JPH0528231B2 - - Google Patents

Info

Publication number
JPH0528231B2
JPH0528231B2 JP59115512A JP11551284A JPH0528231B2 JP H0528231 B2 JPH0528231 B2 JP H0528231B2 JP 59115512 A JP59115512 A JP 59115512A JP 11551284 A JP11551284 A JP 11551284A JP H0528231 B2 JPH0528231 B2 JP H0528231B2
Authority
JP
Japan
Prior art keywords
reaction
carbonate
compound
catalyst
glycidyl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59115512A
Other languages
Japanese (ja)
Other versions
JPS60260568A (en
Inventor
Toyokazu Yanagii
Masaharu Watanabe
Kimio Inoe
Takaaki Murai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daicel Corp
Original Assignee
Daicel Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daicel Chemical Industries Ltd filed Critical Daicel Chemical Industries Ltd
Priority to JP59115512A priority Critical patent/JPS60260568A/en
Publication of JPS60260568A publication Critical patent/JPS60260568A/en
Publication of JPH0528231B2 publication Critical patent/JPH0528231B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Epoxy Compounds (AREA)
  • Epoxy Resins (AREA)

Description

【発明の詳細な説明】 (技術の背景) 本発明は新規なエポキシ化合物の製造方法に関
する。エポキシ樹脂は、接着剤、成型剤、封止
剤、塗料等の多くの用途を有する工業材料であ
り、なかでもフエノール性水酸基を有する化合物
とエピハロヒドリンとを原料として製造されるい
わゆるエピービス型およびノボラツク型のものが
大部分を占めている。
DETAILED DESCRIPTION OF THE INVENTION (Technical Background) The present invention relates to a novel method for producing epoxy compounds. Epoxy resin is an industrial material that has many uses such as adhesives, molding agents, sealants, and paints.Epoxy resin is an industrial material that has many uses such as adhesives, molding agents, sealants, and paints. Among them, the so-called EP-vis type and novolak type, which are manufactured from compounds with phenolic hydroxyl groups and epihalohydrin, are used as raw materials. occupies the majority.

(従来技術およびその欠点) しかしながら、フエノール性水酸基を有する化
合物とエピハロ ヒドリンとをアルカリ性物質の
存在下に反応させてフエノール性水酸基をグリシ
ジルエーテルに変換する製造法において、生成物
樹脂中には、エピハロヒドリンに由来するハロゲ
ン原子が樹脂そのものに化学的に結合した形で、
不純物として混入することが避け難いことが明ら
かとなつている。
(Prior Art and Its Disadvantages) However, in a production method in which a compound having a phenolic hydroxyl group and epihalohydrin are reacted in the presence of an alkaline substance to convert the phenolic hydroxyl group into glycidyl ether, the product resin contains epihalohydrin. The halogen atoms derived from are chemically bonded to the resin itself,
It has become clear that contamination as impurities is unavoidable.

エポキシ樹脂の用途のうち、特に電子材料など
に用いた場合この不純物であるハロゲンが長期間
の使用中に湿気等によりハロゲン化水素となつて
遊離し、金属素材の腐蝕を招くと言われており、
その解決が急務となつている。
Among the uses of epoxy resins, especially when used in electronic materials, it is said that halogen impurities are released as hydrogen halides due to moisture etc. during long-term use, leading to corrosion of metal materials. ,
There is an urgent need to resolve this issue.

また、エピハロヒドリンによらず、不飽和化合
物と過酸化物の反応でエポキシ化合物を製造する
方法も知られ、また実際に製品も上市されてい
る。この方法により得られる代表的なエポキシ樹
脂に脂環式エポキシ樹脂があるが、一般的な硬化
剤であるアミン化合物、フエノールノボラツク化
合物との硬化が、グリシジルエーテル型エポキシ
樹脂に較べ遅い欠点があり、ハロゲンは含まない
ものの、用途に制限を受けざるを得ず、エピハロ
ヒドリン法によるエポキシ化合物に置き換わるま
でには至つていない。
In addition, a method for producing an epoxy compound by reacting an unsaturated compound with a peroxide without using epihalohydrin is also known, and products are actually on the market. A typical epoxy resin obtained by this method is alicyclic epoxy resin, but it has the disadvantage that curing with common curing agents such as amine compounds and phenol novolak compounds is slower than with glycidyl ether type epoxy resins. Although they do not contain halogens, their uses are limited, and they have not yet been replaced by epoxy compounds produced by the epihalohydrin method.

一方、エピハロヒドリンや過酸化物によらずに
エポキシ化合物を製造する方法の1つとして、カ
ーボネート化合物を分解・脱炭酸する方法が知ら
れている。しかしながら従来技術はプロピレンオ
キシドやグリシドール等の単官能低分子エポキシ
化合物を得る方法(例えば特開昭57−144272,同
144271,米国特許2856413など)である上、出発
原料として選べるカーボネートに制限があり、汎
用性を持つとは言い難かつた。
On the other hand, a method of decomposing and decarboxylating a carbonate compound is known as one method for producing an epoxy compound without using epihalohydrin or peroxide. However, the conventional technology is a method for obtaining monofunctional low molecular weight epoxy compounds such as propylene oxide and glycidol (for example, JP-A-57-144272,
144271, U.S. Patent No. 2856413, etc.), and there were restrictions on the carbonate that could be selected as a starting material, making it difficult to say that it had versatility.

