WO2017170095A1 - Novel dihydroxy compound - Google Patents

Novel dihydroxy compound Download PDF

Info

Publication number
WO2017170095A1
WO2017170095A1 PCT/JP2017/011626 JP2017011626W WO2017170095A1 WO 2017170095 A1 WO2017170095 A1 WO 2017170095A1 JP 2017011626 W JP2017011626 W JP 2017011626W WO 2017170095 A1 WO2017170095 A1 WO 2017170095A1
Authority
WO
WIPO (PCT)
Prior art keywords
general formula
group
reaction
phenyl
dihydroxy compound
Prior art date
Application number
PCT/JP2017/011626
Other languages
French (fr)
Japanese (ja)
Inventor
隼 溝口
緒旺 路
Original Assignee
本州化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 本州化学工業株式会社 filed Critical 本州化学工業株式会社
Priority to JP2018509159A priority Critical patent/JPWO2017170095A1/en
Priority to KR1020187029623A priority patent/KR102350817B1/en
Priority to CN201780020433.5A priority patent/CN108884038A/en
Publication of WO2017170095A1 publication Critical patent/WO2017170095A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D209/00Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D209/02Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom condensed with one carbocyclic ring
    • C07D209/04Indoles; Hydrogenated indoles
    • C07D209/30Indoles; Hydrogenated indoles with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, directly attached to carbon atoms of the hetero ring
    • C07D209/32Oxygen atoms
    • C07D209/34Oxygen atoms in position 2
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G64/00Macromolecular compounds obtained by reactions forming a carbonic ester link in the main chain of the macromolecule
    • C08G64/02Aliphatic polycarbonates

Definitions

  • the present invention relates to a novel dihydroxy compound. Specifically, the present invention relates to a dihydroxy compound having an indoline skeleton, which is suitable as a raw material for aromatic polycarbonate oligomers and resins.
  • bisphenoxy alcohols compounds in which the hydrogen atom of the hydroxy group of bisphenol is substituted with a hydroxyalkyl group
  • thermoplastic synthetic resin raw materials such as polycarbonate resins, thermosetting resin raw materials such as epoxy resins, and antioxidant raw materials.
  • thermosetting resin raw materials such as epoxy resins
  • antioxidant raw materials such as antioxidant raw materials.
  • the performance required for these bisphenoxy alcohols has become increasingly sophisticated.
  • bisphenoxy alcohols 3,3-bis (4- (2-hydroxyethoxy) phenyl) -2-phenylphthalimidine having an isoindoline skeleton is known (Non-patent Document 1).
  • the compound has insufficient heat resistance and optical characteristics, and further improvement is required.
  • a method for producing bisphenoxy alcohols there is known a method in which a bisphenol compound is reacted with an alkylene carbonate or an alkylene oxide. In this method, as a impurity, a monohydroxyalkoxy compound or a target product is produced. Bisphenoxy alcohols further react with alkylene carbonates and alkylene oxides to produce a compound in which the hydroxy group of the hydroxyalkoxy group is further substituted with a hydroxyalkoxy group, resulting in a low reaction selectivity.
  • the resulting compound since there are raw materials and intermediates having an aromatic hydroxyl group, the resulting compound is colored and has poor thermal stability, so it must be repeatedly purified for use as an optical application, which is industrially disadvantageous. is there.
  • the present invention has been made against the background described above, and an object of the present invention is to provide a novel dihydroxy compound having an indoline skeleton having high heat resistance and high refractive index.
  • the present inventors have found that the dihydroxy compound of the present invention having an indoline skeleton is excellent in optical properties such as high heat resistance and high refractive index, and completed the present invention. did.
  • a dihydroxy compound represented by the following general formula (1) (Wherein R represents an alkylene group having 2 to 6 carbon atoms, R 1 and R 2 each independently represents an alkyl group having 1 to 8 carbon atoms or an alkoxy group having 1 to 8 carbon atoms, m represents an integer of 0 to 3, n represents an integer of 0 to 2, provided that when m is 2 or more, R 1 may be the same or different. When n is 2, R 2 is the same But it may be different.)
  • the dihydroxy compound according to the present invention has high heat resistance and a high refractive index, an excellent effect as a polycarbonate raw material for optical materials can be expected.
  • the dihydroxy compound according to the present invention is a monohydroxyalkoxy compound (sometimes referred to as 1EO form) or a compound in which the hydroxy group of the hydroxyalkoxy group is further substituted with a hydroxyalkoxy group (sometimes referred to as multi-EO form). High purity without containing, and excellent optical properties such as thermal stability and product hue.
  • the polycarbonate using the dihydroxy compound of the present invention as a raw material monomer is a monohydroxyalkoxy compound (1EO form) in which the raw material monomer is an impurity, or a compound in which the hydroxy group of the hydroxyalkoxy group is further substituted with a hydroxyalkoxy group (multi-EO form). ), It is expected to have high purity, high heat resistance, and high refractive index, and in particular, an excellent effect is expected in polycarbonate for optical materials.
  • the dihydroxy compound of the present invention is represented by the following general formula (1).
  • R represents an alkylene group having 2 to 6 carbon atoms
  • R 1 and R 2 each independently represents an alkyl group having 1 to 8 carbon atoms or an alkoxy group having 1 to 8 carbon atoms
  • m represents an integer of 0 to 3
  • n represents an integer of 0 to 2, provided that when m is 2 or more, R 1 may be the same or different.
  • R 2 is the same But it may be different.
  • each R is independently an alkylene group having 2 to 6 carbon atoms.
  • alkylene group examples include 1,2-ethylenediyl group, 1,2- Examples thereof include a propanediyl group, a 1,3-propanediyl group, a pentamethylene group, and a hexamethylene group, preferably a linear or branched alkylene group having 2 to 4 carbon atoms, particularly preferably.
  • the hydroxyalkoxy group represented by “—O—R—OH” in the general formula (1) will be described.
  • the bonding position of the hydroxy group bonded to the alkylene group R is alkylene bonded directly to the ether group. It is not bonded to the carbon atom constituting the group R (the 1st carbon atom).
  • R is an alkylene group having 3 or more carbon atoms
  • the bonding position of the hydroxy group is preferably the 2- or 3-position of the alkylene group “R”, and more preferably the 2-position.
  • Specific examples include 2-hydroxyethoxy group, 2-hydroxypropoxy group, 2-hydroxy-1-methylethoxy group, 3-hydroxypropoxy group and the like.
  • R 1 and R 2 are each independently an alkyl group having 1 to 8 carbon atoms or an alkoxy group having 1 to 8 carbon atoms, and when R 1 is an alkyl group having 1 to 8 carbon atoms, Is preferably a linear or branched alkyl group having 1 to 4 carbon atoms.
  • R 1 and R 2 are alkoxy groups having 1 to 8 carbon atoms, the alkoxy group is preferably a linear or branched alkoxy group having 1 to 4 carbon atoms. Examples include methoxy group, ethoxy group, n-propoxy group, isopropoxy group and the like.
  • Such an alkoxy group may have a substituent such as a phenyl group or an alkoxy group, for example, within a range not impairing the effects of the present application.
  • Preferred R 1 and R 2 are methyl groups.
  • m is 0, 1, 2, or 3, Preferably it is 0, 1 or 2, Especially preferably, it is 0 or 1.
  • n is 0, 1 or 2, Preferably it is 0 or 1, Especially preferably, it is 0.
  • the “—O—R—OH” group substituted for the phenyl group directly bonded to the 3-position carbon atom of the indoline skeleton and the substitution position of R 1 are first described as “
  • the —O—R—OH ”group is preferably substituted at the 4-position or 2-position with respect to the phenyl carbon atom directly bonded to the 3-position carbon atom of the indoline skeleton, more preferably at the 4-position.
  • R 1 is preferably substituted at the o-position or the p-position with respect to the “—O—R—OH” group, and is a phenyl carbon atom directly bonded to the 3-position carbon atom of the indoline skeleton.
  • the “—O—R—OH” group when the “—O—R—OH” group is substituted at the 4-position, it is preferably substituted at the 3-position or the 5-position, and the “—O—R—OH” group is substituted at the 2-position. When it is, it is preferable to substitute at the 3-position or 5-position.
  • the substitution position of R 1 is the 4-position of the “—O—R—OH” group with respect to the phenyl carbon atom directly bonded to the 3-position carbon atom of the indoline skeleton, or R 1 is substituted on 3-position and 5-position "-O-R-OH” group is 4-position, it is preferred that R 1 is substituted on the 2- and 5-positions.
  • R 1 is the 4-position of the “—O—R—OH” group with respect to the phenyl carbon atom directly bonded to the 3-position carbon atom of the indoline skeleton, R 1 is preferably substituted at the 2-position, 3-position and 5-position.
  • the dihydroxy compound represented by the general formula (1) is preferably represented by the following general formula (3).
  • R 2 and n are the same as those in formula (1), and R 3 each independently represents a hydrogen atom, an alkyl group having 1 to 8 carbon atoms or an alkoxy group having 1 to 8 carbon atoms.
  • each R 4 independently represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms, provided that the total number of carbon atoms of R 4 substituted for each hydroxyethoxy group is 4 or less.
  • preferred examples and specific examples relating to R 2 and n are the same as those in the general formula (1).
  • R 3 is an alkyl group having 1 to 8 carbon atoms or an alkoxy group having 1 to 8 carbon atoms
  • preferred examples and specific examples thereof are represented by the general formula (1 ) Is the same as when R 1 is an alkyl group having 1 to 8 carbon atoms or an alkoxy group having 1 to 8 carbon atoms.
  • R 3 is more preferably a hydrogen atom or a methyl group.
  • At least one of R 3 at the 3-position and the 5-position is preferably a hydrogen atom with respect to the phenyl carbon atom directly bonded to the 3-position carbon atom of the indoline skeleton
  • R 3 in the 2nd and 5th positions is preferably a hydrogen atom with respect to a phenyl carbon atom directly bonded to the 3rd carbon atom of the indoline skeleton
  • all R 3 are preferably hydrogen atoms.
  • R 4 is an alkyl group having 1 to 4 carbon atoms, specific examples include a methyl group, an ethyl group, an n-propyl group, and the like.
  • R 4 is particularly preferably a hydrogen atom or a methyl group.
  • dihydroxy compound represented by the general formula (1) of the present invention examples include 3,3-bis (4- (2-hydroxyethoxy) phenyl) -1-phenyl-1H-indole-2- on 3,3-bis (4- (2-hydroxy-2-methylethoxy) phenyl) -1-phenyl-1H-indol-2-one 3,3-bis (4- (2-hydroxy-1-methylethoxy) Phenyl) -1-phenyl-1H-indol-2-one 3,3-bis (4- (2-hydroxyethoxy) -3-methylphenyl) -1-phenyl-1H-indole-2-one 3,3- Bis (3-ethyl-4- (2-hydroxyethoxy) phenyl) -1-phenyl-1H-indol-2-one 3,3-bis (4- (2-hydroxyethoxy) -3,5-dimethylphenyl) -1-phenyl-1H-indole-2-one 3,3-bis (4- (2-hydroxyethoxy)
  • the production method of the dihydroxy compound represented by the general formula (1) of the present invention is not particularly limited.
  • the N-phenylisatin compound represented by the following general formula (5) and the following general formula It can be obtained by using a phenoxy alcohol compound represented by the formula (6) as a raw material and reacting them in the presence of an acid catalyst.
  • the raw material N-phenylisatin compound of the above production method is represented by the following general formula (5).
  • R 2 and n are the same as those in the general formula (1).
  • Preferred examples and specific examples of R 2 and n are the same as those in the general formula (1).
  • N-phenylisatin compound represented by the general formula (5) examples include 1-phenyl-1H-indole-2,3-dione 1- (4-methylphenyl)- Examples thereof include 1H-indole-2,3-dione 1- (2-methylphenyl) -1H-indole-2,3-dione 1- (4-methoxyphenyl) -1H-indole-2,3-dione.
  • the raw material phenoxy alcohol compound of the above-mentioned manufacturing method is represented by the following general formula (6).
  • R, R 1 and m are the same as those in the general formula (1).
  • Preferred examples and specific examples relating to R, R 1 and m are also the same as those in the general formula (1).
  • a phenoxy alcohol compound represented by the general formula (6) a compound represented by the general formula (7) is preferable.
  • R 3 and R 4 are the same as those in the general formula (3).
  • Preferred examples and specific examples relating to R 3 and R 4 are also the same as those in the general formula (3).
  • Specific examples of the compound represented by the general formula (7) include 2-phenoxyethanol 2-phenoxypropanol 1-phenoxy-2-propanol 2- (2-methylphenoxy) ethanol 2- (2 -Ethylphenoxy) ethanol 2- (2,6-dimethylphenoxy) ethanol 2- (2,5-dimethylphenoxy) ethanol 2- (2,3,6-trimethylphenoxy) ethanol and the like.
