at% Co, 3 to 18 at% Fe, and C
Ni of 3 to 15 at% and Ni-Fe-C consisting of the balance Ni
o When a head was manufactured using a magnetoresistive effect film and evaluated, it was confirmed that the variation in head characteristics was reduced due to the effect of reducing variation in electric resistance of the shunt film.

【0035】<実施例5>実施例1および実施例2と同
様の方法でTaに0.5 〜35at%のWを添加したN
b−W合金の電気抵抗およびそのばらつきを調べた。T
a−W合金膜の場合はW量が0.5at%までは顕著な
増加を示さず、0.5at%以上になると増加が明瞭と
なり、15at%まではほぼ直線的に増大し、15at
%以上になると急激な増大がみられる(図6)。前述のよ
うに、磁気抵抗効果素子のシャント膜に使用する金属膜
の抵抗は磁気抵抗効果膜の抵抗の1〜3倍が望ましく、
シャント膜に使えるTa合金の抵抗の上限を約90μΩ
cmとすればシャント膜に使用できるW添加量は0.5 〜
15at%となる。また、上述の(ρt1−ρ01)/ρ01
の効果が顕著になる領域でWの添加量を考えると、Wの
添加量は2.5 〜15at%がより有効と考えられる。
しかし、Wの場合について磁気抵抗効果膜であるNi−
19at%Fe合金膜との反応と耐食性とを調べてみた
ところ、反応温度は添加量15at%でもとくに大きな
変化はなく350℃以上を保っているが、耐食性はWの
添加により大幅に低下する。この耐食性の点からみる
と、11at%以上のTa−W合金はシャント膜として
実用的でないことがわかった。したがって、Wの場合は
シャント膜として0.5 〜10at%の添加量が適量で
あり、この範囲のTa−W合金膜の抵抗のばらつきは、
Ta膜に比較して約1/3〜1/2に低減した。したが
って、Wを添加した場合もシャント膜の電気抵抗ばらつ
きの低減効果があると考えられる。
<Embodiment 5> In the same manner as in Embodiments 1 and 2, Ta containing 0.5 to 35 at% of W is added to N.
The electrical resistance of the b-W alloy and its variation were investigated. T
In the case of the a-W alloy film, the W content does not show a significant increase up to 0.5 at%, and the increase becomes clear when the W content exceeds 0.5 at%, and increases almost linearly up to 15 at%.
A sharp increase is seen when the percentage is over (Fig. 6). As described above, the resistance of the metal film used for the shunt film of the magnetoresistive effect element is preferably 1 to 3 times the resistance of the magnetoresistive effect film,
The upper limit of the resistance of Ta alloy that can be used for the shunt film is about 90 μΩ
If it is cm, the amount of W that can be used for the shunt film is 0.5-
It becomes 15 at%. In addition, the above (ρ t1 −ρ 01 ) / ρ 01
Considering the amount of W added in the region where the effect of 1 becomes significant, it is considered that the added amount of W is more effective at 2.5 to 15 at%.
However, in the case of W, the magnetoresistance effect film Ni-
When the reaction with the 19 at% Fe alloy film and the corrosion resistance were examined, the reaction temperature was maintained at 350 ° C. or higher with no significant change even when the addition amount was 15 at%, but the corrosion resistance was significantly reduced by the addition of W. From the viewpoint of this corrosion resistance, it was found that a Ta-W alloy of 11 at% or more is not practical as a shunt film. Therefore, in the case of W, the addition amount of 0.5 to 10 at% is appropriate for the shunt film, and the variation in resistance of the Ta-W alloy film in this range is
It was reduced to about 1/3 to 1/2 as compared with the Ta film. Therefore, it is considered that the addition of W also has the effect of reducing the variation in the electric resistance of the shunt film.

【0036】以上の検討をしたのちTi,Zr添加の場
合と同様に、Ta−W合金膜をシャント膜に使用し、磁
気抵抗膜としてNi−19at%Fe,Ni−50at
%Co,Ni−10at%Fe−9at%Coを使って
磁気抵抗効果型ヘッドを作製した結果、シャント膜の電
気抵抗ばらつきによるヘッドのバイアス磁界強度のばら
つきは、ヘッド出力の波形の上下非対称性で比較して、
Ta膜の場合に比較していずれも1/3から1/2以下
に減少した。
After the above examination, as in the case of adding Ti and Zr, a Ta-W alloy film is used as a shunt film and Ni-19at% Fe and Ni-50at are used as a magnetoresistive film.
As a result of manufacturing a magnetoresistive head using% Co and Ni-10 at% Fe-9 at% Co, variations in the bias magnetic field strength of the head due to variations in the electrical resistance of the shunt film are due to the vertical asymmetry of the head output waveform. Compared to,
Compared to the case of the Ta film, it decreased from 1/3 to 1/2 or less.

【0037】同様の検討をFeを7〜27at%含むN
i−Fe磁気抵抗効果膜,Coを30〜50at%含む
Ni−Co磁気抵抗効果膜,Feを3〜18at%,C
oを3〜15at%,残余NiからなるNi−Fe−C
o磁気抵抗効果膜を用いてヘッドを作製し評価したとこ
ろ、やはりシャント膜の電気抵抗ばらつき低減効果によ
るヘッド特性のばらつきの低減が確認された。
A similar study was conducted on N containing 7 to 27 at% of Fe.
i-Fe magnetoresistive film, Ni-Co magnetoresistive film containing 30 to 50 at% Co, 3 to 18 at% Fe, and C
Ni of 3 to 15 at% and Ni-Fe-C consisting of the balance Ni
o When a head was manufactured using a magnetoresistive effect film and evaluated, it was confirmed that the variation in head characteristics was reduced due to the effect of reducing variation in electric resistance of the shunt film.

【0038】<実施例6>実施例1および実施例2と同
様の方法でTaに0.5 〜35at%のNbを添加し
たTa−Nb合金の電気抵抗およびそのばらつきを調
べ、シャント膜に使用できるNb添加量を検討した結
果、Nbの場合は3〜25at%の範囲が有効である。
Nb添加の場合も25at%以上になると抵抗が大幅に
増大し(図6)、またNi−19at%Fe合金膜との
反応温度はNbの添加量増大によってTa−27at%
Nb近傍で350℃以下になる。したがって、27at
%Nb以上のTa−Nb合金はヘッド作製工程での最高
熱処理温度が300℃を超えた場合はシャント膜として
実用的でない。3〜25at%の範囲のNb添加による
シャント膜の電気抵抗ばらつき低減の効果は、Ti,Z
r添加などと同様にTa膜に比較して約1/3〜1/2
になることを確認した。
<Embodiment 6> In the same manner as in Embodiment 1 and Embodiment 2, Ta-Nb alloy in which 0.5 to 35 at% of Nb was added to Ta was examined for electrical resistance and its variation, and used for a shunt film. As a result of examining the amount of Nb that can be added, in the case of Nb, the range of 3 to 25 at% is effective.
In the case of adding Nb as well, the resistance increased significantly at 25 at% or more (FIG. 6), and the reaction temperature with the Ni-19 at% Fe alloy film was Ta-27 at% due to the increase in the addition amount of Nb.
It becomes 350 ° C. or lower near Nb. Therefore, 27 at
% -Nb or more Ta-Nb alloy is not practical as a shunt film when the maximum heat treatment temperature in the head manufacturing process exceeds 300 ° C. The effect of reducing the variation in the electrical resistance of the shunt film by adding Nb in the range of 3 to 25 at% is Ti, Z
Approximately 1/3 to 1/2 compared to Ta film as in the case of adding r
I confirmed.

【0039】以上の検討ののちTi,Zr添加の場合と
同様にTa−3〜25at%Nb合金膜をシャント膜に
使用し、磁気抵抗膜としてNi−19at%Fe,Ni
−50at%Co,Ni−10at%Fe−9at%C
oを使って磁気抵抗効果型ヘッドを作製した結果、シャ
ント膜の電気抵抗ばらつきによるヘッドのバイアス磁界
強度のばらつきは、ヘッド出力の波形の上下非対称性で
比較して、Ta膜の場合に比較していずれも1/3から
1/2以下に減少した。
After the above examination, the Ta-3 to 25 at% Nb alloy film was used as the shunt film as in the case of adding Ti and Zr, and Ni-19 at% Fe and Ni were used as the magnetoresistive film.
-50 at% Co, Ni-10 at% Fe-9 at% C
As a result of manufacturing the magnetoresistive head using o, the variation in the bias magnetic field strength of the head due to the variation in the electric resistance of the shunt film is compared by the vertical asymmetry of the waveform of the head output and compared with the case of the Ta film. All decreased from 1/3 to 1/2 or less.

【0040】同様の検討をFeを7〜27at%含むN
i−Fe磁気抵抗効果膜,Coを30〜50at%含む
Ni−Co磁気抵抗効果膜,Feを3〜18at%,C
oを3〜15at%,残余NiからなるNi−Fe−C
o磁気抵抗効果膜を用いてヘッドを作製し評価したとこ
ろ、やはりシャント膜の電気抵抗ばらつきの低減効果に
よるヘッド特性のばらつきの低減が確認された。
A similar study was conducted on N containing 7 to 27 at% of Fe.
i-Fe magnetoresistive film, Ni-Co magnetoresistive film containing 30 to 50 at% Co, 3 to 18 at% Fe, and C
Ni of 3 to 15 at% and Ni-Fe-C consisting of the balance Ni
o When a head was manufactured using a magnetoresistive effect film and evaluated, it was confirmed that the variation in head characteristics was also reduced due to the effect of reducing the variation in electric resistance of the shunt film.

【0041】<実施例7>上述した実施例と同様の方法
でTaに0.5 〜35at%のRuを添加したTa−R
u合金の電気抵抗およびそのばらつきを調べ、シャント
膜に使用できるRu添加量を検討した。その結果、Ru
の場合は、Taに35at%までRuを添加してもTa
の抵抗は直線的に増大し、その抵抗値はシャント膜に使
えるTa合金の抵抗値約90μΩcmを超えない範囲内に
ある。そこで、さらに添加量を増やして40at%まで
Ruを添加してTaの抵抗変化を調べてみたところ、3
5at%を超えると抵抗が大幅に増大する(図6)こと
がわかった。これらの抵抗変化からみて、シャント膜に
使用できるRu添加量は2〜35at%である。
Example 7 Ta-R prepared by adding 0.5 to 35 at% Ru to Ta in the same manner as in the above example.
The electrical resistance of the u alloy and its variation were examined, and the amount of Ru added that could be used in the shunt film was examined. As a result, Ru
In the case of, if Ta is added up to 35 at%, Ta
Resistance increases linearly, and the resistance value is within a range not exceeding about 90 μΩcm of the resistance value of Ta alloy usable for the shunt film. Therefore, when the amount of addition was further increased and Ru was added up to 40 at% and the resistance change of Ta was examined, 3
It was found that the resistance was significantly increased when it exceeded 5 at% (FIG. 6). In view of these resistance changes, the amount of Ru added that can be used for the shunt film is 2 to 35 at%.

【0042】次に、Ni−19at%Fe合金膜とTa
−Ru合金膜の反応とTa−Ru合金膜の耐食性につい
て調べたが、反応温度はRuの添加量の増大によってT
a−37at%Ruの近傍で350℃以下になり、した
がって37at%Ru以上のTa−Ru合金はヘッド作
製工程での最高熱処理温度が300℃を超えた場合はシ
ャント膜として実用的でない。これに対し、Ta−Ru
合金膜の耐食性については全く問題はなく、むしろRu
添加によってTa膜の耐食性は向上し非常に好ましい結
果になる。この2〜35at%の範囲のRu添加による
シャント膜の電気抵抗ばらつき低減の効果は、Ti,Z
r添加などと同様にTa膜に比較して約1/3〜1/2
になることを確認した。2at%以下のRu添加では抵
抗変化が小さいものの、ばらつきの低減効果もさほど大
きくはないので、2at%以上のRu添加が有効であ
る。
Next, a Ni-19 at% Fe alloy film and Ta were formed.
The reaction of the -Ru alloy film and the corrosion resistance of the Ta-Ru alloy film were investigated, but the reaction temperature was T by increasing the addition amount of Ru.
The temperature becomes 350 ° C. or lower in the vicinity of a-37 at% Ru, and therefore a Ta-Ru alloy having 37 at% Ru or higher is not practical as a shunt film when the maximum heat treatment temperature in the head manufacturing process exceeds 300 ° C. On the other hand, Ta-Ru
There is no problem with the corrosion resistance of the alloy film, rather Ru
The addition improves the corrosion resistance of the Ta film, resulting in a very favorable result. The effect of reducing the variation in the electric resistance of the shunt film by adding Ru in the range of 2 to 35 at% is Ti, Z
Approximately 1/3 to 1/2 compared to Ta film as in the case of adding r
I confirmed. Although the change in resistance is small when Ru is added at 2 at% or less, the effect of reducing the variation is not so large, so addition of Ru at 2 at% or more is effective.