本発明者らはカーボネートを経てエポキシ化合
物を製造する方法が、本質的に塩素等のハロゲン
を含まないことに着目し、カーボネート化合物を
中間体としかつ汎用性のある製造方法を確立すべ
く鋭意検討した結果、本発明に到達した。
The present inventors focused on the fact that the method of producing an epoxy compound via carbonate essentially does not contain halogens such as chlorine, and conducted extensive studies to establish a versatile production method that uses a carbonate compound as an intermediate. As a result, we have arrived at the present invention.

(本発明の構成) 即ち本発明は、「フエノール性水酸基を有する
化合物の水酸基を1,2−カーボネート化グリセ
リンエーテルに変換し、次いで、グリシジルエー
テルに変換することを特徴とするエポキシ化合物
の製造方法」である。
(Structure of the present invention) That is, the present invention provides a method for producing an epoxy compound, which comprises converting the hydroxyl group of a compound having a phenolic hydroxyl group into 1,2-carbonated glycerin ether, and then converting it into glycidyl ether. ”.

本発明においてフエノール性水酸基を有する化
合物としては一価フエノール化合物および多価フ
エノール化合物を用いることができる。
In the present invention, monohydric phenol compounds and polyhydric phenol compounds can be used as the compound having a phenolic hydroxyl group.

一価フエノール化合物としてはフエノール,o
−クレゾール,m−クレゾール,p−クレゾー
ル,2,3−キシレノール,2,4−キシレノー
ル,2,5−キシレノール,2,6−キシレノー
ル,3,4−キシレノール,3,5−キシレノー
ル,p−フエニルフエノール,t−ブチルフエノ
ール,p−ノニルフエノール,p−ビニルフエノ
ール,α−ナフトール,β−ナフトール等を例と
してあげることができる。
As a monovalent phenol compound, phenol, o
-cresol, m-cresol, p-cresol, 2,3-xylenol, 2,4-xylenol, 2,5-xylenol, 2,6-xylenol, 3,4-xylenol, 3,5-xylenol, p-xylenol Examples include enylphenol, t-butylphenol, p-nonylphenol, p-vinylphenol, α-naphthol, β-naphthol, and the like.

また、多価フエノール化合物としてはカテコー
ル,レゾルシノール,ヒドロキノン,ジヒドロキ
シトルエン,ナフタレンジオール,t−ブチルカ
テコール,t−ブチルヒドロキノン,ピロガロー
ル,フロログルシノール等の単環多価フエノール
類と、ビスフエノールA,ビスフエノールF,ビ
スフエノールS,4,4′−ジヒドロキシベンゾフ
エノン,4,4′−ジヒドロキシジフエニルエーテ
ル,フエノールフタレイン,フエノールノボラツ
ク樹脂,o−クレゾールノボラツク樹脂,ポリ−
p−ヒドロキシスチレン,フエノール・グリオキ
ザール縮合物,レゾルシノール・ホルマリン縮合
物,2,2′−ビフエニルジオール,1,1′−ビ−
2−ナフトール等の複数のフエノール骨格が化学
結合で結ばれた化合物類を例としてあげることが
できる。
Polyphenol compounds include monocyclic polyphenols such as catechol, resorcinol, hydroquinone, dihydroxytoluene, naphthalene diol, t-butylcatechol, t-butylhydroquinone, pyrogallol, and phloroglucinol; bisphenol A, and bisphenol A; Phenol F, bisphenol S, 4,4'-dihydroxybenzophenone, 4,4'-dihydroxydiphenyl ether, phenolphthalein, phenol novolac resin, o-cresol novolac resin, poly-
p-hydroxystyrene, phenol-glyoxal condensate, resorcinol-formalin condensate, 2,2'-biphenyldiol, 1,1'-bi-
Examples include compounds in which multiple phenol skeletons are linked by chemical bonds, such as 2-naphthol.

ここに述べる一価および多価フエノール化合物
には、フエノール環上またはフエノール環に置換
した炭化水素骨格にハロゲン、酸素、窒素、イオ
ウを含む官能基、例えばハロゲン基,エーテル
基,エステル基,カルボニル基,カルボン酸基,
水酸基,アルデヒド基,アミノ基,アミド基,ニ
トリル基,ニトロ基,チオール基,チオエーテル
基,その他ピリジル基やイミダゾール基などのヘ
テロ芳香族基を有するものも含む。
The monovalent and polyvalent phenol compounds described herein include functional groups containing halogen, oxygen, nitrogen, and sulfur on the phenol ring or on the hydrocarbon skeleton substituted on the phenol ring, such as halogen groups, ether groups, ester groups, and carbonyl groups. , carboxylic acid group,
It also includes those having a hydroxyl group, an aldehyde group, an amino group, an amide group, a nitrile group, a nitro group, a thiol group, a thioether group, and other heteroaromatic groups such as a pyridyl group and an imidazole group.