  • the manufacturing method of the dihydroxy compound of this invention is not specifically limited, As an example of the preferable manufacturing method for obtaining the more preferable dihydroxy compound (1EO body and 3EO body are not included) of this invention, it represents with General formula (5).
  • the dihydroxy compound represented by the general formula (1) having an indoline skeleton is produced by reacting the N-phenylisatin compound produced with the phenoxy alcohol compound represented by the general formula (6) or (7).
  • the method of performing will be described in detail.
  • the condensation reaction is carried out by reacting the above N-phenylisatin compound with a phenoxy alcohol compound, usually in the presence of an acid catalyst.
  • the charged molar ratio of the phenoxy alcohol compound to the N-phenylisatin compound is not particularly limited as long as it is the theoretical value (2.0) or more, but preferably 3.0 times the molar amount or more, More preferably, it is used in the range of 3.5 to 20 times the molar amount, particularly preferably in the range of 4.0 to 15 times the molar amount.
  • the acid catalyst examples include hydrochloric acid, hydrogen chloride gas, 60-98% sulfuric acid, 85% phosphoric acid and other inorganic acids, p-toluenesulfonic acid, methanesulfonic acid, oxalic acid, formic acid, trichloroacetic acid, trifluoroacetic acid, etc.
  • Hydrogen chloride gas is preferred. The amount of such an acid catalyst used varies depending on the reaction conditions.
  • the hydrogen chloride gas concentration in the gas phase in the reaction vessel is preferably 75 to 100% by volume, and the hydrogen chloride concentration in the reaction solution is preferably saturated.
  • 35% hydrochloric acid it is used in the range of 5 to 70 parts by weight, preferably in the range of 10 to 40 parts by weight, more preferably in the range of 20 to 30 parts by weight with respect to 100 parts by weight of the phenoxy alcohol compound.
  • thiols examples include alkyl mercaptans and mercaptocarboxylic acids, preferably alkyl mercaptans having 1 to 12 carbon atoms and mercaptocarboxylic acids having 1 to 12 carbon atoms, such as methyl mercaptan.
  • alkali metal salts such as ethyl mercaptan, n-octyl mercaptan, n-lauryl mercaptan, and sodium salts thereof, thioacetic acid, thioglycolic acid, ⁇ -mercaptopropionic acid, and the like.
  • these can be used individually or in combination of 2 or more types.
  • the amount of thiols used as a co-catalyst is usually in the range of 0.5 to 20 mol%, preferably in the range of 2 to 10 mol%, relative to the starting N-phenylisatin compound.
  • the reaction solvent As the reaction solvent, the starting N-phenylisatin compound and the phenoxyalcohol compound have a low melting point, and if there is no problem in operability, it is not necessary to use a solvent. It may be used for reasons such as improving the reaction rate.
  • the reaction solvent is not particularly limited as long as it does not distill from the reactor at the reaction temperature and is inert to the reaction.
  • aromatic hydrocarbons such as toluene and xylene, methanol, n-propyl alcohol, isobutyl alcohol, etc.
  • aliphatic alcohols such as hexane, heptane and cyclohexane, carboxylic acid esters such as ethyl acetate and butyl acetate, and mixtures thereof. Of these, aliphatic alcohols are preferably used.
  • a small amount of water may be added as necessary.
  • the acid catalyst is hydrogen chloride gas
  • water is preferable for promoting the absorption of hydrogen chloride gas by the catalyst.
  • the addition amount is preferably in the range of 0.5 to 15.0 parts by weight with respect to 100 parts by weight of the phenoxy alcohol compound.
  • reaction temperature varies depending on the conditions of the catalyst used, for example, when hydrogen chloride gas is used as the catalyst, the range of 20 to 70 ° C. is preferable, and the range of 30 to 60 ° C. is more preferable.
  • the reaction pressure is usually carried out under normal pressure, but depending on the boiling point of the organic solvent that may be used, the reaction may be carried out under pressure or reduced pressure so that the reaction temperature falls within the above range. If the reaction is carried out under such conditions, the reaction is usually completed in about 1 to 30 hours.
  • the end point of the reaction can be confirmed by liquid chromatography or gas chromatography analysis.
  • the end point of the reaction is preferably the point at which the unreacted N-phenylisatin compound disappears and no increase in the desired product is observed.
  • the reaction yield based on the phenoxy alcohol compound is usually about 75 to 95 mol%.
  • the resulting reaction mixture is added with an alkaline solution such as aqueous ammonia or aqueous sodium hydroxide solution to neutralize the acid catalyst, and contains the dihydroxy compound represented by the general formula (1) according to the present invention.
  • a reaction mixture is obtained.
  • water washing treatment is performed to add water and an insoluble organic solvent to the water and sufficiently stir to separate the oil layer. Do.
  • the organic solvent used at this time it is necessary to dissolve the dihydroxy compound of the general formula (1) and to have a low solubility in water.
  • an aromatic hydrocarbon such as toluene or xylene, an aliphatic hydrocarbon such as cyclohexane or n-heptane, an aliphatic ketone such as methyl isobutyl ketone, or an alcohol solvent such as butanol is employed.
  • the organic solvent layer obtained after the neutralization and washing with water is partially removed by distillation, if necessary, and then the organic solvent layer is heated as it is or once to a uniform solution, cooled, or appropriately When crystals are precipitated by adding a crystallization solvent or a poor solvent and cooling, a crude or high-purity target product can be obtained by filtering the crystals.
  • the target product obtained above can be further purified by recrystallization using a solvent.
  • Organic solvents used at this time include aromatic hydrocarbon solvents such as toluene, xylene and mesitylene, ketone solvents such as acetone, methyl ethyl ketone, methyl isobutyl ketone and cyclohexanone, ester solvents such as ethyl acetate and butyl acetate, and alcohols such as butanol.
  • a solvent is mentioned, These can be used individually or in mixture of 2 or more types. Instead of the above crystallization operation, after completion of the reaction, the reaction solvent and the like are concentrated under reduced pressure, and the residue is purified by column chromatography or the like to obtain a high purity product.
  • the dihydroxy compound represented by the general formula (1) may contain, a 1EO body (monohydroxyalkoxy body) represented by the following general formula (8), and the following general formula (9) And a multi-EO body represented by the formula (a compound in which the hydroxy group of the hydroxyalkoxy group is further substituted with a hydroxyalkoxy group).
  • a method of reacting the N-phenylisatin compound represented by the general formula (5) with the phenoxy alcohol compound represented by the general formula (6) or the general formula (7) which is the above-described production method.
  • the 1EO body represented by the following general formula (8), the multi-EO body represented by the following general formula (9) and the 3EO body represented by the following general formula (10) do not contain impurities. It is possible to produce a dihydroxy compound represented by the formula (1).
  • the above 1EO body is represented by the following general formula (8). (In the formula, R, R 1 , R 2 , m and n are the same as those in the general formula (1).) Preferred examples and specific examples relating to R, R 1 , R 2 , m, and n are the same as those in the general formula (1).
  • the above multi-EO body is represented by the following general formula (9).
  • R, R 1 , R 2 , m, and n are the same as those in the general formula (1), and k each independently represents an integer of 1 to 5, provided that k is 1 at the same time. except for.)
  • Preferred examples and specific examples relating to R, R 1 , R 2 , m, and n are the same as those in the general formula (1).
  • the 3EO body which is a compound more likely to be contained in the multi-EO body represented by the general formula (9) is represented by the following general formula (10).
  • R, R 1 , R 2 , m and n are the same as those in the general formula (1).
  • Preferred examples and specific examples relating to R, R 1 , R 2 , m, and n are the same as those in the general formula (1).
  • the purity of the dihydroxy compound represented by the general formula (1) of the present invention and the amount of impurities contained are not particularly limited, but the following range calculated from area% by high performance liquid chromatography is preferred.
  • the purity of the dihydroxy compound represented by the general formula (1) of the present invention is preferably 97.5% or more, more preferably 98.0% or more, still more preferably 98.5% or more, and particularly preferably 99.0. % Or more.
  • the content of 1EO is preferably 0.5% or less, more preferably 0.3% or less, still more preferably 0.1% or less, and particularly preferably substantially free (below the detection limit).
  • the content of the multi-EO body is preferably 1.5% or less, more preferably 1.0% or less, further preferably 0.5% or less, particularly preferably 0.1% or less, and most preferably substantially contained. No (below detection limit).
  • the content of 3EO bodies is preferably 1.5% or less, more preferably 1.0% or less, still more preferably 0.5% or less, particularly preferably 0.1% or less, and most preferably It is not substantially contained (below the detection limit).
  • the polycarbonate is represented by the following general formula (2).
  • R represents an alkylene group having 2 to 6 carbon atoms
  • R 1 and R 2 each independently represents an alkyl group having 1 to 8 carbon atoms or an alkoxy group having 1 to 8 carbon atoms
  • m represents an integer of 0 to 3
  • n represents an integer of 0 to 2, provided that when m is 2 or more, R 1 may be the same or different.
  • R 2 is the same But it may be different.
  • R 2 and n are the same as those in the general formula (1), and R 3 and R 4 are the same as those in the general formula (3).
  • Preferred examples and specific examples relating to R 2 and n are the same as those in the general formula (1), and preferred examples and specific examples relating to R 3 and R 4 are the same as those in the general formula (3).
  • the polycarbonate containing the repeating unit represented by the general formula (2) is not particularly limited as to its production method, and any conventionally known method can be used. Specific examples include an interfacial polymerization method, a melt transesterification method, a solid phase polymerization method, a ring-opening polymerization method of a cyclic carbonate compound, a pyridine method, etc. Among them, interfacial weight using a dihydroxy compound and a carbonate precursor as raw materials. A combined method and a melt transesterification method are preferable, and it is particularly preferable to produce a dihydroxy compound represented by the general formula (1) and a carbonate such as diphenyl carbonate by a melt transesterification reaction in the presence of a transesterification catalyst.
  • the dihydroxy compound used as a raw material of the polycarbonate containing the repeating unit represented by the general formula (2) is, for example, other than the dihydroxy compound represented by the general formula (1) as long as the effects of the present invention are not hindered.
  • Other dihydroxy compounds such as bisphenol A can also be used as a copolymer raw material.
  • the ratio of the dihydroxy compound copolymer raw material other than the dihydroxy compound represented by the general formula (1) mainly used in all dihydroxy compounds is not particularly limited as long as the effect of the present invention is not hindered.
  • melt transesterification method for producing a polycarbonate containing the repeating unit represented by the general formula (2) by melt polycondensation will be described in more detail.
  • a conventionally known method can be used as the melt transesterification method.
  • the starting dihydroxy compound is 3,3-bis (4- (2-hydroxyethoxy) phenyl) -1-phenyl-1H-indol-2-one and the starting carbonic acid diester is diphenyl carbonate
  • the reaction for obtaining the group polycarbonate is shown by the following reaction formula.
  • the melt transesterification reaction is performed by stirring the dihydroxy compound and the carbonic acid diester in the presence of a catalyst while heating the carbonic acid diester and an atmospheric pressure or a reduced pressure inert gas atmosphere to distill the produced phenol.
  • the carbonic acid diester to be reacted with the dihydroxy compound include, for example, diaryl carbonates such as diphenyl carbonate, ditolyl carbonate, and bis (m-cresyl) carbonate, dialkyl carbonates such as dimethyl carbonate, diethyl carbonate, and dicyclohexyl carbonate, and methyl.
  • diaryl carbonates such as diphenyl carbonate, ditolyl carbonate, and bis (m-cresyl) carbonate
  • dialkyl carbonates such as dimethyl carbonate, diethyl carbonate, and dicyclohexyl carbonate, and methyl.
  • alkylaryl carbonates such as phenyl carbonate, ethylphenyl carbonate and cyclohexyl phenyl carbonate
  • dialkenyl carbonates such as divinyl carbonate, diisopropenyl carbonate and dipropenyl carbonate.
  • Diaryl carbonate is preferred, and diphenyl carbonate is particularly preferred.
  • the aromatic polycarbonate which adjusted the desired molecular weight and the amount of terminal hydroxyl groups can be obtained by adjusting the mixing ratio of a dihydroxy compound and carbonic acid diester, and the pressure reduction degree at the time of transesterification.
  • the carbonic acid diester is usually used in an amount of 0.5 to 1.5 moles, preferably 0.6 to 1.2 moles per mole of the dihydroxy compound.
  • a transesterification catalyst is used as necessary to increase the reaction rate.
  • the transesterification catalyst is not particularly limited, and examples thereof include inorganic alkali metal compounds such as lithium, sodium and cesium hydroxides, carbonates and hydrogen carbonate compounds, and alkali alkali compounds such as alcoholates and organic carboxylates.