【0043】以上の検討ののちTi,Zr添加などの場
合と同様に、Ta−2〜35at%Ru合金膜をシャン
ト膜に使用し、磁気抵抗膜としてNi−19at%F
e,Ni−50at%Co,Ni−10at%Fe−9
at%Coを使って磁気抵抗効果型ヘッドを作製した結
果、シャント膜の電気抵抗ばらつきによるヘッドのバイ
アス磁界強度のばらつきは、ヘッド出力の波形の上下非
対称性で比較して、Ta膜の場合に比較していずれも1
/3から1/2以下に減少した。
After the above examination, as in the case of adding Ti, Zr, etc., Ta-2 to 35 at% Ru alloy film is used for the shunt film, and Ni-19 at% F is used as the magnetoresistive film.
e, Ni-50 at% Co, Ni-10 at% Fe-9
As a result of manufacturing a magnetoresistive head using at% Co, the variation in the bias magnetic field strength of the head due to the variation in the electric resistance of the shunt film is compared with the vertical asymmetry of the waveform of the head output. 1 in comparison
It decreased from / 3 to 1/2 or less.

【0044】同様の検討をFeを7〜27at%含むN
i−Fe磁気抵抗効果膜,Coを30〜50at%含む
Ni−Co磁気抵抗効果膜,Feを3〜18at%,C
oを3〜15at%,残余NiからなるNi−Fe−C
o磁気抵抗効果膜を用いてヘッドを作製し評価したとこ
ろ、やはりシャント膜の電気抵抗ばらつきの低減効果に
よるヘッド特性のばらつき低減が確認された。
A similar study was conducted on N containing 7 to 27 at% Fe.
i-Fe magnetoresistive film, Ni-Co magnetoresistive film containing 30 to 50 at% Co, 3 to 18 at% Fe, and C
Ni of 3 to 15 at% and Ni-Fe-C consisting of the balance Ni
o When a head was manufactured using a magnetoresistive film and evaluated, it was confirmed that the variation in head characteristics was reduced due to the effect of reducing the variation in electrical resistance of the shunt film.

【0045】Ru添加のもう一つの効果は、Ta膜の耐
食性の向上である。温度90℃,RH95%,200h
rの条件下での酸化によるTa−2〜35at%Ru合
金膜厚の増大はTaに比較して1/10以下であった。
これはRuがTaの耐食性に著しい効果をもつことを示
している。
Another effect of adding Ru is to improve the corrosion resistance of the Ta film. Temperature 90 ℃, RH95%, 200h
The increase in the Ta-2 to 35 at% Ru alloy film thickness due to the oxidation under the condition of r was 1/10 or less as compared with Ta.
This indicates that Ru has a significant effect on the corrosion resistance of Ta.

【0046】<実施例8>上述した実施例の場合と同様
の方法でTaに0.5 〜35at%のRhを添加したT
a−Rh合金の電気抵抗およびそのばらつきを調べ、シ
ャント膜に使用できるRh添加量を検討した結果、Rh
の場合は3〜25at%の範囲が有効である。Rh添加
の場合も25at%以上になると抵抗が大幅に増大し
(図6)、またNi−19at%Fe合金膜との反応温
度はRhの添加量増大によってTa−27at%Rhの
近傍で350℃以下になる。したがって、27at%R
h以上のTa−Rh合金はヘッド作製工程での最高熱処
理温度が300℃を超えた場合はシャント膜として実用
的でない。
<Embodiment 8> In the same manner as in the above-mentioned embodiment, T containing 0.5 to 35 at% of Rh added to Ta is used.
The electrical resistance of the a-Rh alloy and its variation were investigated, and the amount of Rh that could be used in the shunt film was examined.
In the case of, the range of 3 to 25 at% is effective. In the case of addition of Rh as well, the resistance increased significantly at 25 at% or more (FIG. 6), and the reaction temperature with the Ni-19 at% Fe alloy film was 350 ° C. near Ta-27 at% Rh due to the increase of the added amount of Rh. It becomes the following. Therefore, 27 at% R
Ta-Rh alloys with h or more are not practical as a shunt film when the maximum heat treatment temperature in the head manufacturing process exceeds 300 ° C.

【0047】これに対し、Ta−Rh合金膜の耐食性に
ついてはTa−Ru合金膜の場合と同様に3〜25at
%の範囲では全く問題はなく、むしろRh添加によって
Ta膜の耐食性は向上し非常に好ましい結果になる。こ
の3〜25at%の範囲のRh添加によるシャント膜の
電気抵抗ばらつき低減効果については、Ti,Zr添加
などと同様にTa膜に比較して約1/3〜1/2になる
ことを確認した。
On the other hand, the corrosion resistance of the Ta-Rh alloy film is 3 to 25 at as in the case of the Ta-Ru alloy film.
In the range of%, there is no problem at all, and rather the addition of Rh improves the corrosion resistance of the Ta film, resulting in a very favorable result. It was confirmed that the effect of reducing the variation in the electric resistance of the shunt film by adding Rh in the range of 3 to 25 at% was about 1/3 to 1/2 as compared with the Ta film, as in the case of adding Ti and Zr. ..

【0048】3at%以下のRh添加では抵抗変化が小
さいものの、ばらつきの低減効果もさほど大きくはない
ので、3at%以上のRh添加が有効である。以上の検
討ののちTi,Zr添加の場合と同様にTa−3〜25
at%Rh合金膜をシャント膜に使用し、磁気抵抗膜と
してNi−19at%Fe,Ni−50at%Co,N
i−10at%Fe−9at%Coを使って磁気抵抗効
果型ヘッドを作製した結果、シャント膜の電気抵抗ばら
つきによるヘッドのバイアス磁界強度のばらつきは、ヘ
ッド出力の波形の上下非対称性で比較して、Ta膜の場
合に比較していずれも1/3から1/2以下に減少し
た。
Although the resistance change is small when Rh is added at 3 at% or less, the effect of reducing the variation is not so large, so the addition of Rh at 3 at% or more is effective. After the above-mentioned examination, Ta-3 to 25 were prepared as in the case of adding Ti and Zr.
An at% Rh alloy film is used as a shunt film, and as a magnetoresistive film, Ni-19 at% Fe, Ni-50 at% Co, N is used.
As a result of manufacturing the magnetoresistive head using i-10 at% Fe-9 at% Co, the variation in the bias magnetic field strength of the head due to the variation in the electric resistance of the shunt film is compared by the vertical asymmetry of the waveform of the head output. , And Ta films were reduced from ⅓ to ½ or less.

【0049】同様の検討をFeを7〜27at%含むN
i−Fe磁気抵抗効果膜,Coを30〜50at%含む
Ni−Co磁気抵抗効果膜,Feを3〜18at%,C
oを3〜15at%,残余NiからなるNi−Fe−C
o磁気抵抗効果膜を用いてヘッドを作製し評価したとこ
ろ、やはりシャント膜の電気抵抗ばらつきの低減効果に
よるヘッド特性のばらつき低減が確認された。Rh添加
のもう一つの効果は、Nb膜の耐食性の向上である。温
度90℃,RH95%,200hrの条件下での酸化に
よるNb膜厚の増大はNbに比較して1/10以下であ
った。これはRhがNbの耐食性に著しい効果をもつこ
とを示している。
A similar study was conducted on N containing 7 to 27 at% Fe.
i-Fe magnetoresistive film, Ni-Co magnetoresistive film containing 30 to 50 at% Co, 3 to 18 at% Fe, and C
Ni of 3 to 15 at% and Ni-Fe-C consisting of the balance Ni
o When a head was manufactured using a magnetoresistive film and evaluated, it was confirmed that the variation in head characteristics was reduced due to the effect of reducing the variation in electrical resistance of the shunt film. Another effect of adding Rh is to improve the corrosion resistance of the Nb film. The increase in the Nb film thickness due to the oxidation under the conditions of temperature 90 ° C., RH 95%, and 200 hours was 1/10 or less as compared with Nb. This indicates that Rh has a significant effect on the corrosion resistance of Nb.

【0050】<実施例9>上述した実施例の場合と同様
の方法でNbに0.5〜35at%のReを添加したN
b−Re合金の電気抵抗およびそのばらつきを調べ、シ
ャント膜に使用できるRe添加量を検討した結果、Re
の場合は3〜20at%の範囲が有効である。Re添加
の場合も20at%以上になると抵抗が大幅に増大し
(図6)、またNi−19at%Fe合金膜との反応温
度はReの添加量増大によってNb−22at%Rhの
近傍で350℃以下になる。したがって、22at%R
e以上のNb−Re合金はヘッド作製工程での最高熱処
理温度が300℃を超えた場合はシャント膜として実用
的でない。これに対し、Nb−Re合金膜の耐食性につ
いては3〜20at%の範囲ではとくに大きな問題はな
く、むしろRe添加によってNb膜の耐食性は若干向上
する。
<Embodiment 9> N added with Nb in an amount of 0.5 to 35 at% by the same method as in the above embodiment.
The electrical resistance of the b-Re alloy and its variation were investigated, and the amount of Re added that could be used in the shunt film was examined.
In the case of, the range of 3 to 20 at% is effective. In the case of Re addition as well, the resistance increased significantly when the content was 20 at% or more (FIG. 6), and the reaction temperature with the Ni-19 at% Fe alloy film was 350 ° C. in the vicinity of Nb-22 at% Rh due to the increase in the addition amount of Re. It becomes the following. Therefore, 22 at% R
The Nb-Re alloy of e or more is not practical as a shunt film when the maximum heat treatment temperature in the head manufacturing process exceeds 300 ° C. On the other hand, the corrosion resistance of the Nb-Re alloy film is not particularly serious in the range of 3 to 20 at%, but rather the addition of Re slightly improves the corrosion resistance of the Nb film.

【0051】この3〜20at%の範囲のRe添加によ
るシャント膜の電気抵抗ばらつき低減効果については、
Ti,Zr添加などと同様にNb膜に比較して約1/3
〜1/2になることを確認した。3at%以下のRe添
加では抵抗変化が小さいものの、ばらつきの低減効果も
さほど大きくはないので、3at%以上のRe添加が有
効である。
Regarding the effect of reducing the variation in the electric resistance of the shunt film by adding Re in the range of 3 to 20 at%,
Similar to the addition of Ti and Zr, it is about 1/3 compared to the Nb film.
It was confirmed that it was about 1/2. Although the resistance change is small when Re is added at 3 at% or less, the effect of reducing the variation is not so large, so Re addition at 3 at% or more is effective.

【0052】以上の検討ののちTi,Zr添加の場合と
同様にNb−3〜20at%Re合金膜をシャント膜に
使用し、磁気抵抗膜としてFeを7〜27at%含むN
i−Fe磁気抵抗効果膜,Coを30〜50at%含む
Ni−Co磁気抵抗効果膜,Feを3〜18at%,C
oを3〜15at%,残余NiからなるNi−Fe−C
o磁気抵抗効果膜を用いてヘッドを作製し評価したとこ
ろ、やはりシャント膜の電気抵抗のばらつき低減効果に
よるヘッド特性のばらつき低減が確認された。
After the above examination, as in the case of adding Ti and Zr, Nb-3 to 20 at% Re alloy film is used for the shunt film, and N containing Fe of 7 to 27 at% is used as the magnetoresistive film.
i-Fe magnetoresistive film, Ni-Co magnetoresistive film containing 30 to 50 at% Co, 3 to 18 at% Fe, and C
Ni of 3 to 15 at% and Ni-Fe-C consisting of the balance Ni
o When a head was manufactured using a magnetoresistive effect film and evaluated, it was confirmed that variation in head characteristics was reduced due to the effect of reducing variation in electric resistance of the shunt film.

【0053】<実施例10>上述した実施例の場合と同
様の方法でTaに0.5 〜35at%のPtを添加した
Ta−Pt合金の電気抵抗およびそのばらつきを調べ、
シャント膜に使用できるPt添加量を検討した結果、P
tの場合は1〜10at%の範囲が有効である。Pt添
加の場合も10at%以上になると抵抗が大幅に増大し
(図6)、またNi−19at%Fe合金膜との反応温
度はPtの添加量増大によってTa−12at%Pt近
傍で350℃以下になる。したがって、12at%Pt
以上のTa−Re合金はヘッド作製工程での最高熱処理
温度が300℃を超えた場合はシャント膜として実用的
でない。
<Embodiment 10> In the same manner as in the above-mentioned embodiment, the electric resistance of Ta-Pt alloy in which 0.5 to 35 at% of Pt was added to Ta and its variation were examined.
As a result of examining the amount of Pt added that can be used for the shunt film, P
In the case of t, the range of 1 to 10 at% is effective. In the case of Pt addition as well, the resistance increased significantly at 10 at% or more (FIG. 6), and the reaction temperature with the Ni-19 at% Fe alloy film was 350 ° C. or less near Ta-12 at% Pt due to the increase in the Pt addition amount. become. Therefore, 12 at% Pt
The above Ta-Re alloy is not practical as a shunt film when the maximum heat treatment temperature in the head manufacturing process exceeds 300 ° C.