フエノール性水酸基を有する化合物を、1,2
−カーボネート化グリセリンエーテルに変換する
方法としては次の2つの方法がある。
A compound having a phenolic hydroxyl group, 1,2
- There are the following two methods for converting into carbonated glycerin ether.

第1の方法はグリシジルアルキルカーボネート
をフエノール性化合物と反応させる方法でフエノ
ール類の1,2−カーボネート化グリセリンエー
テルが高収率で得られる。
The first method is a method in which glycidyl alkyl carbonate is reacted with a phenolic compound, and 1,2-carbonated glycerin ether of phenols can be obtained in high yield.

グリシジルアルキルカーボネートとしてはグリ
シジルメチルカーボネート,グリシジルエチルカ
ーボネート,グリシジル−i−プロピルカーボネ
ート,グリシジル−n−プロピルカーボネート,
グリシジルブチルカーボネート等を用いることが
できる。
Examples of the glycidyl alkyl carbonate include glycidyl methyl carbonate, glycidyl ethyl carbonate, glycidyl-i-propyl carbonate, glycidyl-n-propyl carbonate,
Glycidyl butyl carbonate and the like can be used.

グリシジルアルキルカーボネートは、ジアルキ
ルカーボネートとグリシドールのエステル交換反
応、あるいはホスゲンの塩素をアルコールおよび
グリシドールで逐次に、あるいは同時に置換する
こと等の方法で製造することができる。
Glycidyl alkyl carbonate can be produced by transesterification of dialkyl carbonate and glycidol, or by replacing chlorine of phosgene with alcohol and glycidol sequentially or simultaneously.

グリシジルアルキルカーボネートとフエノール
性水酸基を有する化合物の反応は無触媒でも行な
えるが、3級アミン、4級アンモニウム化合物,
金属水酸化物,金属アルコキサイド、ハロゲン化
金属,金属炭酸塩,金属重炭酸塩,金属硫酸塩,
金属硝酸塩等の触媒を用いると反応の進行が促進
され、より短時間で製造することができる。 触
媒としては、トリエチルアミン,テトラメチルア
ンモニウムクロライド,テトラブチルアンモニウ
ムブロマイド,カ性ソーダ,カ性カリ,ナトリウ
ムメトキシド,ヨウ化カリウム,ヨウ化ナトリウ
ム,塩化カリウム,塩化ナトリウム,炭酸ナトリ
ウム,炭酸水素ナトリウム,硫酸ナトリウム,硫
酸カリウム,硝酸ナトリウム,硝酸カリウム等を
あげることができる。
Although the reaction between glycidyl alkyl carbonate and a compound having a phenolic hydroxyl group can be carried out without a catalyst, it is possible to react with a tertiary amine, a quaternary ammonium compound,
Metal hydroxides, metal alkoxides, metal halides, metal carbonates, metal bicarbonates, metal sulfates,
When a catalyst such as a metal nitrate is used, the progress of the reaction is accelerated and production can be performed in a shorter time. As a catalyst, triethylamine, tetramethylammonium chloride, tetrabutylammonium bromide, caustic soda, caustic potash, sodium methoxide, potassium iodide, sodium iodide, potassium chloride, sodium chloride, sodium carbonate, sodium hydrogen carbonate, sulfuric acid. Examples include sodium, potassium sulfate, sodium nitrate, potassium nitrate, etc.

触媒の量は出発原料に対して0.01〜10%を、触
媒の活性に応じて反応系へ添加する。
The amount of catalyst is 0.01 to 10% based on the starting material, and is added to the reaction system depending on the activity of the catalyst.

反応温度は、反応原料の反応性に応じて0〜
200℃が適切である。
The reaction temperature ranges from 0 to 0 depending on the reactivity of the reaction raw materials.
200℃ is appropriate.

通常0℃以下ではこの反応は遅く、200℃以上
ではカーボネート基の分解等の副反応が増え、好
ましくない。
Generally, below 0°C, this reaction is slow, and above 200°C, side reactions such as decomposition of carbonate groups increase, which is not preferable.

生成したカーボネートは、副生するアルコール
とエステル交換を起こし、1,2−ジオールに変
化してしまうので、副生アルコールを除去しつつ
反応を行なうのが好ましい。
Since the produced carbonate undergoes transesterification with the by-product alcohol and changes into 1,2-diol, it is preferable to carry out the reaction while removing the by-product alcohol.