  • Metal compounds hydroxides such as beryllium and magnesium, inorganic alkaline earth metal compounds such as carbonates, alkaline earth metal compounds such as organic alkaline earth metal compounds such as alcoholates and organic carboxylates; tetramethylboron and tetraethyl Basic boron compounds such as sodium salts such as boron and butyltriphenylboron, calcium salts and magnesium salts; trivalent phosphorus compounds such as triethylphosphine and tri-n-propylphosphine; or 4 derived from these compounds Basic phosphorus compounds such as quaternary phosphonium salts; Use a known transesterification catalyst such as basic ammonium compounds such as lamethylammonium hydroxide, tetra
  • the amount of the catalyst used is within a range where the catalyst residue does not cause a problem in the quality of the produced polycarbonate, and since the preferred addition amount varies depending on the type of catalyst, it cannot be said unconditionally, for example, the general formula ( The amount is usually 0.05 to 100 ⁇ mol, preferably 0.08 to 50 ⁇ mol, more preferably 0.1 to 20 ⁇ mol, still more preferably 0.1 to 5 ⁇ mol with respect to 1 mol of the dihydroxy compound represented by 1). is there.
  • the catalyst may be added as it is, or may be added after being dissolved in a solvent.
  • the temperature is usually in the range of 120 to 360 ° C, preferably in the range of 150 to 280 ° C, more preferably in the range of 180 to 270 ° C. If the reaction temperature is too low, the transesterification reaction does not proceed, and if the reaction temperature is high, side reactions such as a decomposition reaction proceed.
  • the reaction is preferably carried out under reduced pressure, and the reaction pressure is preferably a pressure at which the diester carbonate as a raw material does not distill out of the system at the reaction temperature and phenol by-produced distills. Under such reaction conditions, the reaction is usually completed in about 0.5 to 10 hours.
  • the reaction product containing polycarbonate obtained in this way is then subjected to a separation reduction treatment of low molecular weight components as necessary, and then subjected to a drying step, thereby being represented by the general formula (2).
  • a polycarbonate containing repeating units is obtained.
  • the reaction-finished product containing polycarbonate obtained by the reaction step is usually a transparent viscous material in a molten state near the reaction temperature, and is a solid body near normal temperature.
  • the low molecular weight component separation and reduction treatment that may be performed as needed is, for example, as disclosed in JP-A-7-192310, in which polycarbonate is dissolved in an appropriate good solvent, and then the polycarbonate is dissolved in a poor solvent such as methanol.
  • the above-mentioned aromatic polycarbonate having a reduced molecular weight component such as particles, powders, and flakes
  • prepolymerization is performed in the reaction as described in JP-A-3-223330 and WO00 / 18822 (first step) to obtain a polycarbonate oligomer.
  • a high molecular weight polycarbonate can be obtained by solid phase polymerization or swelling solid phase polymerization in the presence of a catalyst (second step).
  • the prepolymerization in the first step is carried out by a melt transesterification reaction, and a dihydroxy compound and diphenyl carbonate are distilled at a temperature of 120 to 360 ° C., preferably 150 to 280 ° C., particularly preferably while distilling phenol in the presence of a catalyst.
  • a polycarbonate oligomer is obtained by reacting at 180 to 270 ° C. for 0.5 to 10 hours.
  • the polycarbonate oligomer obtained in the first step is preferably made into a solid body such as flakes, powders or particles according to a known method from the viewpoint of operability in the second step.
  • the above-described transesterification catalyst such as a quaternary phosphonium salt
  • the above-described transesterification catalyst is optionally added to the polycarbonate oligomer obtained in the first step as necessary under reduced pressure, and an inert gas is introduced.
  • an inert gas is introduced.
  • a molecular weight polycarbonate is obtained.
  • the reaction in the first step and the reaction in the second step may be performed separately or continuously.
  • the polycarbonate oligomer usually has a weight average molecular weight of, for example, about 500 to 15,000.
  • the high molecular weight polycarbonate usually has a weight average molecular weight of, for example, about 15000 to 100,000.
  • the polycarbonate using the dihydroxy compound of the present invention as a raw material is not limited to such a molecular weight.
  • the polycarbonate obtained as described above is a high molecular weight polycarbonate, which is excellent in transparency, heat resistance, mechanical properties, impact resistance, fluidity, etc., and optical lenses and flat panel displays used in optical disks, smartphones, etc. It can be expected to be used in various fields such as optical applications such as optical films, and automotive plastics, electrical / electronics, and various containers as engineering plastics.
  • Polycarbonate oligomers can be used not only as raw materials for producing high molecular weight polycarbonate by various polymerization methods, but also as surface modifiers, flame retardants, ultraviolet absorbers, fluidity modifiers, plasticizers. Also, it can be widely used as additives such as polymer modifiers such as resin alloy solubilizers. Furthermore, as other uses, the dihydroxy compound of the present invention uses an epoxy resin, an oxetane resin, an acrylic resin, a polyester, a polyarylate, a polyether ether ketone, a polysulfone, in addition to a polycarbonate, using a terminal hydroxy group.
  • a resin raw material such as novolak and resol
  • other photosensitive composition raw materials such as resist additives, developers, and antioxidants
  • it can be expected to be used as an acrylic monomer or acrylic resin raw material such as diacrylate obtained by reacting the dihydroxy compound of the present invention with acrylic acid or the like, and as an optical hard coating material using them.
  • Refractive index measuring device Refractometer RA-500N manufactured by Kyoto Electronics Industry Co., Ltd. Measuring method: A THF solution (THF refractive index of 1.40) having a concentration of 10, 15, or 30% was adjusted, and the refractive index of the measurement compound was calculated from the refractive index of the solution by extrapolation. 3.
  • Purity measurement device CLASS-LC10 manufactured by Shimadzu Corporation Pump: LC-10ATvp Column oven: CTO-10Avp Detector: SPD-10Avp Column: Shim-pack CLC-ODS inner diameter 6mm, length 150mm Oven temperature: 50 ° C Flow rate: 1.0ml / min Mobile phase: (A) Methanol, (B) 0.2 vol% acetic acid water Gradient condition: (A) Volume% (time from the start of analysis) 60% (0min) ⁇ 60% (20min) ⁇ 100% (40min) ⁇ 100% (50min) Sample injection volume: 20 ⁇ l Detection wavelength: 280nm
  • Example 1 Production of 3,3-bis (4- (2-hydroxyethoxy) phenyl) -1-phenyl-1H-indol-2-one
  • 2-phenoxyethanol 331 .2 g (2.40 mol) and 14.6-phenyl-1H-indole-2,3-dione (44.6 g, 0.20 mol) were charged, the reaction vessel was purged with nitrogen, and hydrogen chloride gas was blown at 40 ° C.
  • the hydrogen chloride gas concentration in the gas phase was set to 95% or more.
  • the obtained oil layer was heated to 160 ° C., the solvent was removed by distillation under a reduced pressure of 1.0 kPa, then cooled, 582.2 g of toluene was added at 110 ° C., and 72.3 g of methanol at 70 ° C. Was added. Thereafter, the mixture was cooled to 30 ° C., and the precipitated crystals were separated by filtration to obtain 61.4 g of crude crystals as white crystals. After adding 226.5 g of 1-butanol to 55.5 g of the obtained crude crystals and dissolving at 110 ° C., 112.7 g of 1-butanol was removed by distillation under normal pressure, then cooled to 30 ° C. and precipitated.
  • Step 1 Production of 3,3-bis (4- (2-hydroxyethoxy) phenyl) -2-phenylphthalimidine (Step 1)
  • a four-necked flask equipped with a thermometer, a stirrer, and a condenser tube was charged with 902.5 g (9.70 mol) of aniline, and after the reaction vessel was purged with nitrogen, 192.7 g of methanesulfonic acid was maintained at 85 to 95 ° C. Was dropped into the system.
  • 385.4 g (1.21 mol) of phenolphthalein was added at 90 to 100 ° C., and after completion of the addition, the mixture was stirred for 21.5 hours while maintaining 147 to 153 ° C.
  • Step 2 Purity 99.6% (high performance liquid chromatography) Yield 75% (vs. phenolphthalein) Melting point 291.5 ° C (differential scanning calorimetry) (Process 2) 30.0 g (0.076 mol) of 3,3-bis (4-hydroxyphenyl) -2-phenylphthalimidine obtained in Step 1 was added to a four-necked flask equipped with a thermometer, a stirrer and a condenser. 19.5 g (0.22 mol) of ethylene carbonate, 0.44 g of 48% potassium hydroxide aqueous solution (0.0038 mol as potassium hydroxide) and 45.0 g of 1-butanol were charged, and the reaction vessel was purged with nitrogen.
  • 3,3-bis (4- (2-hydroxyethoxy) phenyl) -2-phenylphthalimidine obtained in Step 2 of Comparative Example 1 is an 1EO compound represented by the following general formula (12), which is an impurity And a 3EO body represented by the following general formula (13).
  • the 1EO body in Comparative Example 1 is represented by the general formula (12).
  • the 3EO body in Comparative Example 1 is represented by the general formula (13).
  • the production method of Step 2 of Comparative Example 1 cannot avoid the production of 1EO body represented by the general formula (12) and 3EO body represented by the general formula (13), and these impurities are industrially used in the purification process.
  • Table 1 shows the melting point, softening point, and refractive index of the compound obtained in Example 1 and the compound obtained in Step 2 of Comparative Example 1.
  • Example 1 of the present invention Since the compound of Example 1 of the present invention has higher heat resistance (softening point temperature) and higher refractive index than the known compound of Step 2 of Comparative Example 1, it is used for optical materials. It is useful as a raw material for polycarbonate.
  • Example 1 The experimental results of Example 1 and Comparative Example 2 of the present invention show that 1-phenyl-1H-indole-2,3-dione reacts with 2-phenoxyethanol to produce 3,3-bis (4- (2-hydroxyethoxy) (Phenyl) -1-phenyl-1H-indol-2-one is produced (Example 1), whereas N-phenylphthalimide does not undergo a condensation reaction with 2-phenoxyethanol under the same reaction conditions. This shows that -bis (4- (2-hydroxyethoxy) phenyl) -2-phenylphthalimidine is not produced (Comparative Example 2).
  • Comparative Example 3 shows that in the condensation reaction of N-phenylphthalimide and 2-phenoxyethanol, even when phosphotungstic acid was used as a catalyst, the reaction did not proceed and 3,3-bis (4- (2 This shows that -hydroxyethoxy) phenyl) -2-phenylphthalimidine is not produced (Comparative Example 3). That is, it is clear that the N-phenylisatin compound represented by the general formula (5) has extremely high reactivity with the phenoxy alcohol represented by the general formula (6) as compared with the N-phenylphthalimide compound. became.
  • the N-phenylisatin compound represented by the general formula (5) contains a conventionally known compound because the reaction with the phenoxy alcohol represented by the general formula (6) easily proceeds due to its unique chemical structure. It is represented by high-purity general formula (1) that does not contain impurities such as a hydroxyalkoxy compound (1EO form) or a compound in which the hydroxy group of the hydroxyalkoxy group is further substituted with a hydroxyalkoxy group (multi-EO form). It becomes possible to obtain a dihydroxy compound. Since the dihydroxy compound represented by the general formula (1) of the present invention is highly pure, it is excellent in optical properties such as thermal stability and product hue.
  • the polycarbonate using the dihydroxy compound of the present invention as a raw material uses the dihydroxy compound represented by the general formula (1) having a high purity as a raw material monomer, it may have a high purity, a high heat resistance, and a high refractive index. Expected to be particularly effective in polycarbonate for optical materials.

Abstract

The present invention addresses the problem of providing a novel dihydroxy compound having an indoline skeleton that has high heat resistance and a high refractive index. Provided as a solution is a dihydroxy compound represented by general formula (1) (in the formula, R represents a C2-6 alkylene group, R1 and R2 each independently represent a C1-8 alkyl group or C1-8 alkoxy group, m represents an integer of 0-3, and n represents an integer of 0-2; however, when m is 2 or higher, R1 may be the same or different, and when n is 2, R2 may be the same or different).

Description

新規なジヒドロキシ化合物Novel dihydroxy compounds
 本発明は、新規なジヒドロキシ化合物に関する。詳しくは、芳香族ポリカーボネートオリゴマー乃至樹脂等原料として好適な、インドリン骨格を有するジヒドロキシ化合物に関する。 The present invention relates to a novel dihydroxy compound. Specifically, the present invention relates to a dihydroxy compound having an indoline skeleton, which is suitable as a raw material for aromatic polycarbonate oligomers and resins.