【0054】これに対し、Ta−Pt合金膜の耐食性に
ついては1〜10at%の範囲ではとくに大きな問題は
なく、むしろPt添加によってTa膜の耐食性は若干向
上する。この1〜10at%の範囲のPt添加によるシ
ャント膜の電気抵抗ばらつき低減効果については、T
i,Zr添加などと同様にTa膜に比較して約1/3〜
1/2になることを確認した。1at%以下のPt添加
では抵抗変化が小さいものの、ばらつきの低減効果もさ
ほど大きくはないので、1at%以上のPt添加が有効
である。
On the other hand, regarding the corrosion resistance of the Ta-Pt alloy film, there is no particular problem in the range of 1 to 10 at%, but rather the addition of Pt slightly improves the corrosion resistance of the Ta film. Regarding the effect of reducing the variation in the electric resistance of the shunt film by adding Pt in the range of 1 to 10 at%,
Similar to i, Zr addition, etc.
It was confirmed to be 1/2. Although the change in resistance is small when Pt is added at 1 at% or less, the effect of reducing the variation is not so large, so addition of Pt at 1 at% or more is effective.

【0055】以上の検討ののち、Ti,Zr添加の場合
などと同様にTa−1〜10at%Pt合金膜をシャン
ト膜に使用し、磁気抵抗膜としてFeを7〜27at%
含むNi−Fe磁気抵抗効果膜,Coを30〜50at
%含むNi−Co磁気抵抗効果膜,Feを3〜18at
%,Coを3〜15at%,残余NiからなるNi−F
e−Co磁気抵抗効果膜を用いてヘッドを作製し評価し
たところ、やはりシャント膜の電気抵抗のばらつき低減
効果によるヘッド特性のばらつき低減が確認された。
After the above examination, as in the case of adding Ti and Zr, a Ta-1 to 10 at% Pt alloy film is used for the shunt film, and 7 to 27 at% of Fe is used as a magnetoresistive film.
Ni-Fe magnetoresistive effect film containing, Co of 30 to 50 at
% Ni-Co magnetoresistive film containing 3 to 18 Fe
%, Co 3 to 15 at%, Ni-F consisting of the balance Ni
When the head was manufactured using the e-Co magnetoresistive effect film and evaluated, it was confirmed that the variation in the head characteristics was also reduced by the effect of reducing the variation in the electric resistance of the shunt film.

【0056】<実施例11>上述した実施例の場合と同
様の方法でTaに0.5 〜35at%のNiを添加した
Ta−Ni合金の電気抵抗およびそのばらつきを調べ、
シャント膜に使用できるNi添加量を検討した結果、N
iの場合は3〜25at%の範囲が有効である。Ni添
加の場合も25at%以上になると抵抗が大幅に増大す
る(図6)が、Ni−19at%Fe合金膜との反応温
度はNiの添加量を増加してもTa膜の単独の反応温度
とほとんど変わらない。また、Ta−Ni合金膜の耐食
性についても3〜25at%の範囲では全く問題はな
く、むしろNi添加によってTa膜の耐食性は向上す
る。したがって、Ni添加の場合は25at%以上にお
ける抵抗の大幅な増大が有効添加量を決定している。こ
の3〜25at%の範囲のNi添加によるシャント膜の
電気抵抗ばらつき低減効果は、上述した実施例の場合と
同様にTa膜に比較して約1/3〜1/2になることを
確認した。3at%以下のNi添加では抵抗変化が小さ
いものの、ばらつきの低減効果もさほど大きくはないの
で、3at%以上のNi添加が有効である。
<Embodiment 11> In the same manner as in the above-mentioned embodiment, the electric resistance of Ta-Ni alloy in which 0.5 to 35 at% of Ni is added to Ta and its variation are examined.
As a result of examining the amount of Ni added that can be used in the shunt film, N
In the case of i, the range of 3 to 25 at% is effective. In the case of Ni addition, the resistance increases significantly at 25 at% or more (FIG. 6), but the reaction temperature with the Ni-19 at% Fe alloy film is the same as the reaction temperature of the Ta film even if the addition amount of Ni is increased. Is almost the same as Further, there is no problem in the corrosion resistance of the Ta-Ni alloy film in the range of 3 to 25 at%, and rather, the addition of Ni improves the corrosion resistance of the Ta film. Therefore, in the case of adding Ni, a significant increase in resistance at 25 at% or more determines the effective addition amount. It was confirmed that the effect of reducing the variation in electric resistance of the shunt film by adding Ni in the range of 3 to 25 at% is about 1/3 to 1/2 as compared with the Ta film, as in the case of the above-described embodiment. .. Although the resistance change is small when Ni is added at 3 at% or less, the effect of reducing the variation is not so large, and therefore the addition of Ni at 3 at% or more is effective.

【0057】以上の検討ののち、Ti,Zr添加の場合
などと同様にTa−3〜25at%Ni合金膜をシャン
ト膜に使用し、磁気抵抗膜としてFeを7〜27at%
含むNi−Fe磁気抵抗効果膜,Coを30〜50at
%含むNi−Co磁気抵抗効果膜,Feを3〜18at
%,Coを3〜15at%,残余NiからなるNi−F
e−Co磁気抵抗効果膜を用いてヘッドを作製し評価し
たところ、やはりシャント膜の電気抵抗のばらつき低減
効果によるヘッド特性のばらつき低減が確認された。
After the above examination, as in the case of adding Ti and Zr, a Ta-3 to 25 at% Ni alloy film was used for the shunt film, and 7 to 27 at% of Fe was used as a magnetoresistive film.
Ni-Fe magnetoresistive effect film containing, Co of 30 to 50 at
% Ni-Co magnetoresistive film containing 3 to 18 Fe
%, Co 3 to 15 at%, Ni-F consisting of the balance Ni
When the head was manufactured using the e-Co magnetoresistive effect film and evaluated, it was confirmed that the variation in the head characteristics was also reduced by the effect of reducing the variation in the electric resistance of the shunt film.

【0058】<実施例12>上述した実施例の場合と同
様の方法でTaに0.1 〜35at%のCrを添加した
Ta−Cr合金の電気抵抗およびそのばらつきを調べ、
シャント膜に使用できるCr添加量を検討した結果、C
rの場合は0.2 〜5at%の狭い範囲で有効であるこ
とがわかった。これは、Cr添加の場合、添加によるT
a膜の抵抗の上昇が大きく7at%以上ではさらに抵抗
が急激に増大する(図6)ためであり、また、Ni−1
9at%Fe合金膜との反応温度もCrの添加に対する
低下幅が大きく、添加量を増加していくとTa−6at
%Cr近傍ですでに350℃以下になるためである。し
たがって、6at%Cr以上のTa−Cr合金はヘッド
作製工程での最高熱処理温度が300℃を超えた場合は
シャント膜として実用的でない。しかし、Ta−Cr合
金膜の耐食性については10at%以上の添加でもとく
に問題はない。この0.2 〜5at%の範囲のCr添加
によるシャント膜の電気抵抗ばらつき低減効果について
は、上述した実施例の場合と同様にTa膜に比較して約
1/3〜1/2になることを確認した。しかし、0.2
at% 以下のCr添加では抵抗変化が小さいものの、
ばらつきの低減効果もさほど大きくはないので、0.2
at%以上のCr添加が有効である。
<Embodiment 12> In the same manner as in the above-described embodiment, the electric resistance of Ta-Cr alloy in which 0.1 to 35 at% of Cr is added to Ta and its variation are examined.
As a result of examining the amount of Cr added to the shunt film, C
It was found that r was effective in a narrow range of 0.2 to 5 at%. This is due to the addition of Cr when Cr is added.
This is because the resistance of the a film increases greatly and the resistance further rapidly increases at 7 at% or more (FIG. 6).
The reaction temperature with the 9 at% Fe alloy film also shows a large decrease with respect to the addition of Cr, and as the amount of addition increases, Ta-6 at
This is because the temperature has already reached 350 ° C. or lower near% Cr. Therefore, a Ta-Cr alloy of 6 at% Cr or more is not practical as a shunt film when the maximum heat treatment temperature in the head manufacturing process exceeds 300 ° C. However, regarding the corrosion resistance of the Ta-Cr alloy film, addition of 10 at% or more causes no particular problem. The effect of reducing the variation in electric resistance of the shunt film by adding Cr in the range of 0.2 to 5 at% is about 1/3 to 1/2 as compared with the Ta film as in the case of the above-mentioned embodiment. It was confirmed. But 0.2
Although the resistance change is small when Cr is added at at% or less,
The variation reduction effect is not so great, so 0.2
It is effective to add Cr at at% or more.

【0059】以上の検討ののち、Ti,Zr添加の場合
などと同様にTa−0.2 〜5at%Cr合金膜をシャン
ト膜に使用し、磁気抵抗膜としてFeを7〜27at%
含むNi−Fe磁気抵抗効果膜,Coを30〜50at
%含むNi−Co磁気抵抗効果膜,Feを3〜18at
%,Coを3〜15at%,残余NiからなるNi−F
e−Co磁気抵抗効果膜を用いてヘッドを作製し評価し
たところ、やはりシャント膜の電気抵抗のばらつき低減
効果によるヘッド特性のばらつき低減が確認された。
After the above examination, as in the case of adding Ti and Zr, Ta-0.2 to 5 at% Cr alloy film was used for the shunt film, and Fe as the magnetoresistive film was 7 to 27 at%.
Ni-Fe magnetoresistive effect film containing, Co of 30 to 50 at
% Ni-Co magnetoresistive film containing 3 to 18 Fe
%, Co 3 to 15 at%, Ni-F consisting of the balance Ni
When the head was manufactured using the e-Co magnetoresistive effect film and evaluated, it was confirmed that the variation in the head characteristics was also reduced by the effect of reducing the variation in the electric resistance of the shunt film.

【0060】<実施例13>上述した実施例の場合と同
様の方法でTaに0.5 〜35at%のMoを添加した
Ta−Mo合金の電気抵抗およびそのばらつきを調べ、
シャント膜に使用できるMo添加量を検討した結果、M
oの場合も1〜10at%の比較的狭い範囲の添加が有
効であることがわかった。これは、Moの添加の場合も
添加によるTa膜の抵抗の上昇が大きく12at%以上
で抵抗が急激に増大する(図6)ことと、耐食性がMo
の添加により大幅に低下し、耐食性の点からみて11a
t%以上のTa−Mo合金はシャント膜として実用的で
ないためである。しかし、Ni−19at%Fe合金膜
との反応温度はとくに問題はなく、比較的大目のMo添
加(15at%程度)でも350℃以上に保たれてい
る。この1〜10at%の範囲のMo添加によるシャン
ト膜の電気抵抗ばらつき低減効果は、実施例の場合と同
様にTa膜に比較して約1/3〜1/2になることを確
認した。また、1at%以下のMo添加では抵抗変化が
小さいものの、ばらつきの低減効果もさほど大きくはな
いので、1at%以上のMo添加が有効である。
<Embodiment 13> In the same manner as in the above-mentioned embodiment, the electric resistance of Ta-Mo alloy in which Mo is added in an amount of 0.5 to 35 at% and its variation are examined.
As a result of examining the amount of Mo added that can be used in the shunt film, M
Also in the case of o, it was found that the addition within a relatively narrow range of 1 to 10 at% is effective. This is because even if Mo is added, the resistance of the Ta film is greatly increased by the addition, and the resistance rapidly increases at 12 at% or more (FIG. 6), and the corrosion resistance is Mo.
Is significantly reduced by the addition of 11a from the viewpoint of corrosion resistance.
This is because a Ta-Mo alloy of t% or more is not practical as a shunt film. However, there is no particular problem with the reaction temperature with the Ni-19 at% Fe alloy film, and the temperature is kept at 350 ° C. or higher even with relatively large addition of Mo (about 15 at%). It was confirmed that the effect of reducing the variation in electric resistance of the shunt film by adding Mo in the range of 1 to 10 at% is about 1/3 to 1/2 as compared with the Ta film as in the case of the example. Although the resistance change is small when Mo is added at 1 at% or less, the effect of reducing the variation is not so large. Therefore, addition of Mo at 1 at% or more is effective.