副生アルコールの除去は、反応温度に応じ、ア
ルコールの留出に必要な圧力まで反応系を減圧に
して行なうことができる。また、共沸等の手段を
用いても良い。原料、生成物が固体、あるいは高
粘度である場合、必要に応じて適当量の溶媒を反
応系に加えて反応を行なうこともできる。この
時、溶媒は沸点が副生アルコールより高く、かつ
グリシジル基、カーボネート基、その他原料中の
官能基と反応しないものであることが必要であ
る。
Removal of the by-product alcohol can be carried out by reducing the pressure of the reaction system to the pressure necessary for distilling off the alcohol, depending on the reaction temperature. Alternatively, means such as azeotropy may be used. When the raw materials or products are solid or highly viscous, the reaction can be carried out by adding an appropriate amount of solvent to the reaction system, if necessary. At this time, the solvent must have a boiling point higher than that of the by-product alcohol and must not react with glycidyl groups, carbonate groups, or other functional groups in the raw materials.

即ち、使用可能な溶媒としては、ジオキサン,
イソプロピルエーテル,ブチルエーテル,アニソ
ールなどのエーテル類,ベンゼン,トルエン,キ
シレンなどの芳香族炭化水素類,四塩化炭素,ト
リクレンなどのハロゲン化炭化水素類,オクタ
ン,デカン等の脂肪族炭化水素類,メチルイソブ
チルケトン,ジエチルケトン,シクロヘキサノン
等のケトン類、さらにこの他ジメチルスルホキシ
ド,ジメチルホルムアミド,γ−ピロドリン等が
ある。また、酢酸エチル,酢酸ブチルなどのエス
テル類は通常、多少のエステル交換をおこすの
で、その反応条件下でのエステル交換量によつて
は実用上使えない場合がある。メタノール,エタ
ノール,n−プロパノール,i−プロパノール等
のアルコール類はグリシジル基と反応し易いこ
と、およびエステル類と同じ理由によつて実用上
使えない場合が多い。
That is, usable solvents include dioxane,
Ethers such as isopropyl ether, butyl ether and anisole, aromatic hydrocarbons such as benzene, toluene and xylene, halogenated hydrocarbons such as carbon tetrachloride and trichlene, aliphatic hydrocarbons such as octane and decane, methyl isobutyl Other examples include ketones such as ketone, diethyl ketone, and cyclohexanone, as well as dimethyl sulfoxide, dimethylformamide, and γ-pyrodrine. Furthermore, since esters such as ethyl acetate and butyl acetate usually undergo some transesterification, they may not be of practical use depending on the amount of transesterification under the reaction conditions. Alcohols such as methanol, ethanol, n-propanol, and i-propanol tend to react easily with glycidyl groups, and for the same reason as esters, they are often not practically usable.

フエノール性水酸基を有する化合物を1,2−
カーボネート化グリセリンエーテルに変換する第
2の方法は、フエノール性化合物とグリシドール
を付加させてフエノール性化合物のグリセリンエ
ーテルとした後、ジオールの部分をジアルキルカ
ーボネート類とエステル交換するか、ジオールに
ホスゲン等を反応させ、グリセリンカーボネート
とする方法である。
Compounds with phenolic hydroxyl groups are 1,2-
The second method for converting into carbonated glycerin ether is to add a phenolic compound and glycidol to form a glycerin ether of a phenolic compound, and then transesterify the diol with a dialkyl carbonate, or add phosgene or the like to the diol. This is a method of reacting to form glycerin carbonate.

フエノール性水酸基とグリシドールの反応は無
触媒でも進行するが、触媒を用いることにより、
反応速度を上げ、また、グリシドールの末端カー
ボンへの付加反応の選択率を上げることができ
る。3級アミン、4級アンモニウム化合物,金属
水酸化物,金属アルコキサイド、ハロゲン化金
属,金属炭酸塩,金属重炭酸塩,金属硫酸塩,金
属硝酸塩等の化合物が触媒能を有し触媒の実例と
しては、トリエチルアミン,テトラメチルアンモ
ニウムクロライド,テトラブチルアンモニウムブ
ロマイド,カ性ソーダ,カ性カリ,ナトリウムメ
トキシド,ヨウ化カリウム,ヨウ化ナトリウム,
塩化カリウム,塩化ナトリウム,炭酸ナトリウ
ム,炭酸水素ナトリウム,硫酸ナトリウム,硫酸
カリウム,硝酸ナトリウム,硝酸カリウム等をあ
げることができる。
The reaction between phenolic hydroxyl groups and glycidol proceeds even without a catalyst, but by using a catalyst,
It is possible to increase the reaction rate and also increase the selectivity of the addition reaction of glycidol to the terminal carbon. Examples of catalysts include compounds such as tertiary amines, quaternary ammonium compounds, metal hydroxides, metal alkoxides, metal halides, metal carbonates, metal bicarbonates, metal sulfates, and metal nitrates. , triethylamine, tetramethylammonium chloride, tetrabutylammonium bromide, caustic soda, caustic potash, sodium methoxide, potassium iodide, sodium iodide,
Examples include potassium chloride, sodium chloride, sodium carbonate, sodium hydrogen carbonate, sodium sulfate, potassium sulfate, sodium nitrate, potassium nitrate, and the like.