 従来、ビスフェノキシアルコール類(ビスフェノール類のヒドロキシ基の水素原子をヒドロキシアルキル基に置換した化合物)は、ポリカーボネート樹脂等の熱可塑性合成樹脂原料、エポキシ樹脂等の熱硬化性樹脂原料、酸化防止剤原料、感熱記録体原料、感光性レジスト原料などの用途で用いられており、近年、これらのビスフェノキシアルコール類に要求される性能はますます高度化している。
 また、ビスフェノキシアルコール類としては、イソインドリン骨格を持つ3,3-ビス(4-(2-ヒドロキシエトキシ)フェニル)-2-フェニルフタルイミジンが知られている(非特許文献1)。しかし該化合物は、耐熱性や光学特性等が十分ではなく、さらなる改良が求められている。
 ビスフェノキシアルコール類の製造方法としては、ビスフェノール化合物とアルキレンカーボネート類やアルキレンオキシド類を反応させて製造する方法が知られているが、この方法では、不純物として、モノヒドロキシアルコキシ体や、目的物のビスフェノキシアルコール類がアルキレンカーボネート類やアルキレンオキシド類と更に反応し、ヒドロキシアルコキシ基のヒドロキシ基が更にヒドロキシアルコキシ基に置換した化合物が生成してしまい、反応選択率が低くなる。また、芳香族性水酸基を有する原料や中間体が存在するため、得られる化合物は着色があり、熱安定性も悪いため、光学用途として使用するには繰り返し精製が必要となり、工業的に不利である。
Conventionally, bisphenoxy alcohols (compounds in which the hydrogen atom of the hydroxy group of bisphenol is substituted with a hydroxyalkyl group) are thermoplastic synthetic resin raw materials such as polycarbonate resins, thermosetting resin raw materials such as epoxy resins, and antioxidant raw materials. In recent years, the performance required for these bisphenoxy alcohols has become increasingly sophisticated.
As bisphenoxy alcohols, 3,3-bis (4- (2-hydroxyethoxy) phenyl) -2-phenylphthalimidine having an isoindoline skeleton is known (Non-patent Document 1). However, the compound has insufficient heat resistance and optical characteristics, and further improvement is required.
As a method for producing bisphenoxy alcohols, there is known a method in which a bisphenol compound is reacted with an alkylene carbonate or an alkylene oxide. In this method, as a impurity, a monohydroxyalkoxy compound or a target product is produced. Bisphenoxy alcohols further react with alkylene carbonates and alkylene oxides to produce a compound in which the hydroxy group of the hydroxyalkoxy group is further substituted with a hydroxyalkoxy group, resulting in a low reaction selectivity. In addition, since there are raw materials and intermediates having an aromatic hydroxyl group, the resulting compound is colored and has poor thermal stability, so it must be repeatedly purified for use as an optical application, which is industrially disadvantageous. is there.
 本発明は、上述した事情を背景としてなされたものであって、高耐熱性、高屈折率であるインドリン骨格を有する新規なジヒドロキシ化合物を提供することを課題とする。 The present invention has been made against the background described above, and an object of the present invention is to provide a novel dihydroxy compound having an indoline skeleton having high heat resistance and high refractive index.
 本発明者らは、上述の課題解決のために鋭意検討した結果、インドリン骨格を持つ本発明のジヒドロキシ化合物が高耐熱性、高屈折率等光学特性に優れていることを見出し、本発明を完成した。 As a result of intensive studies for solving the above-mentioned problems, the present inventors have found that the dihydroxy compound of the present invention having an indoline skeleton is excellent in optical properties such as high heat resistance and high refractive index, and completed the present invention. did.
 本発明は以下の通りである。
1.下記一般式(1)で表されるジヒドロキシ化合物。
Figure JPOXMLDOC01-appb-C000002
(式中、Rは炭素原子数2~6のアルキレン基を示し、R、Rは各々独立して炭素原子数1~8のアルキル基又は炭素原子数1~8のアルコキシ基を示し、mは0~3の整数を示し、nは0~2の整数を示し、ただし、mが2以上の場合、Rは同一でも異なっていてもよく、nが2の場合、Rは同一でも異なっていてもよい。)
The present invention is as follows.
1. A dihydroxy compound represented by the following general formula (1).
Figure JPOXMLDOC01-appb-C000002
(Wherein R represents an alkylene group having 2 to 6 carbon atoms, R 1 and R 2 each independently represents an alkyl group having 1 to 8 carbon atoms or an alkoxy group having 1 to 8 carbon atoms, m represents an integer of 0 to 3, n represents an integer of 0 to 2, provided that when m is 2 or more, R 1 may be the same or different. When n is 2, R 2 is the same But it may be different.)
 本発明によるジヒドロキシ化合物は、高耐熱性であり、しかも高屈折率を有しているため、光学材料用途のポリカーボネート原料として優れた効果が期待できる。しかも、本発明によるジヒドロキシ化合物は、モノヒドロキシアルコキシ体(1EO体と呼ぶことがある)や、ヒドロキシアルコキシ基のヒドロキシ基が更にヒドロキシアルコキシ基に置換した化合物(多EO体と呼ぶことがある)を含有せず高純度であるため、熱安定性、製品色相等の光学特性に優れている。
 さらに、本発明のジヒドロキシ化合物を原料モノマーとしたポリカーボネートは、原料モノマーが不純物であるモノヒドロキシアルコキシ体(1EO体)や、ヒドロキシアルコキシ基のヒドロキシ基が更にヒドロキシアルコキシ基に置換した化合物(多EO体)を含有しないため高純度で、高耐熱性、高屈折率を有することが期待され、特に光学材料用ポリカーボネートにおいて優れた効果が期待される。
Since the dihydroxy compound according to the present invention has high heat resistance and a high refractive index, an excellent effect as a polycarbonate raw material for optical materials can be expected. Moreover, the dihydroxy compound according to the present invention is a monohydroxyalkoxy compound (sometimes referred to as 1EO form) or a compound in which the hydroxy group of the hydroxyalkoxy group is further substituted with a hydroxyalkoxy group (sometimes referred to as multi-EO form). High purity without containing, and excellent optical properties such as thermal stability and product hue.
Furthermore, the polycarbonate using the dihydroxy compound of the present invention as a raw material monomer is a monohydroxyalkoxy compound (1EO form) in which the raw material monomer is an impurity, or a compound in which the hydroxy group of the hydroxyalkoxy group is further substituted with a hydroxyalkoxy group (multi-EO form). ), It is expected to have high purity, high heat resistance, and high refractive index, and in particular, an excellent effect is expected in polycarbonate for optical materials.
 以下、本発明を詳細に説明する。
 本発明のジヒドロキシ化合物は下記一般式(1)で表される。
Figure JPOXMLDOC01-appb-C000003
(式中、Rは炭素原子数2~6のアルキレン基を示し、R、Rは各々独立して炭素原子数1~8のアルキル基又は炭素原子数1~8のアルコキシ基を示し、mは0~3の整数を示し、nは0~2の整数を示し、ただし、mが2以上の場合、Rは同一でも異なっていてもよく、nが2の場合、Rは同一でも異なっていてもよい。)
 上記一般式(1)において、Rは各々独立して炭素原子数2~6のアルキレン基であり、アルキレン基としては、具体的には、例えば、1,2-エチレンジイル基、1,2-プロパンジイル基、1,3-プロパンジイル基、ペンタメチレン基、ヘキサメチレン基等が挙げられるが、好ましくは炭素原子数2~4の直鎖状又は分岐鎖状のアルキレン基であり、特に好ましくは炭素原子数2又は3のアルキレン基である。ここで、上記一般式(1)中の「-O-R-OH」で表されるヒドロキシアルコキシ基について説明すると、アルキレン基Rに結合したヒドロキシ基の結合位置は、エーテル基と直接結合したアルキレン基Rを構成する炭素原子(1位炭素原子)には結合しない。Rが炭素原子数3以上のアルキレン基である場合に、ヒドロキシ基の結合位置は、アルキレン基「R」の2位又は3位が好ましく、中でも2位がより好ましい。具体的には、例えば、2-ヒドロキシエトキシ基、2-ヒドロキシプロポキシ基、2-ヒドロキシ-1-メチルエトキシ基、3-ヒドロキシプロポキシ基等が挙げられる。
 R、Rは各々独立して炭素原子数1~8のアルキル基、炭素原子数1~8のアルコキシ基であり、Rが炭素原子数1~8のアルキル基である場合、アルキル基としては、好ましくは炭素原子数1~4の直鎖状、分岐鎖状のアルキル基であり、具体的には、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、イソブチル基等が挙げられる。このようなアルキル基には、本発明の効果を損なわない範囲で、例えば、フェニル基、アルコキシ基等の置換基を有していてもよい。
 また、R、Rが炭素原子数1~8のアルコキシ基である場合、アルコキシ基としては、好ましくは炭素原子数1~4の直鎖状、分岐鎖状のアルコキシ基であり、具体的には、例えば、メトキシ基、エトキシ基、n-プロポキシ基、イソプロポキシ基等が挙げられる。このようなアルコキシ基には本願の効果を損なわない範囲で、例えば、フェニル基、アルコキシ基等の置換基を有していてもよい。
 好ましいR、Rはメチル基である。
 また、上記一般式(1)において、mは0、1、2又は3であり、好ましくは0、1又は2であり、特に好ましくは0又は1である。上記一般式(1)において、nは0、1又は2であり、好ましくは0又は1であり、特に好ましくは0である。
Hereinafter, the present invention will be described in detail.
The dihydroxy compound of the present invention is represented by the following general formula (1).
Figure JPOXMLDOC01-appb-C000003
(Wherein R represents an alkylene group having 2 to 6 carbon atoms, R 1 and R 2 each independently represents an alkyl group having 1 to 8 carbon atoms or an alkoxy group having 1 to 8 carbon atoms, m represents an integer of 0 to 3, n represents an integer of 0 to 2, provided that when m is 2 or more, R 1 may be the same or different. When n is 2, R 2 is the same But it may be different.)
In the above general formula (1), each R is independently an alkylene group having 2 to 6 carbon atoms. Specific examples of the alkylene group include 1,2-ethylenediyl group, 1,2- Examples thereof include a propanediyl group, a 1,3-propanediyl group, a pentamethylene group, and a hexamethylene group, preferably a linear or branched alkylene group having 2 to 4 carbon atoms, particularly preferably. An alkylene group having 2 or 3 carbon atoms; Here, the hydroxyalkoxy group represented by “—O—R—OH” in the general formula (1) will be described. The bonding position of the hydroxy group bonded to the alkylene group R is alkylene bonded directly to the ether group. It is not bonded to the carbon atom constituting the group R (the 1st carbon atom). When R is an alkylene group having 3 or more carbon atoms, the bonding position of the hydroxy group is preferably the 2- or 3-position of the alkylene group “R”, and more preferably the 2-position. Specific examples include 2-hydroxyethoxy group, 2-hydroxypropoxy group, 2-hydroxy-1-methylethoxy group, 3-hydroxypropoxy group and the like.
R 1 and R 2 are each independently an alkyl group having 1 to 8 carbon atoms or an alkoxy group having 1 to 8 carbon atoms, and when R 1 is an alkyl group having 1 to 8 carbon atoms, Is preferably a linear or branched alkyl group having 1 to 4 carbon atoms. Specific examples include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, and an isobutyl group. Can be mentioned. Such an alkyl group may have a substituent such as a phenyl group or an alkoxy group, as long as the effects of the present invention are not impaired.
When R 1 and R 2 are alkoxy groups having 1 to 8 carbon atoms, the alkoxy group is preferably a linear or branched alkoxy group having 1 to 4 carbon atoms. Examples include methoxy group, ethoxy group, n-propoxy group, isopropoxy group and the like. Such an alkoxy group may have a substituent such as a phenyl group or an alkoxy group, for example, within a range not impairing the effects of the present application.
Preferred R 1 and R 2 are methyl groups.
Moreover, in the said General formula (1), m is 0, 1, 2, or 3, Preferably it is 0, 1 or 2, Especially preferably, it is 0 or 1. In the said General formula (1), n is 0, 1 or 2, Preferably it is 0 or 1, Especially preferably, it is 0.
 また、上記一般式(1)において、インドリン骨格の3位の炭素原子と直接結合しているフェニル基に置換する「-O-R-OH」基及びRの置換位置については、まず、「-O-R-OH」基は、インドリン骨格の3位の炭素原子と直接結合しているフェニル炭素原子に対して4位又は2位に置換することが好ましく、4位に置換することがより好ましい。
 またRは、上記「-O-R-OH」基に対してo-位又はp-位に置換することが好ましく、前記インドリン骨格の3位の炭素原子と直接結合しているフェニル炭素原子に対して、「-O-R-OH」基が4位に置換しているときは、3位又は5位に置換することが好ましく、「-O-R-OH」基が2位に置換しているときは、3位又は5位に置換することが好ましい。
 また、mが2の場合のRの置換位置は、前記インドリン骨格の3位の炭素原子と直接結合しているフェニル炭素原子に対して、「-O-R-OH」基が4位、Rが3位及び5位に置換するか又は「-O-R-OH」基が4位、Rが2位及び5位に置換することが好ましい。
 さらに、mが3の場合のRの置換位置は、前記インドリン骨格の3位の炭素原子と直接結合しているフェニル炭素原子に対して、「-O-R-OH」基が4位、Rが2位、3位及び5位に置換することが好ましい。
In the above general formula (1), the “—O—R—OH” group substituted for the phenyl group directly bonded to the 3-position carbon atom of the indoline skeleton and the substitution position of R 1 are first described as “ The —O—R—OH ”group is preferably substituted at the 4-position or 2-position with respect to the phenyl carbon atom directly bonded to the 3-position carbon atom of the indoline skeleton, more preferably at the 4-position. preferable.