【0061】以上の検討ののち、Ti,Zr添加の場合
などと同様にTa−1〜10at%Mo合金膜をシャン
ト膜に使用し、磁気抵抗膜としてFeを7〜27at%
含むNi−Fe磁気抵抗効果膜,Coを30〜50at
%含むNi−Co磁気抵抗効果膜,Feを3〜18at
%,Coを3〜15at%,残余NiからなるNi−F
e−Co磁気抵抗効果膜を用いてヘッドを作製し評価し
たところ、やはりシャント膜の電気抵抗のばらつき低減
効果によるヘッド特性のばらつき低減が確認された。
After the above examination, as in the case of adding Ti and Zr, a Ta-1 to 10 at% Mo alloy film was used for the shunt film, and 7 to 27 at% of Fe was used as a magnetoresistive film.
Ni-Fe magnetoresistive effect film containing, Co of 30 to 50 at
% Ni-Co magnetoresistive film containing 3 to 18 Fe
%, Co 3 to 15 at%, Ni-F consisting of the balance Ni
When the head was manufactured using the e-Co magnetoresistive effect film and evaluated, it was confirmed that the variation in the head characteristics was also reduced by the effect of reducing the variation in the electric resistance of the shunt film.

【0062】<実施例14>図7は、本発明の一実施例
による磁気抵抗効果型磁気ヘッドの媒体対抗面側からみ
た断面図を示したものである。本実施例による磁気抵抗
効果型磁気ヘッド1では、シャント膜8および磁気抵抗
効果膜6として、実施例1から実施例13で述べたTa
合金膜およびNiFe合金膜あるいはNiCo合金膜あ
るいはNiFeCo合金膜を使用した。
<Embodiment 14> FIG. 7 is a sectional view of a magnetoresistive head according to an embodiment of the present invention as viewed from the medium facing surface side. In the magnetoresistive effect magnetic head 1 according to the present embodiment, the shunt film 8 and the magnetoresistive effect film 6 are Ta described in the first to thirteenth embodiments.
An alloy film and a NiFe alloy film, a NiCo alloy film, or a NiFeCo alloy film were used.

【0063】磁気抵抗効果型磁気ヘッド1の作製方法を
以下に述べる。まず、ジルコニアなどのセラミクスの絶
縁体からなる適当な厚さの基板2上に、平坦化用の厚付
されたアルミナなどの絶縁層3を介して下部磁気シール
ド層4を1〜3μm積層し、フォトリソグラフィとドラ
イエッチ法により所定の形状に加工した後、次にギャッ
プ層を形成するアルミナからなる絶縁層5を0.05〜
0.4μm 、いずれも、スパッタリング法によって積層
した。この上に、磁気抵抗効果膜6,磁区安定化用反強
磁性膜7およびTa合金シャント膜8を蒸着法およびス
パッタリング法を用いて連続的に作製し、フォトリソグ
ラフィとドライエッチ法により所定の形状に加工した
後、続いて電極膜9のAuあるいはCu,AuCu合金
等をスパッタリング法で積層する。ここではシャント膜
の表面に形成された自然酸化膜を除去するために積層前
に軽くスパッタエッチを行う必要がある。
A method of manufacturing the magnetoresistive effect magnetic head 1 will be described below. First, a lower magnetic shield layer 4 is laminated by 1 to 3 μm on a substrate 2 having an appropriate thickness made of a ceramic insulator such as zirconia with an insulating layer 3 such as thickened alumina for planarization interposed therebetween. After processing into a predetermined shape by photolithography and dry etching, the insulating layer 5 made of alumina for forming a gap layer is then added to 0.05 to 5%.
0.4 μm, each of them was laminated by a sputtering method. A magnetoresistive effect film 6, a magnetic domain stabilizing antiferromagnetic film 7 and a Ta alloy shunt film 8 are continuously formed on this by a vapor deposition method and a sputtering method, and a predetermined shape is formed by photolithography and dry etching. After processing, the electrode film 9 is subsequently laminated with Au, Cu, AuCu alloy, or the like by a sputtering method. Here, in order to remove the natural oxide film formed on the surface of the shunt film, it is necessary to perform light sputter etching before stacking.

【0064】電極膜を積層後、フォトリソグラフィとド
ライエッチ法あるいはウェットエッチ法によりトラック
幅を決める所定の電極形状に加工して電極9を形成し
た。ここで、磁気抵抗効果膜6,磁区安定化用反強磁性
膜7,Ta合金シャント膜8および電極膜の膜厚は、各
々5〜50nm,〜40nm,5〜150nm,50〜
500nmとした。また、磁区安定化用反強磁性膜7に
はFeMnRu合金膜あるいはFeMn合金膜を使用し
た。このように電極9を形成した後、次にバイアス磁界
エンハンス用の軟磁性バイアス膜10を5〜50nm積
層し、同様の方法で磁気抵抗効果膜と同じ形状に加工し
た。さらに、上部ギャップ層を形成するアルミナからな
る絶縁層11を0.05〜0.4μmスパッタリング法に
よって積層した後、最後に上部磁気シールド層12を1
〜3μm積層、所定の形状に加工し、保護膜である絶縁
層13を積層して磁気抵抗効果型磁気ヘッド1の作製を
終了した。
After laminating the electrode film, the electrode 9 was formed by processing into a predetermined electrode shape for determining the track width by photolithography and a dry etching method or a wet etching method. Here, the film thicknesses of the magnetoresistive film 6, the magnetic domain stabilizing antiferromagnetic film 7, the Ta alloy shunt film 8 and the electrode film are 5 to 50 nm, 40 nm, 5 to 150 nm and 50 to 50 nm, respectively.
It was set to 500 nm. A FeMnRu alloy film or a FeMn alloy film was used for the magnetic domain stabilizing antiferromagnetic film 7. After forming the electrode 9 in this way, a soft magnetic bias film 10 for bias magnetic field enhancement was then laminated in a thickness of 5 to 50 nm and processed into the same shape as the magnetoresistive film by the same method. Further, an insulating layer 11 made of alumina forming the upper gap layer is laminated by a sputtering method of 0.05 to 0.4 μm, and finally the upper magnetic shield layer 12 is
˜3 μm stacked, processed into a predetermined shape, and the insulating layer 13 as a protective film was stacked to complete the manufacture of the magnetoresistive effect magnetic head 1.

【0065】ただし、実際に磁気抵抗効果型ヘッドを使
う場合には、この上か、あるいは下に(ヘッドを積層,
形成する前に)記録用の磁気ヘッドを積層して複合ヘッ
ドの形で使用する必要がある。
However, when the magnetoresistive head is actually used, the head is stacked above or below (the head is stacked,
It is necessary to stack magnetic heads for recording (before forming) and use them in the form of a composite head.

【0066】図8に、この複合ヘッドの断面図を示す。
また、図7に示した本実施例では磁気抵抗効果膜6上の
磁区安定化用反強磁性膜7を磁気抵抗効果膜の全面に形
成しているが、磁区安定化の効果が強い場合には全面で
なく図9のように磁気抵抗効果膜のトラック部を除く任
意の両サイドに設けて置く方がより好ましい。
FIG. 8 shows a sectional view of this composite head.
Further, in this embodiment shown in FIG. 7, the magnetic domain stabilizing antiferromagnetic film 7 on the magnetoresistive effect film 6 is formed on the entire surface of the magnetoresistive effect film. However, when the magnetic domain stabilizing effect is strong. It is more preferable to place and place not on the entire surface but on both sides of the magnetoresistive film except the track portion as shown in FIG.

【0067】磁気抵抗効果型ヘッド1で記録媒体からの
信号磁束を読み取る時には、電極9を通して軟磁性バイ
アス膜10,Ta合金シャント膜8,磁区安定化用反強
磁性膜7,磁気抵抗効果膜6からなる積層膜にセンス電
流を流し、磁気抵抗効果膜6に適切なバイアス磁界を印
加した状態にする。センス電流は各々の膜に抵抗に反比
例して分流されるが、磁気抵抗効果膜以外の膜に流れて
いる電流の作る磁界がバイアス磁界として印加される他
に、磁気抵抗効果膜による電流磁界も含めた磁界が軟磁
性バイアス膜10を介して、再び、磁気抵抗効果膜6に
戻る磁界もバイアス磁界として加わるので、この二つを
合わせた磁界でちょうど磁気抵抗効果膜6が最適バイア
ス状態になるように出力を考慮してセンス電流と各々の
膜の厚さを調節する必要がある。
When the signal magnetic flux from the recording medium is read by the magnetoresistive head 1, the soft magnetic bias film 10, the Ta alloy shunt film 8, the magnetic domain stabilizing antiferromagnetic film 7, and the magnetoresistive film 6 are passed through the electrode 9. A sense current is caused to flow through the laminated film made of, and a suitable bias magnetic field is applied to the magnetoresistive effect film 6. The sense current is shunted in each film in inverse proportion to the resistance, but the magnetic field generated by the current flowing in the films other than the magnetoresistive effect film is applied as a bias magnetic field, and the current magnetic field by the magnetoresistive effect film is also applied. The included magnetic field also returns to the magnetoresistive effect film 6 via the soft magnetic bias film 10 as a bias magnetic field, so that the combined magnetic field brings the magnetoresistive effect film 6 into the optimum bias state. As described above, it is necessary to adjust the sense current and the thickness of each film in consideration of the output.

【0068】最適バイアス状態では磁気抵抗効果膜中の
磁化はセンス電流の向きに対してほぼ45度の角度をな
しており、この状態に媒体から信号磁束が入るとその信
号磁束の向きによって磁気抵抗効果膜の磁化のセンス電
流に対する角度も45度から増加,減少する。これに対
応して磁気抵抗効果膜の抵抗は減少,増加するので、こ
の抵抗変化を電圧変化として電極から検出し、信号を読
み取ることができる。このような最適バイアス状態にあ
る場合に、ヘッドの出力が最も大きくなり、極性の異な
る出力の対称性が最も良い。逆にいえば、最適バイアス
状態が崩れると出力が低下し、対称性も悪くなり、ヘッ
ド特性が劣化して実際に使用することができなくなる。
In the optimum bias state, the magnetization in the magnetoresistive film makes an angle of about 45 degrees with respect to the direction of the sense current. When a signal magnetic flux enters the state in this state, the magnetic resistance changes depending on the direction of the signal magnetic flux. The angle of the magnetization of the effect film with respect to the sense current also increases or decreases from 45 degrees. Correspondingly, the resistance of the magnetoresistive film decreases or increases, so that this resistance change can be detected as a voltage change from the electrode and the signal can be read. When in such an optimum bias state, the output of the head becomes the largest, and the symmetry of the outputs having different polarities is the best. Conversely, if the optimum bias state collapses, the output decreases, the symmetry also deteriorates, the head characteristics deteriorate, and it becomes impossible to actually use the head.

【0069】ヘッドを量産した場合には、一定のセンス
電流値に対してヘッド間でバイアス状態が最適状態から
ばらつくのは仕方が無いが、このばらつきが大きくなる
と歩留まりの低下になる。ばらつきの原因は主にシャン
ト膜,軟磁性バイアス膜,磁区安定化用反強磁性膜の抵
抗のばらつきに起因するバイアス磁界のばらつきにある
が、とくにこの中でもシャント膜は抵抗が低いのでシャ
ント膜の抵抗のばらつきによる影響が最も大きい。
When the heads are mass-produced, it is unavoidable that the bias state varies from the optimum state between the heads for a constant sense current value, but if this variation becomes large, the yield decreases. The cause of the variation is mainly the variation of the bias magnetic field due to the variation of the resistance of the shunt film, the soft magnetic bias film, and the anti-ferromagnetic film for domain stabilization. Among them, the shunt film has a low resistance, so The influence of resistance variation is the greatest.

【0070】本実施例では、上述したようにシャント膜
に抵抗のばらつきの非常に少ないTa合金シャント膜を
使用したので、Taシャント膜を使用した場合に比較し
て、ヘッド出力の非対称性でみてばらつきが約1/3〜
1/2に低減した。また、本実施例では、磁気抵抗効果
型ヘッドで発生することが知られているバルクハウゼン
ノイズは、磁気抵抗効果上に積層した磁区安定化用反強
磁性膜の作用によってほぼ完全に抑えることができた。
In this embodiment, as described above, the Ta alloy shunt film having very little variation in resistance is used as the shunt film. Therefore, the head output asymmetry is different from that in the case of using the Ta shunt film. Variation is about 1/3
It was reduced to 1/2. Further, in the present embodiment, Barkhausen noise, which is known to be generated in the magnetoresistive head, can be almost completely suppressed by the action of the magnetic domain stabilizing antiferromagnetic film laminated on the magnetoresistive effect. did it.