触媒の量は、出発原料に対して0.01〜10%を触
媒の活性に応じて反応系へ添加する。
The amount of catalyst is added to the reaction system in an amount of 0.01 to 10% based on the starting material depending on the activity of the catalyst.

グリシドールとフエノール性水酸基を有する化
合物の反応は10〜150℃で行なわれる。10℃以下
では反応が遅く、150℃以上ではグリシドールの
重合が多くなり好ましくない。
The reaction between glycidol and a compound having a phenolic hydroxyl group is carried out at 10-150°C. Below 10°C, the reaction is slow, and above 150°C, polymerization of glycidol increases, which is not preferable.

反応は、フエノール化合物に対してグリシドー
ルを滴下する形が反応熱の抑制、グリシドールの
重合防止の点で好ましいが、条件が温和である場
合は最初から全原料に反応器を仕込む方法でも良
い。必要に応じて溶媒を用いることもできる。
In the reaction, it is preferable to drop glycidol to the phenol compound in terms of suppressing the reaction heat and preventing polymerization of glycidol, but if the conditions are mild, a method in which all the raw materials are added to the reactor from the beginning may be used. A solvent can also be used if necessary.

反応粗液から低沸分の留去、水洗等の精製操作
を必要に応じて行なつてグリセリンエーテル化合
物をとり出し、カーボネート化の原料とする。
Purification operations such as distillation of low-boiling components and washing with water are performed as necessary from the reaction crude liquid to extract a glycerin ether compound, which is used as a raw material for carbonation.

カーボネート化は、ジアルキルカーボネートと
グリセリンエーテルのエステル交換またはホスゲ
ン等とジオールの反応で行なうことかできる。使
用しうるジアルキルカーボネートの例としてはジ
メチルカーボネート,ジエチルカーボネート,ジ
−i−プロピルカーボネート,ジ−n−プロピル
カーボネート,ジブチルカーボネート等をあげる
ことができる。
Carbonation can be carried out by transesterification of a dialkyl carbonate and glycerin ether or by reaction of phosgene or the like with a diol. Examples of dialkyl carbonates that can be used include dimethyl carbonate, diethyl carbonate, di-i-propyl carbonate, di-n-propyl carbonate, dibutyl carbonate, and the like.

カーボネート交換においては、触媒を用いるこ
とで反応を促進することが出来る。用いうる触媒
としては水酸化アルカリ金属,アルカリ金属アル
コキシド,ハロゲン化アルカリ金属,有機カルボ
ン酸のアルカリ金属,硝酸のアルカリ金属塩,等
を例としてあげることができる。
In carbonate exchange, the reaction can be promoted by using a catalyst. Examples of catalysts that can be used include alkali metal hydroxides, alkali metal alkoxides, alkali metal halides, alkali metal organic carboxylic acids, and alkali metal salts of nitric acid.

交換反応は、カーボネートの反応性や用いる触
媒の量と種類に応じ反応温度を選ぶことができ
る。またこの際、反応を促進する上でジアルキル
カーボネートに由来するアルコールを留去しつつ
反応を行なう事が好ましい。必要に応じて溶媒を
用いてもよい。
The reaction temperature for the exchange reaction can be selected depending on the reactivity of the carbonate and the amount and type of catalyst used. Further, at this time, in order to promote the reaction, it is preferable to carry out the reaction while distilling off the alcohol derived from the dialkyl carbonate. A solvent may be used if necessary.

ホスゲンを用いる場合は単独または脱酸剤とと
もに、脱塩酸することでカーボネート化を達成す
ることができる。
When using phosgene, carbonation can be achieved by dehydrochlorination alone or together with a deoxidizing agent.

いずれの方法で得られたカーボネート化合物
も、必要に応じて水洗、脱低沸等の精製法で次の
分解工程に適する純度まで精製を行なう。
The carbonate compound obtained by either method is purified to a purity suitable for the next decomposition step by a purification method such as washing with water or removing a low boiling point, if necessary.

カーボネート化合物は、精製後、あるいは未精
製のまま熱分解による脱炭酸反応によつてエポキ
シ樹脂に変換される。
The carbonate compound is converted into an epoxy resin by a decarboxylation reaction by thermal decomposition after being purified or unpurified.

好ましい反応条件は常圧または減圧下150−300
℃であり、無触媒でも反応は進行するが、触媒を
用いるとエポキシ基の収率を高めることが出来
る。このような触媒としては、ハロゲン化アルカ
リ金属が高い収率を与えるが、触媒はハロゲン化
アルカリに限定するものではなく、他の化合物を
用いても良い。また多成分触媒系を用いて良い。
Preferred reaction conditions are 150-300 ℃ under normal pressure or reduced pressure.
℃, and the reaction proceeds even without a catalyst, but the use of a catalyst can increase the yield of epoxy groups. As such a catalyst, an alkali metal halide provides a high yield, but the catalyst is not limited to an alkali halide, and other compounds may be used. Also, multi-component catalyst systems may be used.