R 1 is preferably substituted at the o-position or the p-position with respect to the “—O—R—OH” group, and is a phenyl carbon atom directly bonded to the 3-position carbon atom of the indoline skeleton. On the other hand, when the “—O—R—OH” group is substituted at the 4-position, it is preferably substituted at the 3-position or the 5-position, and the “—O—R—OH” group is substituted at the 2-position. When it is, it is preferable to substitute at the 3-position or 5-position.
In addition, when m is 2, the substitution position of R 1 is the 4-position of the “—O—R—OH” group with respect to the phenyl carbon atom directly bonded to the 3-position carbon atom of the indoline skeleton, or R 1 is substituted on 3-position and 5-position "-O-R-OH" group is 4-position, it is preferred that R 1 is substituted on the 2- and 5-positions.
Furthermore, when m is 3, the substitution position of R 1 is the 4-position of the “—O—R—OH” group with respect to the phenyl carbon atom directly bonded to the 3-position carbon atom of the indoline skeleton, R 1 is preferably substituted at the 2-position, 3-position and 5-position.
 従って、上記一般式(1)で表されるジヒドロキシ化合物としては、好ましくは下記一般式(3)で表される。
Figure JPOXMLDOC01-appb-C000004
(式中、R、nは一般式(1)のそれと同じであり、Rは各々独立して水素原子、炭素原子数1~8のアルキル基又は炭素原子数1~8のアルコキシ基を示し、Rは各々独立して水素原子又は炭素原子数1~4のアルキル基を示し、ただし、各々のヒドロキシエトキシ基に置換するRの炭素原子数の合計は4以下である。) 
 上記一般式(3)において、R、nに関する好ましい例や具体例は、一般式(1)のそれと同じである。
 また、上記一般式(3)において、Rが炭素原子数1~8のアルキル基又は炭素原子数1~8のアルコキシ基である場合には、その好ましい例や具体例は、一般式(1)のRが炭素原子数1~8のアルキル基又は炭素原子数1~8のアルコキシ基である場合と同じである。より好ましいRは水素原子、メチル基である。好ましい組み合わせとしては、インドリン骨格の3位の炭素原子と直接結合しているフェニル炭素原子に対して、3位及び5位のRは少なくともどちらか一方は水素原子であることが好ましく、また、インドリン骨格の3位の炭素原子と直接結合しているフェニル炭素原子に対して、2位及び5位のRは水素原子であることが好ましく、特にRはすべて水素原子であることが好ましい。
 上記一般式(3)において、Rが炭素原子数1~4のアルキル基である場合には、具体的には、例えば、メチル基、エチル基、n-プロピル基等が挙げられる。
 Rは、中でも水素原子又はメチル基が好ましい。
Therefore, the dihydroxy compound represented by the general formula (1) is preferably represented by the following general formula (3).
Figure JPOXMLDOC01-appb-C000004
Wherein R 2 and n are the same as those in formula (1), and R 3 each independently represents a hydrogen atom, an alkyl group having 1 to 8 carbon atoms or an alkoxy group having 1 to 8 carbon atoms. And each R 4 independently represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms, provided that the total number of carbon atoms of R 4 substituted for each hydroxyethoxy group is 4 or less.)
In the general formula (3), preferred examples and specific examples relating to R 2 and n are the same as those in the general formula (1).
In the general formula (3), when R 3 is an alkyl group having 1 to 8 carbon atoms or an alkoxy group having 1 to 8 carbon atoms, preferred examples and specific examples thereof are represented by the general formula (1 ) Is the same as when R 1 is an alkyl group having 1 to 8 carbon atoms or an alkoxy group having 1 to 8 carbon atoms. R 3 is more preferably a hydrogen atom or a methyl group. As a preferred combination, at least one of R 3 at the 3-position and the 5-position is preferably a hydrogen atom with respect to the phenyl carbon atom directly bonded to the 3-position carbon atom of the indoline skeleton, R 3 in the 2nd and 5th positions is preferably a hydrogen atom with respect to a phenyl carbon atom directly bonded to the 3rd carbon atom of the indoline skeleton, and in particular, all R 3 are preferably hydrogen atoms. .
In the general formula (3), when R 4 is an alkyl group having 1 to 4 carbon atoms, specific examples include a methyl group, an ethyl group, an n-propyl group, and the like.
R 4 is particularly preferably a hydrogen atom or a methyl group.
 本発明の一般式(1)で表されるジヒドロキシ化合物としては、具体的には例えば、3,3-ビス(4-(2-ヒドロキシエトキシ)フェニル)-1-フェニル-1H-インドール-2-オン
Figure JPOXMLDOC01-appb-C000005
3,3-ビス(4-(2-ヒドロキシ-2-メチルエトキシ)フェニル)-1-フェニル-1H-インドール-2-オン
3,3-ビス(4-(2-ヒドロキシ-1-メチルエトキシ)フェニル)-1-フェニル-1H-インドール-2-オン
3,3-ビス(4-(2-ヒドロキシエトキシ)-3-メチルフェニル)-1-フェニル-1H-インドール-2-オン
3,3-ビス(3-エチル-4-(2-ヒドロキシエトキシ)フェニル)-1-フェニル-1H-インドール-2-オン
3,3-ビス(4-(2-ヒドロキシエトキシ)-3,5-ジメチルフェニル)-1-フェニル-1H-インドール-2-オン
3,3-ビス(4-(2-ヒドロキシエトキシ)-2,5-ジメチルフェニル)-1-フェニル-1H-インドール-2-オン
3,3-ビス(4-(2-ヒドロキシエトキシ)-2,3,5-トリメチルフェニル)-1-フェニル-1H-インドール-2-オン
3,3-ビス(2-(2-ヒドロキシエトキシ)フェニル)-1-フェニル-1H-インドール-2-オン
3,3-ビス(2-(2-ヒドロキシエトキシ)-3-メチルフェニル)-1-フェニル-1H-インドール-2-オン
3,3-ビス(4-(2-ヒドロキシエトキシ)フェニル)-1-(4-メチルフェニル)-1H-インドール-2-オン
3,3-ビス(4-(2-ヒドロキシエトキシ)フェニル)-1-(2-メチルフェニル)-1H-インドール-2-オン
3,3-ビス(4-(2-ヒドロキシエトキシ)フェニル)-1-(4-メトキシフェニル)-1H-インドール-2-オン
等が挙げられる。
Specific examples of the dihydroxy compound represented by the general formula (1) of the present invention include 3,3-bis (4- (2-hydroxyethoxy) phenyl) -1-phenyl-1H-indole-2- on
Figure JPOXMLDOC01-appb-C000005
3,3-bis (4- (2-hydroxy-2-methylethoxy) phenyl) -1-phenyl-1H-indol-2-one 3,3-bis (4- (2-hydroxy-1-methylethoxy) Phenyl) -1-phenyl-1H-indol-2-one 3,3-bis (4- (2-hydroxyethoxy) -3-methylphenyl) -1-phenyl-1H-indole-2-one 3,3- Bis (3-ethyl-4- (2-hydroxyethoxy) phenyl) -1-phenyl-1H-indol-2-one 3,3-bis (4- (2-hydroxyethoxy) -3,5-dimethylphenyl) -1-phenyl-1H-indole-2-one 3,3-bis (4- (2-hydroxyethoxy) -2,5-dimethylphenyl) -1-phenyl-1H-indole-2-one 3,3 Bis (4- (2-hydroxyethoxy) -2,3,5-trimethylphenyl) -1-phenyl-1H-indol-2-one 3,3-bis (2- (2-hydroxyethoxy) phenyl) -1 -Phenyl-1H-indol-2-one 3,3-bis (2- (2-hydroxyethoxy) -3-methylphenyl) -1-phenyl-1H-indol-2-one 3,3-bis (4- (2-Hydroxyethoxy) phenyl) -1- (4-methylphenyl) -1H-indol-2-one 3,3-bis (4- (2-hydroxyethoxy) phenyl) -1- (2-methylphenyl) -1H-indole-2-one 3,3-bis (4- (2-hydroxyethoxy) phenyl) -1- (4-methoxyphenyl) -1H-indole-2-one and the like.
 本発明の上記一般式(1)で表されるジヒドロキシ化合物は、その製造方法については、特に制限はなく、好ましくは、下記一般式(5)で表されるN-フェニルイサチン化合物と下記一般式(6)で表されるフェノキシアルコール化合物を原料とし、これらを酸触媒の存在下に反応させることにより得ることができる。
 上述の製造方法の原料N-フェニルイサチン化合物は、下記一般式(5)で表される。
Figure JPOXMLDOC01-appb-C000006
(式中、R、nは一般式(1)のそれと同じである。)
 R、nの好ましい例や具体例も一般式(1)のそれと同じである。
 このような上記一般式(5)で表されるN-フェニルイサチン化合物としては、具体的には、例えば
1-フェニル-1H-インドール-2,3-ジオン
1-(4-メチルフェニル)-1H-インドール-2,3-ジオン
1-(2-メチルフェニル)-1H-インドール-2,3-ジオン
1-(4-メトキシフェニル)-1H-インドール-2,3-ジオン
等が挙げられる。
The production method of the dihydroxy compound represented by the general formula (1) of the present invention is not particularly limited. Preferably, the N-phenylisatin compound represented by the following general formula (5) and the following general formula It can be obtained by using a phenoxy alcohol compound represented by the formula (6) as a raw material and reacting them in the presence of an acid catalyst.
The raw material N-phenylisatin compound of the above production method is represented by the following general formula (5).
Figure JPOXMLDOC01-appb-C000006
(In the formula, R 2 and n are the same as those in the general formula (1).)
Preferred examples and specific examples of R 2 and n are the same as those in the general formula (1).
Specific examples of the N-phenylisatin compound represented by the general formula (5) include 1-phenyl-1H-indole-2,3-dione 1- (4-methylphenyl)- Examples thereof include 1H-indole-2,3-dione 1- (2-methylphenyl) -1H-indole-2,3-dione 1- (4-methoxyphenyl) -1H-indole-2,3-dione.
 また、上述の製造方法の原料フェノキシアルコール化合物は、下記一般式(6)で表される。
Figure JPOXMLDOC01-appb-C000007
(式中、R、R、mは一般式(1)のそれと同じである。)
 R、R、mに関する好ましい例や具体例も一般式(1)のそれと同じである。
 このような上記一般式(6)で表されるフェノキシアルコール化合物としては、一般式(7)で表される化合物が好ましい。
Figure JPOXMLDOC01-appb-C000008
(式中、R、Rは一般式(3)のそれと同じである。)
 R、Rに関する好ましい例や具体例も一般式(3)のそれと同じである。
 このような上記一般式(7)で表される化合物としては、具体的には、例えば
2-フェノキシエタノール
2-フェノキシプロパノール
1-フェノキシ-2-プロパノール
2-(2-メチルフェノキシ)エタノール
2-(2-エチルフェノキシ)エタノール
2-(2,6-ジメチルフェノキシ)エタノール
2-(2,5-ジメチルフェノキシ)エタノール
2-(2,3,6-トリメチルフェノキシ)エタノール
等が挙げられる。
Moreover, the raw material phenoxy alcohol compound of the above-mentioned manufacturing method is represented by the following general formula (6).
Figure JPOXMLDOC01-appb-C000007
(In the formula, R, R 1 and m are the same as those in the general formula (1).)
Preferred examples and specific examples relating to R, R 1 and m are also the same as those in the general formula (1).
As such a phenoxy alcohol compound represented by the general formula (6), a compound represented by the general formula (7) is preferable.
Figure JPOXMLDOC01-appb-C000008
(In the formula, R 3 and R 4 are the same as those in the general formula (3).)
Preferred examples and specific examples relating to R 3 and R 4 are also the same as those in the general formula (3).
Specific examples of the compound represented by the general formula (7) include 2-phenoxyethanol 2-phenoxypropanol 1-phenoxy-2-propanol 2- (2-methylphenoxy) ethanol 2- (2 -Ethylphenoxy) ethanol 2- (2,6-dimethylphenoxy) ethanol 2- (2,5-dimethylphenoxy) ethanol 2- (2,3,6-trimethylphenoxy) ethanol and the like.