【0071】なお、本実施例ではバイアス磁界エンハン
ス用として軟磁性バイアス膜10を直接Ta合金シャン
ト膜8上に積層したが、このようにする代わりにシャン
ト膜との間に絶縁層を介しても効果は変わらないし、さ
らに、軟磁性バイアス膜に代えて硬磁性バイアス膜を使
用してもよい。またバイアスが十分であれば、バイアス
エンハンス用の磁性体膜を使用する必要はない。さら
に、磁気抵抗効果膜6の磁区の安定化用として反強磁性
膜7を磁気抵抗効果膜に連続積層しているが、これに代
えて硬磁性膜を使用してもよい。ただし、いずれの場合
にも、Ta合金シャント膜を使用しているので同様の約
1/3〜1/2のヘッド出力ばらつき低減効果が得られ
る。
In this embodiment, the soft magnetic bias film 10 is directly laminated on the Ta alloy shunt film 8 for bias magnetic field enhancement, but instead of this, an insulating layer may be interposed between the soft magnetic bias film 10 and the shunt film. The effect does not change, and a hard magnetic bias film may be used instead of the soft magnetic bias film. Further, if the bias is sufficient, there is no need to use a magnetic film for bias enhancement. Further, although the antiferromagnetic film 7 is continuously laminated on the magnetoresistive effect film for stabilizing the magnetic domains of the magnetoresistive effect film 6, a hard magnetic film may be used instead. However, in any case, since the Ta alloy shunt film is used, a similar head output variation reduction effect of about 1/3 to 1/2 can be obtained.

【0072】<実施例15>本実施例による磁気抵抗効
果型磁気ヘッドは、図7に示した実施例14の磁気抵抗
効果型磁気ヘッド1において磁気抵抗効果膜6,磁区安
定化用反強磁性膜7,Ta合金シャント膜8および電極
膜9、さらに軟磁性バイアス膜10という順番に積層し
た構造を、Ta合金シャント膜8に続いて先に軟磁性バ
イアス膜10を連続積層して所定形状に加工した後、最
後に電極9を形成する順番に変えたものである。しか
し、その他の構造は実施例14の構造と全く同じであ
り、作製方法もすべて同様である。
<Embodiment 15> The magnetoresistive head according to this embodiment is the same as that of the magnetoresistive head 1 of Embodiment 14 shown in FIG. The structure in which the film 7, the Ta alloy shunt film 8, the electrode film 9, and the soft magnetic bias film 10 are laminated in this order is formed into a predetermined shape by successively laminating the Ta alloy shunt film 8 and the soft magnetic bias film 10 first. After processing, the order in which the electrodes 9 are finally formed is changed. However, the other structure is exactly the same as the structure of the fourteenth embodiment, and the manufacturing method is also the same.

【0073】本実施例でも、シャント膜および磁気抵抗
効果膜として、実施例1から実施例13で述べたTa合
金膜およびNiFe合金膜あるいはNiCo合金膜ある
いはNiFeCo合金膜を使用している。したがって、
本実施例による磁気抵抗効果型磁気ヘッドの動作,作
用,効果も実施例14の磁気抵抗効果型磁気ヘッド1と
全く同様である。なお、本実施例による磁気抵抗効果型
磁気ヘッドも、実際に使う場合には、この上か、あるい
は下に(ヘッドを積層,形成する前に)記録用の磁気ヘ
ッドを積層して複合ヘッドの形で使用する必要がある。
Also in this embodiment, the Ta alloy film and the NiFe alloy film or the NiCo alloy film or the NiFeCo alloy film described in Embodiments 1 to 13 are used as the shunt film and the magnetoresistive film. Therefore,
The operation, action, and effect of the magnetoresistive effect magnetic head according to this embodiment are exactly the same as those of the magnetoresistive effect magnetic head 1 according to the fourteenth embodiment. In the case of actually using the magnetoresistive effect magnetic head according to the present embodiment, a magnetic head for recording is stacked above or below (before the heads are stacked and formed) to form a composite head. Must be used in shape.

【0074】また、本実施例は軟磁性バイアス膜に代え
て硬磁性バイアス膜を使用してもよく、さらに、磁気抵
抗効果膜の磁区安定化用として反強磁性膜に代えて硬磁
性膜を使用してもよい。ただし、いずれの場合にも、T
a合金シャント膜を使用しているので同様の約1/3〜
1/2のヘッド出力ばらつき低減効果が得られる。
In this embodiment, a hard magnetic bias film may be used in place of the soft magnetic bias film, and a hard magnetic film may be used in place of the antiferromagnetic film to stabilize the magnetic domain of the magnetoresistive effect film. May be used. However, in any case, T
Since an a-alloy shunt film is used, the same about 1/3 ~
A 1/2 head output variation reduction effect can be obtained.

【0075】<実施例16>本実施例による磁気抵抗効
果型磁気ヘッドは、実施例14の図7に示した磁気抵抗
効果型磁気ヘッド1において磁気抵抗効果膜6,磁区安
定化用反強磁性膜7,Ta合金シャント膜8および電極
膜9、さらに、軟磁性バイアス膜10という順番に積層
した構造を、磁気抵抗効果膜6,磁区安定化用反強磁性
膜7を積層,所定形状に加工した後、続いてまず電極9
を形成し、その後、Ta合金シャント膜8,軟磁性バイ
アス膜10を連続積層し所定の形状に加工するという順
番に変えたものである。その他の構造ついては実施例1
4の構造と全く同じであり、作製方法についても全く同
様である。
<Embodiment 16> The magnetoresistive effect magnetic head according to the present embodiment is the same as the magnetoresistive effect magnetic head 1 shown in FIG. The structure in which the film 7, the Ta alloy shunt film 8 and the electrode film 9 and the soft magnetic bias film 10 are laminated in this order is laminated with a magnetoresistive film 6, a magnetic domain stabilizing antiferromagnetic film 7 and processed into a predetermined shape. Then, first, the electrode 9
Is formed, and then the Ta alloy shunt film 8 and the soft magnetic bias film 10 are continuously laminated and processed into a predetermined shape. Example 1 for other structures
The structure is the same as that of No. 4, and the manufacturing method is also the same.

【0076】本実施例でも、シャント膜8および磁気抵
抗効果膜6に、実施例1から実施例13で述べたTa合
金膜およびNiFe合金膜あるいはNiCo合金膜ある
いはNiFeCo合金膜を使用している。したがって、
本実施例による磁気抵抗効果型磁気ヘッドの動作,作
用,効果も実施例14の磁気抵抗効果型磁気ヘッド1と
全く同様である。なお、本実施例による磁気抵抗効果型
磁気ヘッドも、実際に使う場合には、この上か、あるい
は下に(ヘッドを積層,形成する前に)記録用の磁気ヘ
ッドを積層して複合ヘッドの形で使用する必要がある。
Also in this embodiment, the Ta alloy film and the NiFe alloy film or the NiCo alloy film or the NiFeCo alloy film described in Embodiments 1 to 13 are used as the shunt film 8 and the magnetoresistive film 6. Therefore,
The operation, action, and effect of the magnetoresistive effect magnetic head according to this embodiment are exactly the same as those of the magnetoresistive effect magnetic head 1 according to the fourteenth embodiment. In the case of actually using the magnetoresistive effect magnetic head according to the present embodiment, a magnetic head for recording is stacked above or below (before the heads are stacked and formed) to form a composite head. Must be used in shape.

【0077】また、本実施例でも軟磁性バイアス膜を直
接Ta合金シャント膜上に積層したが、このように直接
積層する代わりにシャント膜との間に絶縁層を介しても
効果は変わらないし、さらに、軟磁性バイアス膜に代え
て硬磁性バイアス膜を使用してもよい。また、バイアス
が十分であれば、とくにバイアスエンハンス用の磁性体
膜を使用する必要もない。さらに、磁気抵抗効果膜の磁
区の安定化用として反強磁性膜に代えて硬磁性膜を使用
してもよい。ただし、これらのいずれの場合にも、Ta
合金シャント膜を使用しているので同様の約1/3〜1
/2のヘッド出力ばらつき低減効果が得られる。
Also, in this embodiment, the soft magnetic bias film is directly laminated on the Ta alloy shunt film, but the effect is not changed even if an insulating layer is interposed between the soft magnetic bias film and the shunt film instead of the direct lamination. Further, a hard magnetic bias film may be used instead of the soft magnetic bias film. Further, if the bias is sufficient, there is no need to use a magnetic film for bias enhancement. Further, a hard magnetic film may be used instead of the antiferromagnetic film for stabilizing the magnetic domains of the magnetoresistive film. However, in any of these cases, Ta
Since an alloy shunt membrane is used, the same about 1/3 to 1
A head output variation reduction effect of / 2 is obtained.

【0078】<実施例17>本実施例による磁気抵抗効
果型磁気ヘッドは、実施例14の図7あるいは実施例1
5に示した磁気抵抗効果型磁気ヘッド1において磁気抵
抗効果膜6,磁区安定化用反強磁性膜7,Ta合金シャ
ント膜8および電極膜9、さらに軟磁性バイアス膜10
という順番に積層した構造を、まず磁区安定化用反強磁
性膜7を積層,所定の形状に加工した後、続いて磁気抵
抗効果膜6,Ta合金シャント膜8,軟磁性バイアス膜
10を連続積層し所定の形状に加工し、最後に電極9を
形成するという順番に変えたものである。その他の構造
は実施例14の構造と全く同じであり、作製方法につい
ても全く同様である。ただし、本実施例の場合には反強
磁性膜7を積層する前に予め反強磁性膜の結晶構造制御
用のNiFe合金膜を数10Å以上積層し、その後に反
強磁性膜を連続積層し、さらに反強磁性膜の酸化を防ぐ
ためにNiFe合金膜を数十Å以上連続積層する必要が
ある。
<Embodiment 17> The magnetoresistive head according to this embodiment is the same as that of Embodiment 14 shown in FIG.
In the magnetoresistive head 1 shown in FIG. 5, a magnetoresistive film 6, a magnetic domain stabilizing antiferromagnetic film 7, a Ta alloy shunt film 8 and an electrode film 9, and a soft magnetic bias film 10
First, the magnetic domain stabilizing antiferromagnetic film 7 is laminated and processed into a predetermined shape, and then the magnetoresistive film 6, the Ta alloy shunt film 8 and the soft magnetic bias film 10 are continuously formed. This is changed in the order of stacking, processing into a predetermined shape, and finally forming the electrode 9. The other structure is exactly the same as the structure of Example 14, and the manufacturing method is also the same. However, in the case of the present embodiment, a NiFe alloy film for controlling the crystal structure of the antiferromagnetic film is previously laminated by several tens of Å or more before the antiferromagnetic film 7 is laminated, and then the antiferromagnetic film is continuously laminated. Furthermore, it is necessary to continuously stack several tens of liters or more of NiFe alloy films in order to prevent oxidation of the antiferromagnetic film.

【0079】本実施例でも、シャント膜および磁気抵抗
効果膜に、実施例1から実施例13で述べたTa合金膜
およびNiFe合金膜あるいはNiCo合金膜あるいは
NiFeCo合金膜を使用している。したがって、この
ような構造の本実施例による磁気抵抗効果型磁気ヘッド
の動作,作用,効果も、実施例14および実施例15の
磁気抵抗効果型磁気ヘッド1と全く同様である。なお、
本実施例による磁気抵抗効果型磁気ヘッドも、実際に使
う場合には、この上か、あるいは下に(ヘッドを積層,
形成する前に)記録用の磁気ヘッドを積層して複合ヘッ
ドの形で使用する必要がある。
Also in this embodiment, the Ta alloy film and the NiFe alloy film or the NiCo alloy film or the NiFeCo alloy film described in Embodiments 1 to 13 are used for the shunt film and the magnetoresistive film. Therefore, the operation, action, and effect of the magnetoresistive effect magnetic head according to the present embodiment having such a structure are exactly the same as those of the magnetoresistive effect magnetic head 1 of the fourteenth and fifteenth embodiments. In addition,
In the case of actually using the magnetoresistive effect magnetic head according to the present embodiment as well, the head is laminated above or below (the head is laminated,
It is necessary to stack magnetic heads for recording (before forming) and use them in the form of a composite head.

【0080】また、本実施例でも軟磁性バイアス膜を直
接Ta合金シャント膜上に積層したが、このように直接
積層する代わりにシャント膜との間に絶縁層を介しても
効果は変わらないし、さらに、軟磁性バイアス膜に代え
て硬磁性バイアス膜を使用してもよい。またバイアスが
十分であれば、とくにバイアスエンハンス用の磁性体膜
を使用する必要もない。さらに、磁気抵抗効果膜の磁区
の安定化用として反強磁性膜に代えて硬磁性膜を使用し
てもよい。ただし、これらのいずれの場合にも、Ta合
金シャント膜を使用しているので同様の約1/3〜1/
2のヘッド出力ばらつき低減効果が得られる。
Also, in this embodiment, the soft magnetic bias film is laminated directly on the Ta alloy shunt film, but the effect does not change even if an insulating layer is provided between the soft magnetic bias film and the shunt film instead of directly laminating as described above. Further, a hard magnetic bias film may be used instead of the soft magnetic bias film. Further, if the bias is sufficient, there is no need to use a magnetic film for bias enhancement. Further, a hard magnetic film may be used instead of the antiferromagnetic film for stabilizing the magnetic domains of the magnetoresistive film. However, in any of these cases, since the Ta alloy shunt film is used, the same about 1/3 to 1 /
A head output variation reduction effect of 2 can be obtained.