生成したエポキシ樹脂は、必要に応じて精製操
作を行なう。例えば、ハロゲン化アルカリを触媒
として用いた場合、水洗操作を行なうことによつ
て触媒を除去することができる。
The produced epoxy resin is subjected to a purification operation as necessary. For example, when an alkali halide is used as a catalyst, the catalyst can be removed by washing with water.

(本発明による効果) 本発明の方法によつて得られたエポキシ樹脂
は、不純物となるハロゲンを含まず、金属に対す
る腐触を起こさない特長を有し、また硬化速度も
速く、汎用性のある原料選択が可能であり、集積
回路の封止用には特に適している。
(Effects of the present invention) The epoxy resin obtained by the method of the present invention does not contain halogen as an impurity, does not corrode metals, has a fast curing speed, and is versatile. Raw materials can be selected, and it is particularly suitable for encapsulating integrated circuits.

以下に実施例を示し、さらに詳しく本発明を説
明する。
EXAMPLES The present invention will be explained in more detail with reference to Examples below.

実施例 1 ジメチルカーボネート360g(4モル)、グリシ
ドール148g(2モル)さらに触媒として塩化カ
リウム0.50gを10段オルダーシヨー塔をセツトし
た反応装置に仕込み、還流下に反応を行つた。メ
タノールが副生し始めた段階で、塔頂から留出さ
せて反応系から除去しつつ、メタノールの留出が
なくなるまで反応を続行した。反応粗液をフラツ
シユ蒸留して触媒を除去した後、フラツシユ蒸留
の留出液を10段オルダーシヨー塔で精留し、5mm
Hgで140〜150°の留分として98.7%純度(ガスク
ロマトグラフイーによる)のグリシジルメチルカ
ーボネート(以下GMCと略す)を得た。
Example 1 360 g (4 moles) of dimethyl carbonate, 148 g (2 moles) of glycidol, and 0.50 g of potassium chloride as a catalyst were charged into a reactor equipped with a 10-stage Olderschau column, and a reaction was carried out under reflux. When methanol began to be produced as a by-product, it was distilled off from the top of the column and removed from the reaction system, and the reaction was continued until no more methanol was distilled out. After the reaction crude liquid was flash-distilled to remove the catalyst, the distillate of the flash-distillation was rectified in a 10-stage Olderschau column.
Glycidyl methyl carbonate (hereinafter abbreviated as GMC) with a purity of 98.7% (by gas chromatography) was obtained as a 140-150° Hg fraction.

得られたGMC145gをビスフエノールA114g
(OH当量114)、ジメチルベンジルアミン2.6gと
ともに攪拌器のついた反応装置に仕込み、内部温
度を100℃に保ちながら100mmHgの減圧下に副生
メタノールの留出が見られなくなるまで反応を行
なつた。
145 g of the obtained GMC was mixed with 114 g of bisphenol A.
(OH equivalent: 114) was charged into a reactor equipped with a stirrer together with 2.6 g of dimethylbenzylamine, and the reaction was carried out under a reduced pressure of 100 mmHg while maintaining the internal temperature at 100°C until no by-product methanol was distilled out. Ta.

次に、反応粗液をキヤピラリーをセツトした単
蒸留装置に移し1mmHg減圧下に缶温を150°まで
昇温して脱低沸を行なつた。
Next, the reaction crude liquid was transferred to a simple distillation apparatus equipped with a capillary, and the temperature of the reactor was raised to 150° under a reduced pressure of 1 mmHg to remove low boiling points.

反応生成物をガスクロマトグラフイー内部標準
法によつて分析し、GMC,メタノール,グリシ
ドール等の低沸分がこん跡量であることを確認し
た後、irスペクトル分析を行なつた。1800cm-1
カーボネート結合の強い吸収が見られることか
ら、反応生成物がビスフエノールAの1,2−カ
ーボネート化グリセリンエーテルであることを確
認した。
The reaction product was analyzed by gas chromatography internal standard method, and after confirming that there were only trace amounts of low-boiling components such as GMC, methanol, and glycidol, IR spectrum analysis was performed. Since strong absorption of carbonate bonds was observed at 1800 cm -1 , it was confirmed that the reaction product was 1,2-carbonated glycerin ether of bisphenol A.

得られたビスフエノールAの1,2−カーボネ
ート化グリセリンエーテル100gをヨウ化カリウ
ム2gとともに減圧にできる反応装置に仕込み、
20mmHgまで系を減圧にするとともに、油浴によ
り200℃まで加熱した。
100 g of the obtained 1,2-carbonated glycerin ether of bisphenol A was charged together with 2 g of potassium iodide into a reaction device capable of reducing the pressure.
The system was evacuated to 20 mmHg and heated to 200°C using an oil bath.

カーボネート化合物の脱炭酸による発泡が見ら
れなくなるまで加熱を続けた。
Heating was continued until foaming due to decarboxylation of the carbonate compound was no longer observed.

生成物は粘稠な液体で、これをメチルイソブチ
ルケトンに溶解し、水洗によつて触媒を除去した
後、脱溶媒を行なつた。
The product was a viscous liquid, which was dissolved in methyl isobutyl ketone, the catalyst was removed by washing with water, and then the solvent was removed.