 本発明のジヒドロキシ化合物の製造方法は特に限定されないが、より好ましい本発明のジヒドロキシ化合物(1EO体、3EO体を含まない)を得るための、好ましい製造方法の一例として、一般式(5)で表されるN-フェニルイサチン化合物と、一般式(6)又は一般式(7)で表されるフェノキシアルコール化合物を反応させてインドリン骨格を有する、一般式(1)で表されるジヒドロキシ化合物を製造する方法について詳しく説明する。
 縮合反応は、上記のN-フェニルイサチン化合物とフェノキシアルコール化合物を、通常酸触媒の存在下に反応させて行う。まず、N-フェニルイサチン化合物とフェノキシアルコール化合物を酸触媒の存在下に反応させ、得られた反応混合物をアルカリで中和した後、公知の方法に従い、晶析、ろ過して、1次晶析ろ過物を得る。
 反応に際して、N-フェニルイサチン化合物に対するフェノキシアルコール化合物の仕込みモル比は、理論値(2.0)以上であれば、特に限定されるものではないが、好ましくは3.0倍モル量以上、より好ましくは、3.5~20倍モル量の範囲、特に好ましくは4.0~15倍モル量の範囲で用いられる。酸触媒としては、例えば、塩酸、塩化水素ガス、60~98%硫酸、85%リン酸等の無機酸、p-トルエンスルホン酸、メタンスルホン酸、シュウ酸、蟻酸、トリクロロ酢酸又はトリフルオロ酢酸等の有機酸、ヘテロポリ酸、イオン交換樹脂、活性白土、シリカ-アルミナ等の固体酸等を挙げることができる。好ましくは 塩化水素ガスである。このような酸触媒の使用量は反応条件によって好適な量は異なるが、例えば塩化水素ガスの場合は、反応系の空気を窒素ガス等の不活性ガスで置換した後、塩化水素ガスを吹き込み、反応容器内の気相中の塩化水素ガス濃度を75~100容量%とし、反応液中の塩化水素濃度を飽和濃度にするのがよい。35%塩酸の場合はフェノキシアルコール化合物100重量部に対して、5~70重量部の範囲、好ましくは、10~40重量部の範囲、より好ましくは20~30重量部の範囲で用いられる。ここで、酸触媒として硫酸を使用すると、硫酸が目的とする化合物中に残存することより、化合物の色相悪化が懸念され、また、酸触媒としてヘテロポリ酸を使用する場合は反応温度を高温にする必要があるため、反応選択率が低下する等、効率的ではない。
 反応に際し、酸触媒と共に必要に応じて助触媒を用いてもよい。例えば、塩化水素ガスを触媒として用いる場合、助触媒としてチオール類を用いることによって、反応速度を加速させることができる。このようなチオール類としては、アルキルメルカプタン類やメルカプトカルボン酸が挙げられ、好ましくは、炭素原子数1~12のアルキルメルカプタン類や炭素原子数1~12のメルカプトカルボン酸類であり、例えば、メチルメルカプタン、エチルメルカプタン、n-オクチルメルカプタン、n-ラウリルメルカプタン等やそれらのナトリウム塩等のようなアルカリ金属塩、チオ酢酸、チオグリコール酸、β-メルカプトプロピオン酸等が挙げられる。
 また、これらは単独又は二種類以上を組み合わせて使用できる。
 助触媒としてのチオール類の使用量は、原料のN-フェニルイサチン化合物に対し通常0.5~20モル%の範囲、好ましくは2~10モル%の範囲で用いられる。
Although the manufacturing method of the dihydroxy compound of this invention is not specifically limited, As an example of the preferable manufacturing method for obtaining the more preferable dihydroxy compound (1EO body and 3EO body are not included) of this invention, it represents with General formula (5). The dihydroxy compound represented by the general formula (1) having an indoline skeleton is produced by reacting the N-phenylisatin compound produced with the phenoxy alcohol compound represented by the general formula (6) or (7). The method of performing will be described in detail.
The condensation reaction is carried out by reacting the above N-phenylisatin compound with a phenoxy alcohol compound, usually in the presence of an acid catalyst. First, an N-phenylisatin compound and a phenoxyalcohol compound are reacted in the presence of an acid catalyst, and the resulting reaction mixture is neutralized with an alkali, and then crystallized and filtered according to a known method to produce primary crystals. An analysis filtrate is obtained.
In the reaction, the charged molar ratio of the phenoxy alcohol compound to the N-phenylisatin compound is not particularly limited as long as it is the theoretical value (2.0) or more, but preferably 3.0 times the molar amount or more, More preferably, it is used in the range of 3.5 to 20 times the molar amount, particularly preferably in the range of 4.0 to 15 times the molar amount. Examples of the acid catalyst include hydrochloric acid, hydrogen chloride gas, 60-98% sulfuric acid, 85% phosphoric acid and other inorganic acids, p-toluenesulfonic acid, methanesulfonic acid, oxalic acid, formic acid, trichloroacetic acid, trifluoroacetic acid, etc. Organic acids, heteropolyacids, ion exchange resins, activated clays, and solid acids such as silica-alumina. Hydrogen chloride gas is preferred. The amount of such an acid catalyst used varies depending on the reaction conditions. For example, in the case of hydrogen chloride gas, after replacing the air in the reaction system with an inert gas such as nitrogen gas, hydrogen chloride gas is blown, The hydrogen chloride gas concentration in the gas phase in the reaction vessel is preferably 75 to 100% by volume, and the hydrogen chloride concentration in the reaction solution is preferably saturated. In the case of 35% hydrochloric acid, it is used in the range of 5 to 70 parts by weight, preferably in the range of 10 to 40 parts by weight, more preferably in the range of 20 to 30 parts by weight with respect to 100 parts by weight of the phenoxy alcohol compound. Here, when sulfuric acid is used as the acid catalyst, there is a concern that the hue of the compound deteriorates because sulfuric acid remains in the target compound, and when a heteropolyacid is used as the acid catalyst, the reaction temperature is increased. Since it is necessary, it is not efficient such as a reduction in reaction selectivity.
In the reaction, a co-catalyst may be used together with the acid catalyst as necessary. For example, when hydrogen chloride gas is used as a catalyst, the reaction rate can be accelerated by using thiols as a co-catalyst. Examples of such thiols include alkyl mercaptans and mercaptocarboxylic acids, preferably alkyl mercaptans having 1 to 12 carbon atoms and mercaptocarboxylic acids having 1 to 12 carbon atoms, such as methyl mercaptan. And alkali metal salts such as ethyl mercaptan, n-octyl mercaptan, n-lauryl mercaptan, and sodium salts thereof, thioacetic acid, thioglycolic acid, β-mercaptopropionic acid, and the like.
Moreover, these can be used individually or in combination of 2 or more types.
The amount of thiols used as a co-catalyst is usually in the range of 0.5 to 20 mol%, preferably in the range of 2 to 10 mol%, relative to the starting N-phenylisatin compound.
 また、反応に際して反応溶媒は、原料のN-フェニルイサチン化合物とフェノキシアルコール化合物の融点が低く、操作性に問題がなければ、溶媒を使用する必要はないが、工業的生産時の操作性や反応速度の向上などの理由で、使用してもよい。反応溶媒としては、反応温度において反応器から留出せず、反応に不活性であれば特に制限はないが、例えば、トルエン、キシレン等の芳香族炭化水素、メタノール、n-プロピルアルコール、イソブチルアルコール等の脂肪族アルコール、ヘキサン、ヘプタン、シクロヘキサン等の脂肪族炭化水素類、酢酸エチル、酢酸ブチル等のカルボン酸エステル類又はこれらの混合物が挙げられる。これらのうち、脂肪族アルコールが好ましく用いられる。
 また、フェノキシアルコール化合物の凝固点を下げ酸触媒の反応を促進するため、必要に応じて少量の水を添加してもよい。特に酸触媒が塩化水素ガスの場合は、水は触媒の塩化水素ガスの吸収を促進する理由で好ましい。水を添加する場合その添加量は、フェノキシアルコール化合物100重量部に対し、0.5~15.0重量部の範囲が好ましい。
 反応温度は、使用する触媒等の条件により異なるが、例えば、塩化水素ガスを触媒として用いる場合は、20~70℃の範囲が好ましく、30~60℃の範囲がより好ましい。反応圧力は、通常、常圧下で行われるが、用いてもよい有機溶媒の沸点によっては、反応温度が前記範囲内になるように、加圧又は減圧下で行ってもよい。このような条件下で反応を行えば、反応は、通常1~30時間程度で終了する。
 反応の終点は、液体クロマトグラフィー又はガスクロマトグラフィー分析にて確認することができる。未反応のN-フェニルイサチン化合物が消失し、目的物の増加が認められなくなった時点を反応の終点とするのが好ましい。
 フェノキシアルコール化合物に対する反応収率は、通常75~95モル%程度である。反応終了後、得られた反応混合物に、アンモニア水、水酸化ナトリウム水溶液等のアルカリ溶液を加えて酸触媒を中和して、本発明に係る一般式(1)で表されるジヒドロキシ化合物を含む反応終了混合液を得る。
 中和した反応混合液を、必要に応じて、未反応の原料フェノキシアルコール化合物を蒸留で除去した後、水及び水に不溶性の有機溶媒を加えて十分に撹拌して油層を分離する水洗処理を行う。このときに使用する有機溶媒としては、一般式(1)のジヒドロキシ化合物を溶解し、また水への溶解度が小さい有機溶媒であることが必要である。この性質を有する有機溶媒として、トルエン、キシレン等の芳香族炭化水素系、シクロヘキサン、n-ヘプタン等の脂肪族炭化水素系、メチルイソブチルケトン等の脂肪族ケトン系、ブタノール等のアルコール溶媒を採用することができる。
 上記中和・水洗後に得られた有機溶媒層を、必要に応じて溶媒を蒸留により一部除去した後、その有機溶媒層をそのまま又は一旦加熱して均一の溶液とし、冷却するか、もしくは適宜晶析溶媒や貧溶媒を加えて冷却することにより、結晶が析出する場合にはその結晶をろ別することで、粗製又は高純度の目的物を得ることができる。
 上記で得られた目的物はさらに溶媒を使用して再結晶を行い、精製することもできる。このときに使用する有機溶媒としてはトルエン、キシレン、メシチレン等の芳香族炭化水素溶媒、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン等のケトン溶媒および酢酸エチル、酢酸ブチル等のエステル溶媒、ブタノール等のアルコール溶媒が挙げられ、これらは単独でも2種類以上の混合物でも用いることができる。
 上記晶析操作の代わりに反応終了後、反応溶媒等を減圧下に濃縮し、その残渣をカラムクロマトグラフィー等により精製することで高純度品を得ることもできる。
In the reaction, as the reaction solvent, the starting N-phenylisatin compound and the phenoxyalcohol compound have a low melting point, and if there is no problem in operability, it is not necessary to use a solvent. It may be used for reasons such as improving the reaction rate. The reaction solvent is not particularly limited as long as it does not distill from the reactor at the reaction temperature and is inert to the reaction. For example, aromatic hydrocarbons such as toluene and xylene, methanol, n-propyl alcohol, isobutyl alcohol, etc. And aliphatic alcohols such as hexane, heptane and cyclohexane, carboxylic acid esters such as ethyl acetate and butyl acetate, and mixtures thereof. Of these, aliphatic alcohols are preferably used.
Moreover, in order to lower the freezing point of the phenoxy alcohol compound and promote the reaction of the acid catalyst, a small amount of water may be added as necessary. In particular, when the acid catalyst is hydrogen chloride gas, water is preferable for promoting the absorption of hydrogen chloride gas by the catalyst. When water is added, the addition amount is preferably in the range of 0.5 to 15.0 parts by weight with respect to 100 parts by weight of the phenoxy alcohol compound.
Although the reaction temperature varies depending on the conditions of the catalyst used, for example, when hydrogen chloride gas is used as the catalyst, the range of 20 to 70 ° C. is preferable, and the range of 30 to 60 ° C. is more preferable. The reaction pressure is usually carried out under normal pressure, but depending on the boiling point of the organic solvent that may be used, the reaction may be carried out under pressure or reduced pressure so that the reaction temperature falls within the above range. If the reaction is carried out under such conditions, the reaction is usually completed in about 1 to 30 hours.
The end point of the reaction can be confirmed by liquid chromatography or gas chromatography analysis. The end point of the reaction is preferably the point at which the unreacted N-phenylisatin compound disappears and no increase in the desired product is observed.