【0081】<実施例18>本実施例による磁気抵抗効
果型磁気ヘッドは、図7に示した実施例14の磁気抵抗
効果型磁気ヘッド1において磁気抵抗効果膜6,磁区安
定化用反強磁性膜7,Ta合金シャント膜8および電極
膜9の順番に積層した構造を、まず始めにTa合金シャ
ント膜8を積層し、続いて磁気抵抗効果膜6,磁区安定
化用反強磁性膜7および電極膜9という順番に変えたも
のであり、その他の構造は実施例14の構造と同じであ
って、作製方法も同様である。
<Embodiment 18> The magnetoresistive head according to this embodiment is the same as that of the magnetoresistive head 1 of Embodiment 14 shown in FIG. The structure in which the film 7, the Ta alloy shunt film 8 and the electrode film 9 are laminated in this order is such that the Ta alloy shunt film 8 is laminated first, then the magnetoresistive film 6, the magnetic domain stabilizing antiferromagnetic film 7 and The order is changed to the electrode film 9, the other structure is the same as the structure of the fourteenth embodiment, and the manufacturing method is also the same.

【0082】本実施例でも、シャント膜および磁気抵抗
効果膜として、実施例1から実施例13で述べたTa合
金膜およびNiFe合金膜あるいはNiCo合金膜ある
いはNiFeCo合金膜を使用している。したがって、
本実施例による磁気抵抗効果型磁気ヘッドの動作,作
用,効果も実施例14の磁気抵抗効果型磁気ヘッド1と
全く同様である。なお、本実施例による磁気抵抗効果型
磁気ヘッドも、実際に使う場合には、この上か、あるい
は下に(ヘッドを積層,形成する前に)記録用の磁気ヘ
ッドを積層して複合ヘッドの形で使用する必要がある。
Also in this embodiment, the Ta alloy film and the NiFe alloy film or the NiCo alloy film or the NiFeCo alloy film described in Embodiments 1 to 13 are used as the shunt film and the magnetoresistive film. Therefore,
The operation, action, and effect of the magnetoresistive effect magnetic head according to this embodiment are exactly the same as those of the magnetoresistive effect magnetic head 1 according to the fourteenth embodiment. In the case of actually using the magnetoresistive effect magnetic head according to the present embodiment, a magnetic head for recording is stacked above or below (before the heads are stacked and formed) to form a composite head. Must be used in shape.

【0083】<実施例19>図10は、本発明の他の実
施例による磁気抵抗効果型磁気ヘッドの媒体対抗面側か
らみた断面図を示したものである。本実施例による磁気
抵抗効果型磁気ヘッド1にも、シャント膜8および磁気
抵抗効果膜6として、実施例1から実施例13で述べた
Ta合金膜,NiFe合金膜,NiCo合金膜またはN
iFeCo合金膜を使用している。また、本実施例によ
る磁気抵抗効果型磁気ヘッド1は、図7に示した実施例
14の磁気抵抗効果型磁気ヘッド1の磁気抵抗効果膜
6,磁区安定化用反強磁性膜7,Ta合金シャント膜
8,電極膜9および軟磁性バイアス膜10の積層構造を
ほぼ逆にして、軟磁性バイアス膜10,Ta合金シャン
ト膜8,磁区安定化用反強磁性膜7および磁気抵抗効果
膜6の順番に積層し所定の形状に加工した後、最後に電
極膜を積層して電極9を形成したものである。その他の
構造は実施例14の磁気抵抗効果型磁気ヘッドと同様で
ある。
<Embodiment 19> FIG. 10 is a sectional view of a magnetoresistive head according to another embodiment of the present invention as viewed from the medium facing surface side. Also in the magnetoresistive head 1 according to this embodiment, the shunt film 8 and the magnetoresistive film 6 are the Ta alloy film, the NiFe alloy film, the NiCo alloy film, or the N alloy described in Embodiments 1 to 13.
The iFeCo alloy film is used. Further, the magnetoresistive effect magnetic head 1 according to the present embodiment is the magnetoresistive effect film 6, the magnetic domain stabilizing antiferromagnetic film 7, and the Ta alloy of the magnetoresistive effect magnetic head 1 of the embodiment 14 shown in FIG. The laminated structure of the shunt film 8, the electrode film 9 and the soft magnetic bias film 10 is substantially reversed so that the soft magnetic bias film 10, the Ta alloy shunt film 8, the magnetic domain stabilizing antiferromagnetic film 7 and the magnetoresistive effect film 6 are formed. The electrode 9 is formed by laminating in order and processing into a predetermined shape, and finally laminating electrode films. The other structure is the same as that of the magnetoresistive effect magnetic head of the fourteenth embodiment.

【0084】したがって、磁気ヘッド1ではTa合金シ
ャント膜8上に反強磁性膜7を積層する場合、反強磁性
膜の結晶構造を制御するためにNiFe合金膜14を数
百Å程度Ta合金シャント膜8上に予め積層しておくこ
とが必要である。ただし、反強磁性膜の代わりに硬磁性
膜を磁区の安定化に使用する場合にはとくにこの必要は
ない。
Therefore, in the magnetic head 1, when the antiferromagnetic film 7 is stacked on the Ta alloy shunt film 8, the NiFe alloy film 14 is used as a Ta alloy shunt for several hundred Å in order to control the crystal structure of the antiferromagnetic film. It is necessary to pre-stack on the film 8. However, this is not necessary when a hard magnetic film is used for stabilizing magnetic domains instead of the antiferromagnetic film.

【0085】本実施例の磁気抵抗効果型磁気ヘッド1で
も実施例14の磁気抵抗効果型磁気ヘッド1と同じ動
作,作用,効果がある。なお、本実施例による磁気抵抗
効果型磁気ヘッド1も、実際に使用する場合には、この
上か、あるいは下に記録用磁気ヘッドを積層して複合ヘ
ッドの形で使用する必要がある。
The magnetoresistive effect magnetic head 1 of this embodiment also has the same operations, functions and effects as the magnetoresistive effect magnetic head 1 of the fourteenth embodiment. In the case of actually using the magnetoresistive head 1 according to this embodiment, it is necessary to stack a recording magnetic head above or below the magnetoresistive head 1 and use it in the form of a composite head.

【0086】一方、本実施例ではバイアス磁界エンハン
ス用として軟磁性バイアス膜10を直接Ta合金シャン
ト膜8下に形成したが、このように直接積層する代わり
にシャント膜との間に絶縁層を介しても効果は変わらな
いし、さらに、軟磁性バイアス膜に代えて硬磁性バイア
ス膜を使用してもよい。またバイアスが十分であれば、
とくにバイアスエンハンス用の磁性体膜は使用する必要
もない。ただし、いずれの場合にも、Ta合金シャント
膜を使用しているので同様の約1/3〜1/2のヘッド
出力ばらつき低減効果が得られる。
On the other hand, in this embodiment, the soft magnetic bias film 10 was formed directly under the Ta alloy shunt film 8 for the purpose of enhancing the bias magnetic field, but instead of directly laminating in this way, an insulating layer is interposed between the shunt film and the shunt film. However, the effect does not change, and a hard magnetic bias film may be used instead of the soft magnetic bias film. If the bias is sufficient,
In particular, it is not necessary to use a magnetic film for bias enhancement. However, in any case, since the Ta alloy shunt film is used, a similar head output variation reduction effect of about 1/3 to 1/2 can be obtained.

【0087】<実施例20>本実施例による磁気抵抗効
果型磁気ヘッドは、図10に示した実施例19の磁気抵
抗効果型磁気ヘッド1でTa合金シャント膜8,磁区安
定化用反強磁性膜7,磁気抵抗効果膜6および電極9と
いう順番に積層した構造を、Ta合金シャント膜8に続
いてまず磁気抵抗効果膜6を積層し、それから磁区安定
化用反強磁性膜7を連続積層して所定の形状に加工した
後、電極9を形成する構造にしたものであり、これによ
ってTa合金シャント膜8と反強磁性膜7との間の反強
磁性膜結晶構造制御用のNiFe合金膜14を積層する
必要がなくなる。ただし、その他の構造は実施例19の
構造と同じであり、作製方法も同様である。また、本実
施例でも、シャント膜および磁気抵抗効果膜として、実
施例1から実施例13で述べたTa合金膜,NiFe合
金膜,NiCo合金膜またはNiFeCo合金膜を使用
している。
<Embodiment 20> The magnetoresistive head according to this embodiment is the same as the magnetoresistive head 1 of Embodiment 19 shown in FIG. 10, except that the Ta alloy shunt film 8 and the magnetic domain stabilizing antiferromagnetic material are used. The structure in which the film 7, the magnetoresistive film 6 and the electrode 9 are laminated in this order is such that the magnetoresistive film 6 is first laminated after the Ta alloy shunt film 8 and then the magnetic domain stabilizing antiferromagnetic film 7 is continuously laminated. Then, the electrode 9 is processed into a predetermined shape, and then the electrode 9 is formed. As a result, the NiFe alloy for controlling the crystal structure of the antiferromagnetic film between the Ta alloy shunt film 8 and the antiferromagnetic film 7 is formed. It is not necessary to stack the film 14. However, the other structure is the same as that of the nineteenth embodiment, and the manufacturing method is also the same. Also in this embodiment, the Ta alloy film, the NiFe alloy film, the NiCo alloy film or the NiFeCo alloy film described in Embodiments 1 to 13 is used as the shunt film and the magnetoresistive film.

【0088】本実施例による磁気抵抗効果型磁気ヘッド
の動作,作用,効果も実施例19の磁気抵抗効果型磁気
ヘッド1と全く同様である。なお、本実施例による磁気
抵抗効果型磁気ヘッドも、実際に使う場合には、この上
か、あるいは下に記録用の磁気ヘッドを積層して複合ヘ
ッドの形で使用する必要がある。
The operation, action, and effect of the magnetoresistive effect magnetic head according to this embodiment are exactly the same as those of the magnetoresistive effect magnetic head 1 according to the nineteenth embodiment. In the case of actually using the magnetoresistive effect magnetic head according to this embodiment, it is necessary to stack a recording magnetic head above or below the magnetoresistive head to use it in the form of a composite head.

【0089】<実施例21>セラミック絶縁基板上に実
施例14から実施例20で示した磁気抵抗ヘッドをまず
作製し、この上にアルミナ薄膜を絶縁膜として約3μm
積層し、更に誘導型記録ヘッドの形成に必要な磁極,コ
イル,電極等を積層して、記録再生分離型複合ヘッドと
し、CoTaCr磁気ディスクを用いて再生特性を評価
した結果、S/Nで3.5 が得られ、出力のばらつき
も、従来のシャント膜としてTiを用いたヘッドに比較
して1/3から1/5に低減された。
<Embodiment 21> The magnetoresistive heads shown in Embodiments 14 to 20 are first formed on a ceramic insulating substrate, and an alumina thin film is used as an insulating film on the magnetoresistive head to have a thickness of about 3 μm.
Magnetic poles, coils, electrodes, etc. necessary for forming the induction type recording head were laminated to form a recording / reproducing separated type composite head, and the reproduction characteristics were evaluated using a CoTaCr magnetic disk. .5 was obtained, and the variation in output was reduced from 1/3 to 1/5 as compared with the conventional head using Ti as the shunt film.

【0090】<実施例22>セラミック絶縁基板上に誘
導型記録ヘッドの下部磁極を形成し、絶縁膜のアルミナ
を積層後、磁気抵抗素子を作り、更に絶縁膜のアルミナ
を介して上部磁極を形成した記録再生分離型複合ヘッド
と、媒体にCoTaCr磁気ディスクを用いて再生特性
を評価した結果、S/Nで3.5 が得られ、出力のばら
つきも、従来のシャント膜としてTiを用いたヘッドに
比較して1/3から1/5に低減された。
<Embodiment 22> A lower magnetic pole of an induction type recording head is formed on a ceramic insulating substrate, an insulating film of alumina is laminated, a magnetoresistive element is formed, and an upper magnetic pole is formed via the insulating film of alumina. As a result of evaluating the reproducing characteristics by using the recording / reproducing separated type composite head and a CoTaCr magnetic disk as the medium, an S / N of 3.5 was obtained, and the variation in the output was the head using Ti as the conventional shunt film. It was reduced from 1/3 to 1/5 compared to.