精製後の樹脂のオキシラン酸素含有量を測定し
たところ、5.8%であつた。また、ボンベ燃焼法
によつて残存ヨウ素を分析したところ、9ppmと
分析され、エピクロルヒドリン法による、本実施
例に対応するエポキシ樹脂のハロゲン含有量は高
純度品でも数百ppmであることから、本方法がハ
ロゲン不純物の少ないエポキシ樹脂製造に適して
いることが確認された。
The oxirane oxygen content of the purified resin was measured and found to be 5.8%. In addition, when residual iodine was analyzed by the bomb combustion method, it was analyzed to be 9 ppm, and the halogen content of the epoxy resin corresponding to this example by the epichlorohydrin method is several hundred ppm even if it is a high-purity product. It was confirmed that the method is suitable for producing epoxy resins with low halogen impurities.

実施例 2 GMC132g(1モル)をビスフエノールF100
g(大日本インキ社製、OH当量100)、ヨウ化カ
リウム2.3gとともに攪拌器のついた反応装置に
仕込み、内部温度を100℃に保ちながら100mmHg
の減圧下に副生メタノールの留出が認められなく
なるまで反応を行なつた。
Example 2 132g (1 mol) of GMC was added to bisphenol F100.
(manufactured by Dainippon Ink Co., Ltd., OH equivalent: 100) and 2.3 g of potassium iodide were charged into a reactor equipped with a stirrer, and the internal temperature was maintained at 100°C at 100 mmHg.
The reaction was carried out under reduced pressure until no by-product methanol was observed to be distilled out.

さらに圧を1mmHgまで下げ、低沸分の除去を
行なつた。反応生成物をガスクロマトグラフイー
内部標準法によつて分析し、GMC,メタノール,
グリシドール等の低沸分がこん跡量であることを
確認した後、irスペクトル分析を行なつた。1800
cm-1にカーボネート結合の強い吸収が見られるこ
とから、反応生成物がビスフエノールFの1,2
−カーボネート化グリセリンエーテルであること
を確認した。また3400cm-1にOH基の吸収が見ら
れること、および触媒重量を減じた生成物得量が
184gであることから、エーテル化反応の収率は
全OHに対し84%であることが判つた。
The pressure was further lowered to 1 mmHg to remove low-boiling components. The reaction products were analyzed by gas chromatography internal standard method, and GMC, methanol,
After confirming that there were traces of low-boiling components such as glycidol, IR spectrum analysis was performed. 1800
Since strong absorption of carbonate bonds is observed in cm -1 , the reaction product is 1,2 of bisphenol F.
- It was confirmed that it was carbonated glycerin ether. In addition, absorption of OH groups is observed at 3400 cm -1 and the amount of product obtained by reducing the catalyst weight is
Since the amount was 184 g, it was found that the yield of the etherification reaction was 84% based on the total OH.

計算式(184−100)/100×100=84% ……増加重量 ……100%カーボネート化した時の増加重量 生成物をそのまま減圧にできる反応装置に仕込
み、20mmHgまで系を減圧するとともに油浴によ
り200℃まで加熱した。
Calculation formula (184-100) / 100 x 100 = 84%...Increased weight...Increased weight when 100% carbonated was heated to 200°C.

カーボネート化合物の脱炭酸による発泡が見ら
れなくなるまで加熱をつづけた。
Heating was continued until foaming due to decarboxylation of the carbonate compound was no longer observed.

生成物をメチルイソブチルケトンに溶解し、水
洗によつてヨウ化カリウムを除去した後、脱溶媒
を行なつた。
The product was dissolved in methyl isobutyl ketone, potassium iodide was removed by washing with water, and then the solvent was removed.

生成物のオキシラン酸素含有量は5.2%、ボン
ベ燃焼法による残存ヨウ素は7ppmであつた。
The oxirane oxygen content of the product was 5.2%, and the residual iodine by bomb combustion method was 7 ppm.

実施例 3 フエノール188g(2モル)、GMC290.4g(2.2
モル)炭酸水素ナトリウム4.8gを攪拌器の付い
た反応器に仕込み、100mmHgまで系を減圧にし、
100℃で反応を行なつた。副生するメタノールは
外部へ留出して除去しながら、メタノールの発生
が認められなくなるまで反応を続行した。
Example 3 Phenol 188g (2 mol), GMC 290.4g (2.2
Charge 4.8 g of sodium hydrogen carbonate (mol) into a reactor equipped with a stirrer, reduce the pressure of the system to 100 mmHg,
The reaction was carried out at 100°C. While by-product methanol was distilled out and removed, the reaction was continued until methanol generation was no longer observed.