The reaction yield based on the phenoxy alcohol compound is usually about 75 to 95 mol%. After completion of the reaction, the resulting reaction mixture is added with an alkaline solution such as aqueous ammonia or aqueous sodium hydroxide solution to neutralize the acid catalyst, and contains the dihydroxy compound represented by the general formula (1) according to the present invention. A reaction mixture is obtained.
If necessary, after removing the unreacted raw material phenoxyalcohol compound by distillation from the neutralized reaction mixture, water washing treatment is performed to add water and an insoluble organic solvent to the water and sufficiently stir to separate the oil layer. Do. As the organic solvent used at this time, it is necessary to dissolve the dihydroxy compound of the general formula (1) and to have a low solubility in water. As the organic solvent having this property, an aromatic hydrocarbon such as toluene or xylene, an aliphatic hydrocarbon such as cyclohexane or n-heptane, an aliphatic ketone such as methyl isobutyl ketone, or an alcohol solvent such as butanol is employed. be able to.
The organic solvent layer obtained after the neutralization and washing with water is partially removed by distillation, if necessary, and then the organic solvent layer is heated as it is or once to a uniform solution, cooled, or appropriately When crystals are precipitated by adding a crystallization solvent or a poor solvent and cooling, a crude or high-purity target product can be obtained by filtering the crystals.
The target product obtained above can be further purified by recrystallization using a solvent. Organic solvents used at this time include aromatic hydrocarbon solvents such as toluene, xylene and mesitylene, ketone solvents such as acetone, methyl ethyl ketone, methyl isobutyl ketone and cyclohexanone, ester solvents such as ethyl acetate and butyl acetate, and alcohols such as butanol. A solvent is mentioned, These can be used individually or in mixture of 2 or more types.
Instead of the above crystallization operation, after completion of the reaction, the reaction solvent and the like are concentrated under reduced pressure, and the residue is purified by column chromatography or the like to obtain a high purity product.
 ここで、一般式(1)で表されるジヒドロキシ化合物が、含有する可能性のある不純物として、下記一般式(8)で表される1EO体(モノヒドロキシアルコキシ体)、下記一般式(9)で表される多EO体(ヒドロキシアルコキシ基のヒドロキシ基が更にヒドロキシアルコキシ基に置換した化合物)が挙げられる。しかしながら、例えば上述の製造方法である、一般式(5)で表されるN-フェニルイサチン化合物と、一般式(6)又は一般式(7)で表されるフェノキシアルコール化合物を反応させる方法を採用することにより、下記一般式(8)で表される1EO体や下記一般式(9)で表される多EO体や下記一般式(10)で表される3EO体の不純物を含有しない一般式(1)で表されるジヒドロキシ化合物を製造することが可能である。
 上述の1EO体は、下記一般式(8)で表される。
Figure JPOXMLDOC01-appb-C000009
(式中、R、R、R、m、nは一般式(1)のそれと同じである。)
 R、R、R、m、nに関する好ましい例や具体例も一般式(1)のそれと同じである。
 上述の多EO体は、下記一般式(9)で表される。 
Figure JPOXMLDOC01-appb-C000010
(式中、R、R、R、m、nは一般式(1)のそれと同じであり、kは各々独立して1~5の整数を示し、但し、kが同時に1である場合を除く。)
 R、R、R、m、nに関する好ましい例や具体例も一般式(1)のそれと同じである。
 上記一般式(9)で表される多EO体の中でもより含有する可能性が高い化合物である3EO体は、下記一般式(10)で表される。
Figure JPOXMLDOC01-appb-C000011
(式中、R、R、R、m、nは一般式(1)のそれと同じである。)
 R、R、R、m、nに関する好ましい例や具体例も一般式(1)のそれと同じである。
Here, as impurities which the dihydroxy compound represented by the general formula (1) may contain, a 1EO body (monohydroxyalkoxy body) represented by the following general formula (8), and the following general formula (9) And a multi-EO body represented by the formula (a compound in which the hydroxy group of the hydroxyalkoxy group is further substituted with a hydroxyalkoxy group). However, for example, a method of reacting the N-phenylisatin compound represented by the general formula (5) with the phenoxy alcohol compound represented by the general formula (6) or the general formula (7), which is the above-described production method. By adopting, the 1EO body represented by the following general formula (8), the multi-EO body represented by the following general formula (9) and the 3EO body represented by the following general formula (10) do not contain impurities. It is possible to produce a dihydroxy compound represented by the formula (1).
The above 1EO body is represented by the following general formula (8).
Figure JPOXMLDOC01-appb-C000009
(In the formula, R, R 1 , R 2 , m and n are the same as those in the general formula (1).)
Preferred examples and specific examples relating to R, R 1 , R 2 , m, and n are the same as those in the general formula (1).
The above multi-EO body is represented by the following general formula (9).
Figure JPOXMLDOC01-appb-C000010
(In the formula, R, R 1 , R 2 , m, and n are the same as those in the general formula (1), and k each independently represents an integer of 1 to 5, provided that k is 1 at the same time. except for.)
Preferred examples and specific examples relating to R, R 1 , R 2 , m, and n are the same as those in the general formula (1).
The 3EO body which is a compound more likely to be contained in the multi-EO body represented by the general formula (9) is represented by the following general formula (10).
Figure JPOXMLDOC01-appb-C000011
(In the formula, R, R 1 , R 2 , m and n are the same as those in the general formula (1).)
Preferred examples and specific examples relating to R, R 1 , R 2 , m, and n are the same as those in the general formula (1).
 本発明の一般式(1)で表されるジヒドロキシ化合物の純度及び含まれる不純物の量は、特に限定されないが、高速液体クロマトグラフィーによる面積%から算出される次の範囲が好ましい。本発明の一般式(1)で表されるジヒドロキシ化合物の純度は、好ましくは97.5%以上、より好ましくは98.0%以上、さらに好ましくは98.5%以上、特に好ましくは99.0%以上である。1EO体の含有量は、好ましくは0.5%以下、より好ましくは0.3%以下、さらに好ましくは0.1%以下、特に好ましくは実質的に含まない(検出限界以下)である。多EO体の含有量は、好ましくは1.5%以下、より好ましくは1.0%以下、さらに好ましくは0.5%以下、特に好ましくは0.1%以下、最も好ましくは実質的に含まない(検出限界以下)である。多EO体の中でも3EO体の含有量は、好ましくは1.5%以下、より好ましくは1.0%以下、さらに好ましくは0.5%以下、特に好ましくは0.1%以下、最も好ましくは実質的に含まない(検出限界以下)である。 The purity of the dihydroxy compound represented by the general formula (1) of the present invention and the amount of impurities contained are not particularly limited, but the following range calculated from area% by high performance liquid chromatography is preferred. The purity of the dihydroxy compound represented by the general formula (1) of the present invention is preferably 97.5% or more, more preferably 98.0% or more, still more preferably 98.5% or more, and particularly preferably 99.0. % Or more. The content of 1EO is preferably 0.5% or less, more preferably 0.3% or less, still more preferably 0.1% or less, and particularly preferably substantially free (below the detection limit). The content of the multi-EO body is preferably 1.5% or less, more preferably 1.0% or less, further preferably 0.5% or less, particularly preferably 0.1% or less, and most preferably substantially contained. No (below detection limit). Among the multi-EO bodies, the content of 3EO bodies is preferably 1.5% or less, more preferably 1.0% or less, still more preferably 0.5% or less, particularly preferably 0.1% or less, and most preferably It is not substantially contained (below the detection limit).
 次に、本発明のジヒドロキシ化合物の用途について説明する。
まず、上記一般式(1)で表されるジヒドロキシ化合物を原料とした、ポリカーボネートについて説明する。
 当該ポリカーボネートは、下記一般式(2)で表される。
Figure JPOXMLDOC01-appb-C000012
(式中、Rは炭素原子数2~6のアルキレン基を示し、R、Rは各々独立して炭素原子数1~8のアルキル基又は炭素原子数1~8のアルコキシ基を示し、mは0~3の整数を示し、nは0~2の整数を示し、ただし、mが2以上の場合、Rは同一でも異なっていてもよく、nが2の場合、Rは同一でも異なっていてもよい。)
Next, the use of the dihydroxy compound of the present invention will be described.
First, a polycarbonate using the dihydroxy compound represented by the general formula (1) as a raw material will be described.
The polycarbonate is represented by the following general formula (2).
Figure JPOXMLDOC01-appb-C000012
(Wherein R represents an alkylene group having 2 to 6 carbon atoms, R 1 and R 2 each independently represents an alkyl group having 1 to 8 carbon atoms or an alkoxy group having 1 to 8 carbon atoms, m represents an integer of 0 to 3, n represents an integer of 0 to 2, provided that when m is 2 or more, R 1 may be the same or different. When n is 2, R 2 is the same But it may be different.)
 上記一般式(2)において、式中、R、R、Rで示される置換基の好ましい例や具体例、及びm、nで示される置換数の規定並びに好ましい置換位置は一般式(1)のそれと同じである。
 従って、上記一般式(2)で表される繰り返し単位を含むポリカーボネートにおいて好ましい繰り返し単位を含むポリカーボネートは下記一般式(11)で表される。
Figure JPOXMLDOC01-appb-C000013
(式中、R、nは一般式(1)のそれと同じであり、R、Rは一般式(3)のそれと同じである。)
 R、nに関する好ましい例や具体例は、一般式(1)のそれと同じであり、R、Rに関する好ましい例や具体例は一般式(3)のそれと同じである。
In the above general formula (2), in the formula, preferred examples and specific examples of the substituents represented by R, R 1 and R 2 , the definition of the number of substitutions represented by m and n, and preferred substitution positions are represented by the general formula (1). ) Is the same as that.
Therefore, the polycarbonate containing a preferable repeating unit in the polycarbonate containing the repeating unit represented by the general formula (2) is represented by the following general formula (11).
Figure JPOXMLDOC01-appb-C000013
(In the formula, R 2 and n are the same as those in the general formula (1), and R 3 and R 4 are the same as those in the general formula (3).)
Preferred examples and specific examples relating to R 2 and n are the same as those in the general formula (1), and preferred examples and specific examples relating to R 3 and R 4 are the same as those in the general formula (3).
 上記一般式(2)で表される繰り返し単位を含むポリカーボネートは、その製造方法については特に制限はなく、従来公知の任意の方法を用いることができる。具体的には、界面重合法、溶融エステル交換法、固相重合法、環状カーボネート化合物の開環重合法、ピリジン法などが挙げられるが、中でも、ジヒドロキシ化合物とカーボネート前駆体を原料とする界面重合法、溶融エステル交換法が好ましく、特に、一般式(1)で表されるジヒドロキシ化合物とジフェニルカーボネート等の炭酸エステル類とをエステル交換触媒の存在下に溶融エステル交換反応により製造することが好ましい。 The polycarbonate containing the repeating unit represented by the general formula (2) is not particularly limited as to its production method, and any conventionally known method can be used. Specific examples include an interfacial polymerization method, a melt transesterification method, a solid phase polymerization method, a ring-opening polymerization method of a cyclic carbonate compound, a pyridine method, etc. Among them, interfacial weight using a dihydroxy compound and a carbonate precursor as raw materials. A combined method and a melt transesterification method are preferable, and it is particularly preferable to produce a dihydroxy compound represented by the general formula (1) and a carbonate such as diphenyl carbonate by a melt transesterification reaction in the presence of a transesterification catalyst.
 上記一般式(2)で表される繰り返し単位を含むポリカーボネートの原料として用いられるジヒドロキシ化合物は、本発明の効果を妨げない範囲において、上記一般式(1)で表されるジヒドロキシ化合物以外の、例えばビスフェノールA等の他のジヒドロキシ化合物も共重合原料として用いることができる。
 共重合原料を用いる場合、全ジヒドロキシ化合物中、主として用いられる上記一般式(1)で表されるジヒドロキシ化合物以外のジヒドロキシ化合物共重合原料の割合は、本発明の効果を妨げない限り特に制限はないが、好ましくは0~20モル%の範囲、より好ましくは0~10モル%の範囲、さらに好ましくは0~5モル%の範囲、特に好ましくは0~2モル%の範囲である。
 上記一般式(2)で表される繰り返し単位を含むポリカーボネートを溶融重縮合で製造する溶融エステル交換法についてさらに詳しく説明する。ここで、溶融エステル交換法としては従来公知の方法を用いることができる。
 例えば、原料ジヒドロキシ化合物が3,3-ビス(4-(2-ヒドロキシエトキシ)フェニル)-1-フェニル-1H-インドール-2-オンであり、原料炭酸ジエステルがジフェニルカーボネートである場合の、上記芳香族ポリカーボネートを得る反応を下記に反応式で示す。
Figure JPOXMLDOC01-appb-C000014
 溶融エステル交換反応は、ジヒドロキシ化合物と炭酸ジエステルを触媒の存在下、炭酸ジエステルと常圧又は減圧不活性ガス雰囲気で加熱しながら撹拌し、生成するフェノールを留出させることで行われる。
 ジヒドロキシ化合物と反応させる炭酸ジエステルとしては、具体的には、例えば、ジフェニルカーボネート、ジトリルカーボネート、ビス(m-クレジル)カーボネート等の炭酸ジアリール、ジメチルカーボネート、ジエチルカーボネート、ジシクロヘキシルカーボネート等の炭酸ジアルキル、メチルフェニルカーボネート、エチルフェニルカーボネート、シクロヘキシルフェニルカーボネート等の炭酸アルキルアリール又はジビニルカーボネート、ジイソプロペニルカーボネート、ジプロペニルカーボネート等の炭酸ジアルケニル等が挙げられる。好ましくは炭酸ジアリールであり、特に好ましいのはジフェニルカーボネートである。
The dihydroxy compound used as a raw material of the polycarbonate containing the repeating unit represented by the general formula (2) is, for example, other than the dihydroxy compound represented by the general formula (1) as long as the effects of the present invention are not hindered. Other dihydroxy compounds such as bisphenol A can also be used as a copolymer raw material.