【0091】<実施例23>磁性フェライト基板上に絶
縁膜を介して磁気抵抗素子を作り、更に絶縁膜のアルミ
ナを介して磁性フェライトあるいはパーマロイ等の軟磁
性膜をシールドとした再生ヘッドと2個のフェライト間
にコイルを巻いた記録ヘッドとを機械的に一体化した記
録再生分離型複合ヘッドを磁気テープ装置に搭載し、定
電圧電源で駆動したときの、38kfciにおける出力は3
−4mVで、従来のTiシャント膜に使ったヘッドの出
力1−3mVに比較して、ばらつきが非常に低減した。
<Embodiment 23> A reproducing head in which a magnetoresistive element is formed on a magnetic ferrite substrate via an insulating film, and a soft magnetic film such as magnetic ferrite or permalloy is used as a shield via alumina of the insulating film and two reproducing heads. The output at 38 kfci is 3 when the recording / playback separation type composite head, which is a mechanically integrated recording head in which a coil is wound between ferrites, is mounted on the magnetic tape device and is driven by a constant voltage power supply.
At -4 mV, the variation was significantly reduced compared to the head output of 1-3 mV used for the conventional Ti shunt film.

【0092】<実施例24>本発明のTa合金膜、例え
ば、Ta−15%Ti合金膜を使用した実施例14から
実施例20に記載した磁気抵抗効果型ヘッドを用いた記
録再生分離型複合ヘッドを磁気ディスク装置に搭載し、
この磁気ディスク装置の信号再生誤り率を従来の装置と
比較したところ、誤り率は約2桁向上した。
Example 24 A recording / reproducing separated composite using the magnetoresistive head described in Examples 14 to 20 using the Ta alloy film of the present invention, for example, Ta-15% Ti alloy film. Mount the head on the magnetic disk device,
When the signal reproduction error rate of this magnetic disk device was compared with that of the conventional device, the error rate was improved by about two digits.

【0093】<実施例25>本発明のTa合金膜、例え
ば、Ta−15%Ti合金膜を使用した記録再生分離型
複合ヘッドを用いて、CoTaCr系の同一磁気媒体を
使用して再生信号のS/Nを評価したところ、S/Nで
約0.3−0.7の改善がみられた。
Twenty-Fifth Embodiment A recording / reproducing separated composite head using a Ta alloy film of the present invention, for example, a Ta-15% Ti alloy film, is used to reproduce a reproduction signal using the same CoTaCr-based magnetic medium. When the S / N was evaluated, the S / N was improved by about 0.3 to 0.7.

【0094】[0094]

【発明の効果】本発明では、シャント膜としてTa膜に
第2元素を添加したTa合金膜を用いることにより、シ
ャント膜としての電気抵抗のばらつきをTa膜を使用し
た場合に比較して非常に小さくすることができるので、
シャント膜の電気抵抗ばらつきによるヘッドのバイアス
磁界強度のばらつきを、ヘッド出力波形の上下非対称性
で比較してTa膜の場合の1/3から1/2以下に減少
させる効果がある。したがって、ヘッド出力波形の上下
非対称性に起因するようなヘッド特性、とくにS/N比
などの大幅な向上とばらつきの大幅な低減を可能にする
効果がある。
According to the present invention, the Ta alloy film in which the second element is added to the Ta film is used as the shunt film, so that the variation in the electric resistance as the shunt film is much higher than that when the Ta film is used. Because it can be made smaller,
The variation of the bias magnetic field strength of the head due to the variation of the electric resistance of the shunt film is compared with the vertical asymmetry of the head output waveform, and it has an effect of reducing from 1/3 to 1/2 or less of the case of the Ta film. Therefore, there is an effect that it is possible to greatly improve the head characteristics caused by the vertical asymmetry of the head output waveform, particularly the S / N ratio, and greatly reduce the variation.

【0095】一方、本発明の磁気抵抗効果型磁気ヘッド
を用いた記録再生分離型複合ヘッドを実際の磁気記録装
置に使用すれば、S/N比などヘッド特性の大幅な向上
とヘッド特性のばらつきの大幅な低減が可能なので、素
子に通電するための電源にばらつきを低減するような回
路機能を持たせる必要がなくなり、電源への負担が大幅
に軽くなる。また同時に、記録再生における信号の再生
誤り率も低減されるので、エラーコレクションの回路へ
の負担も大幅に軽くなる。したがって、本発明によれば
誤り率の非常に低い磁気記憶装置を実現できる。
On the other hand, if the recording / reproducing separated composite head using the magnetoresistive effect magnetic head of the present invention is used in an actual magnetic recording apparatus, the head characteristics such as the S / N ratio are greatly improved and the head characteristics are dispersed. Since it is possible to drastically reduce the power consumption, it is not necessary to provide the power supply for energizing the element with a circuit function for reducing variations, and the load on the power supply is significantly reduced. At the same time, since the reproduction error rate of the signal during recording and reproduction is also reduced, the load on the error correction circuit is significantly reduced. Therefore, according to the present invention, a magnetic memory device having an extremely low error rate can be realized.

【図面の簡単な説明】[Brief description of drawings]

【図1】一般的な合金添加量と合金の抵抗変化との関係
の説明図。
FIG. 1 is an explanatory diagram of a relationship between a general alloy addition amount and a resistance change of an alloy.

【図2】磁気抵抗効果膜とTa合金膜との反応温度の説
明図。
FIG. 2 is an explanatory diagram of a reaction temperature between a magnetoresistive effect film and a Ta alloy film.

【図3】Ta膜,Ta合金膜の電気抵抗のばらつきと膜
厚との関係を示す特性図。
FIG. 3 is a characteristic diagram showing a relationship between variations in electric resistance of Ta films and Ta alloy films and film thicknesses.

【図4】TaTi合金における電気抵抗変化のTi添加
量依存性を示す特性図。
FIG. 4 is a characteristic diagram showing the Ti addition amount dependency of the electric resistance change in the TaTi alloy.

【図5】TaTi合金と磁気抵抗効果膜との反応温度の
Ti添加量依存性を示す特性図。
FIG. 5 is a characteristic diagram showing the Ti addition amount dependency of the reaction temperature between the TaTi alloy and the magnetoresistive film.

【図6】各種Ta合金の比抵抗と添加元素の添加量との
関係を示す特性図。
FIG. 6 is a characteristic diagram showing the relationship between the specific resistance of various Ta alloys and the amount of additional elements added.

【図7】本発明の一実施例による磁気抵抗効果型磁気ヘ
ッドの媒体対抗面側の断面図。
FIG. 7 is a sectional view of a magnetoresistive head according to an embodiment of the present invention on the medium facing surface side.

【図8】図7に示した磁気抵抗効果型磁気ヘッドを用い
て作製した記録再生分離型複合ヘッドの断面図。
8 is a cross-sectional view of a recording / reproducing separation type composite head manufactured using the magnetoresistive effect magnetic head shown in FIG.

【図9】図7に示した磁気抵抗効果型磁気ヘッドの一部
改良図。
9 is a partially improved view of the magnetoresistive effect magnetic head shown in FIG. 7. FIG.

【図10】本発明の他の実施例による磁気抵抗効果型磁
気ヘッドの媒体対抗面側の断面図。
FIG. 10 is a sectional view of the magnetoresistive head according to another embodiment of the present invention on the medium facing surface side.

【符号の説明】[Explanation of symbols]

1…磁気抵抗効果型磁気ヘッド、2…基板、3,5,1
1,13…絶縁層、4…下部磁気シールド層、6…磁気
抵抗効果膜、7…磁区安定化用反強磁性膜、8…Ta合
金シャント膜、9…電極、10…軟磁性バイアス膜、1
2…上部磁気シールド層。
1 ... Magnetoresistive magnetic head, 2 ... Substrate, 3, 5, 1
1, 13 ... Insulating layer, 4 ... Lower magnetic shield layer, 6 ... Magnetoresistive film, 7 ... Anti-ferromagnetic film for domain stabilization, 8 ... Ta alloy shunt film, 9 ... Electrode, 10 ... Soft magnetic bias film, 1
2 ... Upper magnetic shield layer.

Claims (35)