粗液にアセトンを加えて溶液とし、熱時過し
て炭酸水素ナトリウムを除去後、冷却して結晶を
析出させた。この結晶は赤外線スペクトルで1800
cm-1にカーボネートのCO基による吸収があるこ
と、およびnmrスペクトルからフエノールの1,
2−カーボネート化グリセリンエーテルであるこ
とを確認した。
Acetone was added to the crude liquid to form a solution, heated to remove sodium hydrogen carbonate, and then cooled to precipitate crystals. This crystal has 1800 in the infrared spectrum
The fact that there is an absorption by the CO group of carbonate at cm -1 and the nmr spectrum shows that 1,
It was confirmed that it was 2-carbonated glycerin ether.

カーボネート化合物19.9g、ヨウ化カリウム
0.4gを反応器に仕込み、20mmHgの減圧下、反応
器を200℃に加熱し、生成するフエニルグリシジ
ルエーテルを留出させながら、留出液の発生がほ
ぼ無くなるまで反応を行なつた。
Carbonate compound 19.9g, potassium iodide
0.4 g was charged into a reactor, and the reactor was heated to 200° C. under a reduced pressure of 20 mmHg, and the reaction was carried out while distilling the generated phenyl glycidyl ether until almost no distillate was generated.

留出液は9.8gで、ガスクロマトグラフイーに
よるフエニルグリシジルエーテル含有量は93.7%
であつた。
The distillate is 9.8g, and the phenyl glycidyl ether content is 93.7% by gas chromatography.
It was hot.

この留出液はボンベ燃焼法でヨウ素含有量は
5ppmで、ハロゲン不純物が少ないエポキシ樹脂
材料であることを確認した。
This distillate was produced using the cylinder combustion method, and the iodine content was
It was confirmed that the epoxy resin material contained only 5ppm of halogen impurities.

Claims (1)

【特許請求の範囲】[Claims] 1 フエノール性水酸基を有する化合物の水酸基
を1,2−カーボネート化グリセリンエーテルに
変換し、次いでグリシジルエーテルに変換するこ
とを特徴とするエポキシ化合物の製造方法。
1. A method for producing an epoxy compound, which comprises converting the hydroxyl group of a compound having a phenolic hydroxyl group into 1,2-carbonated glycerin ether, and then converting it into glycidyl ether.
JP59115512A 1984-06-07 1984-06-07 Production of epoxy compound Granted JPS60260568A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59115512A JPS60260568A (en) 1984-06-07 1984-06-07 Production of epoxy compound

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59115512A JPS60260568A (en) 1984-06-07 1984-06-07 Production of epoxy compound

Publications (2)

Publication Number Publication Date
JPS60260568A JPS60260568A (en) 1985-12-23
JPH0528231B2 true JPH0528231B2 (en) 1993-04-23

Family

ID=14664356

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59115512A Granted JPS60260568A (en) 1984-06-07 1984-06-07 Production of epoxy compound

Country Status (1)

Country Link
JP (1) JPS60260568A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5814373A (en) * 1991-11-26 1998-09-29 Dow Chemical Company Heat-resistant hydroxy-functional polyethers as thermoplastic barrier resins
TW499447B (en) 1997-08-14 2002-08-21 Shell Int Research Process for the manufacture of epoxy compounds
JP5042491B2 (en) * 2005-12-14 2012-10-03 株式会社ダイセル Method for producing alicyclic epoxy compound and alicyclic epoxy compound

Also Published As

Publication number Publication date
JPS60260568A (en) 1985-12-23

Similar Documents

Publication Publication Date Title
JPH11508921A (en) Method for producing 1,2-bis (acyloxylate)
US5245048A (en) Production of glycidyl compounds
JPH0528231B2 (en)
CN102186806B (en) Process for removing an alkanol impurity from an organic carbonate stream
TWI462898B (en) Process for removing an alkanol impurity from an organic carbonate stream
JP6006801B2 (en) Method for producing hydroxyalkyl acrylate
JP4902931B2 (en) Method of recovering physical value from bisphenol tar
US8558021B2 (en) Process for the catalytic halogenation of a diol
US9394265B2 (en) Method for producing alkyldiol monoglycidyl ether
US9242949B2 (en) Method for producing alkanediol monoglycidyl ether (meth)acrylate
KR20220163415A (en) Method for synthesizing oxetane compound through microreactor
EP0487305B1 (en) Method of purifying crude glycidyl (meth)acrylate
US4404063A (en) Method for the separation of indole
JP4662026B2 (en) Method for producing glycidyl methacrylate
JPH0559910B2 (en)
EP3898571B1 (en) Process for preparing dialkyl carbonate and alkanediol
JP4383180B2 (en) Method for producing crystalline epoxy compound
JPH0725821A (en) New solvent and its production
JPS60239483A (en) Novel carbonate compound
JPH07110840B2 (en) Method for producing dialkyl carbonate
US20220340513A1 (en) Process for preparing dialkyl carbonate and alkanediol
GB1568440A (en) Method for processing a tar containing benzyl benzoate
WO2017170095A1 (en) Novel dihydroxy compound
EP3831805A1 (en) Process for the preparation of a dialkyl carbonate and an alkanediol
JP2001064355A (en) Production of epoxy resin