【特許請求の範囲】[Claims] 【請求項1】Ni,FeおよびCoを主成分とする合金
からなる磁気抵抗効果膜と、Taを主成分とする合金か
らなるシャント膜との2層膜を基本にした構造をもつこ
とを特徴とする磁気抵抗効果型磁気ヘッド。
1. A structure based on a two-layer film consisting of a magnetoresistive film made of an alloy containing Ni, Fe and Co as a main component and a shunt film made of an alloy containing Ta as a main component. And a magnetoresistive effect type magnetic head.
【請求項2】請求項1において、磁気抵抗効果膜がNi
−Fe合金からなり、その組成がNi−7at%Feか
らNi−27at%Feの間にある磁気抵抗効果型磁気
ヘッド。
2. The magnetoresistive film according to claim 1, wherein the magnetoresistive film is Ni.
A magnetoresistive effect magnetic head made of a -Fe alloy and having a composition between Ni-7 at% Fe and Ni-27 at% Fe.
【請求項3】請求項1において、磁気抵抗効果膜がNi
−Co合金からなり、その組成がNi−30at%Co
からNi−50at%Coの間にある磁気抵抗効果型磁
気ヘッド。
3. The magnetoresistive film according to claim 1, wherein the magnetoresistive film is Ni.
-Co alloy, whose composition is Ni-30 at% Co
To a Ni-50 at% Co magnetic resistance effect type magnetic head.
【請求項4】請求項1において、磁気抵抗効果膜がNi
−Fe−Co合金からなり、その組成がFeが3〜18
at%,Coが3〜15at%,残余Niからなる磁気
抵抗効果型磁気ヘッド。
4. The magnetoresistive film according to claim 1, wherein the magnetoresistive film is Ni.
-Fe-Co alloy, whose composition is 3-18 Fe
A magnetoresistive effect magnetic head comprising at%, Co of 3 to 15 at% and residual Ni.
【請求項5】請求項1において、シャント膜であるTa
合金が固溶体である磁気抵抗効果型磁気ヘッド。
5. The shunt film according to claim 1, which is Ta.
A magnetoresistive effect magnetic head in which an alloy is a solid solution.
【請求項6】請求項1または5において、シャント膜が
Ta−Ti合金で、Tiの含有量が1〜25at%ある
磁気抵抗効果型磁気ヘッド。
6. A magnetoresistive head according to claim 1, wherein the shunt film is a Ta—Ti alloy and the Ti content is 1 to 25 at%.
【請求項7】請求項1または5において、シャント膜が
Ta−Zr合金で、Zrの含有量が0.5 〜15at%
ある磁気抵抗効果型磁気ヘッド。
7. The shunt film according to claim 1, wherein the shunt film is a Ta—Zr alloy, and the Zr content is 0.5 to 15 at%.
A magnetoresistive effect magnetic head.
【請求項8】請求項1または5において、シャント膜が
Ta−V合金で、Vの含有量が3〜20at%ある磁気
抵抗効果型磁気ヘッド。
8. The magnetoresistive head according to claim 1, wherein the shunt film is a Ta—V alloy and the V content is 3 to 20 at%.
【請求項9】請求項1または5において、シャント膜が
Ta−Hf合金で、Hfの含有量が1〜25at%ある
磁気抵抗効果型磁気ヘッド。
9. The magnetoresistive head according to claim 1, wherein the shunt film is a Ta—Hf alloy and the Hf content is 1 to 25 at%.
【請求項10】請求項1または5において、シャント膜
がTa−W合金で、Wの含有量が0.5〜10at%ある
磁気抵抗効果型磁気ヘッド。
10. The magnetoresistive head according to claim 1, wherein the shunt film is a Ta—W alloy and the W content is 0.5 to 10 at%.
【請求項11】請求項1または5において、シャント膜
がTa−Nb合金で、Nbの含有量が3〜25at%あ
る磁気抵抗効果型磁気ヘッド。
11. The magnetoresistive effect magnetic head according to claim 1, wherein the shunt film is a Ta—Nb alloy and the Nb content is 3 to 25 at%.
【請求項12】請求項1または5において、シャント膜
がTa−Ru合金で、Ruの含有量が2〜35at%あ
る磁気抵抗効果型磁気ヘッド。
12. The magnetoresistive head according to claim 1, wherein the shunt film is a Ta—Ru alloy and the Ru content is 2 to 35 at%.
【請求項13】請求項1または5において、シャント膜
がTa−Rh合金で、Rhの含有量が3〜25at%あ
る磁気抵抗効果型磁気ヘッド。
13. A magnetoresistive effect magnetic head according to claim 1, wherein the shunt film is a Ta—Rh alloy, and the Rh content is 3 to 25 at%.
【請求項14】請求項1または5において、シャント膜
がTa−Re合金で、Reの含有量が3〜20at%あ
る磁気抵抗効果型磁気ヘッド。
14. A magnetoresistive head according to claim 1, wherein the shunt film is a Ta—Re alloy, and the Re content is 3 to 20 at%.
【請求項15】請求項1または5において、シャント膜
がTa−Pt合金で、Ptの含有量が1〜10at%あ
る磁気抵抗効果型磁気ヘッド。
15. The magnetoresistive effect magnetic head according to claim 1, wherein the shunt film is a Ta—Pt alloy, and the Pt content is 1 to 10 at%.
【請求項16】請求項1または5において、シャント膜
がTa−Ni合金で、Niの含有量が3〜25at%あ
る磁気抵抗効果型磁気ヘッド。
16. The magnetoresistive head according to claim 1, wherein the shunt film is a Ta—Ni alloy, and the Ni content is 3 to 25 at%.
【請求項17】請求項1または5において、シャント膜
がTa−Cr合金で、Crの含有量が0.2 〜5at%
ある磁気抵抗効果型磁気ヘッド。
17. The shunt film according to claim 1, wherein the shunt film is a Ta—Cr alloy, and the Cr content is 0.2 to 5 at%.
A magnetoresistive effect magnetic head.
【請求項18】請求項1または5において、シャント膜
がTa−Mo合金で、Moの含有量が1〜10at%あ
る磁気抵抗効果型磁気ヘッド。
18. The magnetoresistive head according to claim 1, wherein the shunt film is a Ta—Mo alloy and the Mo content is 1 to 10 at%.
【請求項19】請求項1から18のいずれかにおいて、
Ta合金シャント膜/磁気抵抗効果膜の基本構造に付加
して軟磁性バイアス膜,硬磁性バイアス膜,磁気抵抗効
果膜の磁区安定化用硬磁性,磁気抵抗効果膜の磁区安定
化用反強磁性膜がTa合金シャント膜/磁気抵抗効果膜
に電気的に接合あるいは分離された状態で設置されてい
る磁気抵抗効果型磁気ヘッド。
19. The method according to any one of claims 1 to 18,
In addition to the basic structure of Ta alloy shunt film / magnetoresistive film, soft magnetic bias film, hard magnetic bias film, hard magnetic for stabilizing magnetic domain of magnetoresistive film, antiferromagnetic for stabilizing magnetic domain of magnetoresistive film A magnetoresistive effect magnetic head in which a film is installed in a state of being electrically joined or separated to a Ta alloy shunt film / magnetoresistive effect film.
【請求項20】請求項1から19のいずれかにおいて、
Ta合金シャント膜と磁気抵抗効果膜の2層膜が絶縁基
板に対して磁気抵抗効果膜,Ta合金シャント膜の順に
積層されている磁気抵抗効果型磁気ヘッド。
20. In any one of claims 1 to 19,
A magnetoresistive effect magnetic head in which a two-layer film of a Ta alloy shunt film and a magnetoresistive effect film is laminated on an insulating substrate in the order of a magnetoresistive effect film and a Ta alloy shunt film.
【請求項21】請求項1から19のいずれかにおいて、
Ta合金シャント膜と磁気抵抗効果膜の2層膜が絶縁基
板に対してTa合金シャント膜,磁気抵抗効果膜の順に
積層されている磁気抵抗効果型磁気ヘッド。
21. In any one of claims 1 to 19,
A magnetoresistive effect magnetic head in which a two-layer film of a Ta alloy shunt film and a magnetoresistive effect film is laminated on an insulating substrate in the order of a Ta alloy shunt film and a magnetoresistive effect film.
【請求項22】請求項1から21のいずれかにおいて、
絶縁基板とTa合金シャント膜/磁気抵抗効果膜2層膜
の間に軟磁性バイアス膜,硬磁性バイアス膜,磁気抵抗
効果膜の磁区安定化用硬磁性,磁気抵抗効果膜の磁区安
定化用反強磁性膜がTa合金シャント膜/磁気抵抗効果
膜に電気的に接合あるいは分離された状態で設置されて
いる磁気抵抗効果型磁気ヘッド。
22. In any one of claims 1 to 21,
Between the insulating substrate and the Ta alloy shunt film / magnetoresistive effect film two-layer film, soft magnetic bias film, hard magnetic bias film, magnetic domain stabilizing hard magnetism, anti-magnetic domain stabilizing anti-magnetism effect film A magnetoresistive effect magnetic head in which a ferromagnetic film is installed in a state where it is electrically joined or separated to a Ta alloy shunt film / magnetoresistive effect film.
【請求項23】請求項1から21のいずれかにおいて、
絶縁基板にTa合金シャント膜/磁気抵抗効果膜2層膜
が形成されており、この上に軟磁性バイアス膜,硬磁性
バイアス膜,磁気抵抗効果膜の磁区安定化用硬磁性,磁
気抵抗効果膜の磁区安定化用反強磁性膜がTa合金シャ
ント膜/磁気抵抗効果膜に電気的に接合あるいは分離さ
れた状態で設置されている磁気抵抗効果型磁気ヘッド。
23. In any one of claims 1 to 21,
A two-layered film of Ta alloy shunt film / magnetoresistive effect film is formed on an insulating substrate, and a soft magnetic bias film, a hard magnetic bias film, and a hard magnetic / magnetoresistive effect film for magnetic domain stabilization of the magnetoresistive effect film are formed on this film. A magnetic resistance effect type magnetic head in which the magnetic domain stabilizing antiferromagnetic film of (1) is installed in a state where it is electrically joined or separated to the Ta alloy shunt film / magnetoresistive effect film.
【請求項24】請求項1から23のいずれかにおいて、
Ta合金シャント膜/磁気抵抗効果膜2層膜と隣接して
形成されている軟磁性バイアス膜,硬磁性バイアス膜,
磁気抵抗効果膜の磁区安定化用硬磁性,磁気抵抗効果膜
の磁区安定化用反強磁性膜を含めて軟磁性シールド膜内
設置されている磁気抵抗効果型磁気ヘッド。
24. In any one of claims 1 to 23,
A soft magnetic bias film, a hard magnetic bias film formed adjacent to the Ta alloy shunt film / magnetoresistive effect film two-layer film,
A magnetoresistive effect magnetic head installed in a soft magnetic shield film including a hard magnetic layer for stabilizing the magnetic domain of the magnetoresistive film and an antiferromagnetic film for stabilizing the magnetic domain of the magnetoresistive film.
【請求項25】請求項1から24のいずれかにおいて、
磁気抵抗効果ヘッドのトラック幅を決める電極材料が、
シャント膜のTa合金と電気的に接している磁気抵抗効
果型磁気ヘッド。
25. In any one of claims 1 to 24,
The electrode material that determines the track width of the magnetoresistive head is
A magnetoresistive magnetic head that is in electrical contact with the Ta alloy of the shunt film.
【請求項26】請求項1から24のいずれかにおいて、
磁気抵抗効果ヘッドのトラック幅を決める電極材料が、
磁気抵抗効果膜と電気的に接している磁気抵抗効果型磁
気ヘッド。
26. In any one of claims 1 to 24,
The electrode material that determines the track width of the magnetoresistive head is
A magnetoresistive head that is in electrical contact with the magnetoresistive film.
【請求項27】請求項1から24のいずれかにおいて、
磁気抵抗効果ヘッドのトラック幅を決める電極材料が、
シャント膜のTa合金および磁気抵抗効果膜の何れとも
電気的に接している磁気抵抗効果型磁気ヘッド。
27. In any one of claims 1 to 24,
The electrode material that determines the track width of the magnetoresistive head is
A magnetoresistive effect magnetic head that is in electrical contact with both the Ta alloy of the shunt film and the magnetoresistive effect film.
【請求項28】請求項1から24のいずれかにおいて、
磁気抵抗効果ヘッドのトラック幅を決める電極材料が、
磁気抵抗効果膜と電気的に接合している軟磁性膜,硬磁
性膜あるいは反強磁性膜と接している磁気抵抗効果型磁
気ヘッド。
28. In any one of claims 1 to 24,
The electrode material that determines the track width of the magnetoresistive head is
A magnetoresistive head that is in contact with a soft magnetic film, a hard magnetic film, or an antiferromagnetic film that is electrically joined to the magnetoresistive film.
【請求項29】請求項1から28のいずれかで示した磁
気抵抗ヘッドと記録用の誘導型磁気ヘッドを一体にした
記録再生磁気ヘッド。
29. A read / write magnetic head in which the magnetoresistive head according to any one of claims 1 to 28 is integrated with an inductive magnetic head for recording.
【請求項30】請求項29において、磁気抵抗ヘッドと
誘導型磁気ヘッドが絶縁基板上に薄膜で積層されている
記録再生磁気ヘッド。
30. The read / write magnetic head according to claim 29, wherein the magnetoresistive head and the inductive magnetic head are laminated in a thin film on an insulating substrate.
【請求項31】請求項29において、磁気抵抗ヘッドと
誘導型磁気ヘッドがそれぞれ別個に作られており、接
着,ねじ止め等で一体化されている記録再生磁気ヘッ
ド。
31. A recording / reproducing magnetic head according to claim 29, wherein the magnetoresistive head and the induction type magnetic head are separately made and integrated by adhesion, screwing or the like.
【請求項32】請求項29において、磁気抵抗ヘッドが
誘導型磁気ヘッドの磁極間に作られている記録再生磁気
ヘッド。
32. A read / write magnetic head according to claim 29, wherein the magnetoresistive head is formed between magnetic poles of the induction type magnetic head.
【請求項33】請求項1から32のいずれかで示した磁
気ヘッドとこれに電流を供給するための電源を一定化し
た磁気ヘッド装置。
33. A magnetic head device in which the magnetic head according to any one of claims 1 to 32 and a power supply for supplying a current to the magnetic head are constant.
【請求項34】請求項1から32のいずれかで示した磁
気ヘッドと、電源,符号変換,誤り訂正を含む信号再生
回路を含んだ磁気ヘッド装置。
34. A magnetic head device including the magnetic head according to any one of claims 1 to 32 and a signal reproducing circuit including a power supply, code conversion, and error correction.
【請求項35】請求項1から34のいずれかにおいて、
磁気ディスク,磁気テープ等の記録媒体を一体化した磁
気記憶装置。
35. The method according to any one of claims 1 to 34,
A magnetic storage device that integrates recording media such as magnetic disks and magnetic tapes.
JP4076594A 1992-03-31 1992-03-31 Magneto-resistance effect type magnetic head Pending JPH05282629A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4076594A JPH05282629A (en) 1992-03-31 1992-03-31 Magneto-resistance effect type magnetic head

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4076594A JPH05282629A (en) 1992-03-31 1992-03-31 Magneto-resistance effect type magnetic head

Publications (1)

Publication Number Publication Date
JPH05282629A true JPH05282629A (en) 1993-10-29

Family

ID=13609643

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4076594A Pending JPH05282629A (en) 1992-03-31 1992-03-31 Magneto-resistance effect type magnetic head

Country Status (1)

Country Link
JP (1) JPH05282629A (en)

Similar Documents

Publication Publication Date Title
US5337203A (en) Magnetoresistive magnetic head
US8169752B2 (en) Method for manufacturing a magneto-resistance effect element having spacer layer
JP3520170B2 (en) Composite type thin film magnetic head
US8256095B2 (en) Method for manufacturing a magneto-resistance effect element
US8228643B2 (en) Method for manufacturing a magneto-resistance effect element and magnetic recording and reproducing apparatus
JP3473684B2 (en) Magnetic head, method of manufacturing the same, and magnetic recording / reproducing apparatus using the same
US20070188945A1 (en) Magnetoresistive effect element, magnetic head and magnetic recording/reproducing apparatus
US8671554B2 (en) Method of manufacturing a magneto-resistance effect element
JP3944164B2 (en) Magnetic multilayer film with reduced magnetostriction
JP2000215414A (en) Magnetic sensor
JP5695697B2 (en) Magnetoresistive element, magnetic head, magnetic recording / reproducing apparatus, and method of manufacturing magnetoresistive element
JP2003309305A (en) Magnetic detection element
JP2003031867A (en) Magnetoresistive effect element constituted by laminating oxide magnetic layer and metallic magnetic layer upon another
JP3388685B2 (en) Magnetic head
JP2008034784A (en) Tunnel-type magnetic detection element and method of manufacturing the same
JP2008192827A (en) Tunnel-type magnetism detecting element
US8125744B2 (en) Current perpendicular to plane magneto-resistance effect element, magnetic head, and magnetic recording/reproducing device
JP3316869B2 (en) Magnetoresistive head
JPH05282629A (en) Magneto-resistance effect type magnetic head
JP2009016401A (en) Magnetoresistance effect element, current perpendicular to plane magnetic head, and magnetic disk drive
JP2907805B1 (en) Magnetoresistive element, magnetoresistive head and magnetic recording / reproducing device
JP3367161B2 (en) Method of manufacturing magnetoresistive head
JP3477677B2 (en) Magnetoresistive magnetic head
JPH05174334A (en) Magneto-resistance effect type magnetic head
US6706156B1 (en) Method of making an improved MR sensor

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 10

Free format text: PAYMENT UNTIL: 20110216

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 10

Free format text: PAYMENT UNTIL: 20110216

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120216

Year of fee payment: 11

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120216

Year of fee payment: 11

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 12

Free format text: PAYMENT UNTIL: 20130216

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 13

Free format text: PAYMENT UNTIL: 20140216

EXPY Cancellation because of completion of term