When the copolymer raw material is used, the ratio of the dihydroxy compound copolymer raw material other than the dihydroxy compound represented by the general formula (1) mainly used in all dihydroxy compounds is not particularly limited as long as the effect of the present invention is not hindered. However, it is preferably in the range of 0 to 20 mol%, more preferably in the range of 0 to 10 mol%, still more preferably in the range of 0 to 5 mol%, particularly preferably in the range of 0 to 2 mol%.
The melt transesterification method for producing a polycarbonate containing the repeating unit represented by the general formula (2) by melt polycondensation will be described in more detail. Here, a conventionally known method can be used as the melt transesterification method.
For example, in the case where the starting dihydroxy compound is 3,3-bis (4- (2-hydroxyethoxy) phenyl) -1-phenyl-1H-indol-2-one and the starting carbonic acid diester is diphenyl carbonate The reaction for obtaining the group polycarbonate is shown by the following reaction formula.
Figure JPOXMLDOC01-appb-C000014
The melt transesterification reaction is performed by stirring the dihydroxy compound and the carbonic acid diester in the presence of a catalyst while heating the carbonic acid diester and an atmospheric pressure or a reduced pressure inert gas atmosphere to distill the produced phenol.
Specific examples of the carbonic acid diester to be reacted with the dihydroxy compound include, for example, diaryl carbonates such as diphenyl carbonate, ditolyl carbonate, and bis (m-cresyl) carbonate, dialkyl carbonates such as dimethyl carbonate, diethyl carbonate, and dicyclohexyl carbonate, and methyl. Examples thereof include alkylaryl carbonates such as phenyl carbonate, ethylphenyl carbonate and cyclohexyl phenyl carbonate, or dialkenyl carbonates such as divinyl carbonate, diisopropenyl carbonate and dipropenyl carbonate. Diaryl carbonate is preferred, and diphenyl carbonate is particularly preferred.
 通常、ジヒドロキシ化合物と炭酸ジエステルとの混合比率や、エステル交換反応時の減圧度を調整して、所望の分子量および末端水酸基量を調整した芳香族ポリカーボネートを得ることができる。
 上記ポリカーボネートを得るジヒドロキシ化合物と炭酸ジエステルとの混合比率は、ジヒドロキシ化合物1モルに対して、炭酸ジエステルを通常0.5~1.5モル倍、好ましくは0.6~1.2モル倍用いる。
 溶融エステル交換反応に際し、反応速度を高めるため、必要に応じてエステル交換触媒が用いられる。エステル交換触媒としては、特に制限はなく、例えばリチウム、ナトリウム、セシウムの水酸化物、炭酸塩、炭酸水素化合物等の無機アルカリ金属化合物、アルコラート、有機カルボン酸塩等の有機アルカリ金属化合物等のアルカリ金属化合物;ベリリウム、マグネシウム等の水酸化物、炭酸塩等の無機アルカリ土類金属化合物、アルコラート、有機カルボン酸塩等の有機アルカリ土類金属化合物等のアルカリ土類金属化合物;テトラメチルホウ素、テトラエチルホウ素、ブチルトリフェニルホウ素等のナトリウム塩、カルシウム塩、マグネシウム塩等の塩基性ホウ素化合物;トリエチルホスフィン、トリ-n-プロピルホスフィン等の3価のリン化合物、又は、これらの化合物から誘導される4級ホスホニウム塩等の塩基性リン化合物;テトラメチルアンモニウムヒドロキシド、テトラエチルアンモニウムヒドロキシド、テトラブチルアンモニウムヒドロキシド等の塩基性アンモニウム化合物又は4-アミノピリジン、2-ジメチルアミノイミダゾール、アミノキノリン等アミン系化合物等の公知のエステル交換触媒を用いることができる。中でも、アルカリ金属化合物が好ましく、特に炭酸セシウム、水酸化セシウム等のセシウム化合物が好ましい。
 触媒の使用量は、触媒残留物が生成ポリカーボネートの品質上の問題が生じない範囲で用いられ、触媒の種類により好適な添加量が異なるので一概には言えないが概略、例えば、上記一般式(1)で表されるジヒドロキシ化合物1モルに対して通常0.05~100μモル、好ましくは0.08~50μモル、より好ましくは0.1~20μモル、さらに好ましくは0.1~5μモルである。触媒はそのままで添加してもよいし、溶媒に溶解して添加してもよく、溶媒としては例えば、水、フェノール等の反応に影響しないものが好ましい。
 溶融エステル交換反応の反応条件は、温度は通常120~360℃の範囲、好ましくは150~280℃の範囲、より好ましくは180~270℃の範囲である。反応温度が低すぎるとエステル交換反応が進行せず、反応温度が高いと分解反応等の副反応が進行するので好ましくない。反応は好ましくは減圧下で行われ、反応圧力は反応温度において原料である炭酸ジエステルが系外に留出せず、副生するフェノールが留出する圧力であることが好ましい。このような反応条件において、反応は通常0.5~10時間程度で完結する。
Usually, the aromatic polycarbonate which adjusted the desired molecular weight and the amount of terminal hydroxyl groups can be obtained by adjusting the mixing ratio of a dihydroxy compound and carbonic acid diester, and the pressure reduction degree at the time of transesterification.
Regarding the mixing ratio of the dihydroxy compound and the carbonic acid diester to obtain the polycarbonate, the carbonic acid diester is usually used in an amount of 0.5 to 1.5 moles, preferably 0.6 to 1.2 moles per mole of the dihydroxy compound.
In the transesterification reaction, a transesterification catalyst is used as necessary to increase the reaction rate. The transesterification catalyst is not particularly limited, and examples thereof include inorganic alkali metal compounds such as lithium, sodium and cesium hydroxides, carbonates and hydrogen carbonate compounds, and alkali alkali compounds such as alcoholates and organic carboxylates. Metal compounds: hydroxides such as beryllium and magnesium, inorganic alkaline earth metal compounds such as carbonates, alkaline earth metal compounds such as organic alkaline earth metal compounds such as alcoholates and organic carboxylates; tetramethylboron and tetraethyl Basic boron compounds such as sodium salts such as boron and butyltriphenylboron, calcium salts and magnesium salts; trivalent phosphorus compounds such as triethylphosphine and tri-n-propylphosphine; or 4 derived from these compounds Basic phosphorus compounds such as quaternary phosphonium salts; Use a known transesterification catalyst such as basic ammonium compounds such as lamethylammonium hydroxide, tetraethylammonium hydroxide, tetrabutylammonium hydroxide, or amine compounds such as 4-aminopyridine, 2-dimethylaminoimidazole, aminoquinoline, etc. Can do. Among these, alkali metal compounds are preferable, and cesium compounds such as cesium carbonate and cesium hydroxide are particularly preferable.
The amount of the catalyst used is within a range where the catalyst residue does not cause a problem in the quality of the produced polycarbonate, and since the preferred addition amount varies depending on the type of catalyst, it cannot be said unconditionally, for example, the general formula ( The amount is usually 0.05 to 100 μmol, preferably 0.08 to 50 μmol, more preferably 0.1 to 20 μmol, still more preferably 0.1 to 5 μmol with respect to 1 mol of the dihydroxy compound represented by 1). is there. The catalyst may be added as it is, or may be added after being dissolved in a solvent. As the solvent, for example, those which do not affect the reaction such as water and phenol are preferable.
As for the reaction conditions for the melt transesterification reaction, the temperature is usually in the range of 120 to 360 ° C, preferably in the range of 150 to 280 ° C, more preferably in the range of 180 to 270 ° C. If the reaction temperature is too low, the transesterification reaction does not proceed, and if the reaction temperature is high, side reactions such as a decomposition reaction proceed. The reaction is preferably carried out under reduced pressure, and the reaction pressure is preferably a pressure at which the diester carbonate as a raw material does not distill out of the system at the reaction temperature and phenol by-produced distills. Under such reaction conditions, the reaction is usually completed in about 0.5 to 10 hours.
 このようにして得られたポリカーボネートを含む反応終了物を、次いで、必要に応じて低分子量成分の分離低減処理を行った後、乾燥工程に付すことで、上記一般式(2)で表される繰り返し単位を含むポリカーボネートが得られる。
 上記反応工程により得られたポリカーボネートを含む反応終了物は、通常、反応温度近傍では溶融状態にある透明な粘稠物であり、常温近傍では固形体である。
 必要に応じて行われてもよい低分子量成分の分離低減処理は、例えば特開平7-192310公報記載のように、ポリカーボネートを適宜の良溶媒に溶解し、その後メタノール等の貧溶媒中でポリカーボネートを沈殿し、乾燥することにより、低分子量成分が低減された粒子状、粉状、フレーク状等の上記芳香族ポリカーボネートを得ることができる。
 また、高分子量ポリカーボネートを得るためにより好ましい方法としては、特開平3-223330公報、WO00/18822公報記載のように該反応において予備重合を行い(第一工程)ポリカーボネートオリゴマーを得、該ポリカーボネートオリゴマーを触媒の存在下に固相重合又は膨潤固相重合させる(第二工程)ことにより、高分子量ポリカーボネートを得ることができる。
The reaction product containing polycarbonate obtained in this way is then subjected to a separation reduction treatment of low molecular weight components as necessary, and then subjected to a drying step, thereby being represented by the general formula (2). A polycarbonate containing repeating units is obtained.
The reaction-finished product containing polycarbonate obtained by the reaction step is usually a transparent viscous material in a molten state near the reaction temperature, and is a solid body near normal temperature.
The low molecular weight component separation and reduction treatment that may be performed as needed is, for example, as disclosed in JP-A-7-192310, in which polycarbonate is dissolved in an appropriate good solvent, and then the polycarbonate is dissolved in a poor solvent such as methanol. By precipitating and drying, the above-mentioned aromatic polycarbonate having a reduced molecular weight component, such as particles, powders, and flakes, can be obtained.
Further, as a more preferable method for obtaining a high molecular weight polycarbonate, prepolymerization is performed in the reaction as described in JP-A-3-223330 and WO00 / 18822 (first step) to obtain a polycarbonate oligomer. A high molecular weight polycarbonate can be obtained by solid phase polymerization or swelling solid phase polymerization in the presence of a catalyst (second step).
 上記第一工程における予備重合は、溶融エステル交換反応により行われ、ジヒドロキシ化合物およびジフェニルカーボネートを、触媒存在下、フェノールを留出させながら温度120~360℃、好ましくは150~280℃、特に好ましくは180~270℃において、0.5~10時間反応させることによりポリカーボネートオリゴマーを得る。上記第一工程において得られるポリカーボネートオリゴマーは、第二工程における操作性の面から公知の方法に従いフレーク状、粉末又は粒子等の固形体とするのが好ましい。
  第二工程においては、第一工程で得られたポリカーボネートオリゴマーに、減圧下のもとで必要に応じて4級ホスホニウム塩等、適宜前述のエステル交換触媒を追加添加し、不活性ガスを導入して、撹拌下に、ポリカーボネートのガラス転移温度以上で、且つ固相重合中の結晶化オリゴマーが溶融しない固相状態又は膨潤固相状態で残余のフェノールを留出させつつ、反応させることにより、高分子量ポリカーボネートを得る。
 第一工程の反応と第二工程の反応は、別々に行っても、また、連続して行っても良い。ここで、ポリカーボネートオリゴマーとは通常、例えば重量平均分子量が500~15000程度である。また、高分子量ポリカーボネートとは通常、例えば重量平均分子量が15000~100000程度である。しかし、本発明のジヒドロキシ化合物を原料とするポリカーボネートはこのような分子量には限定されない。
 上記の様にして得られるポリカーボネートは、高分子量ポリカーボネートとすることで、透明性、耐熱性、機械特性、耐衝撃性、流動性等に優れ、光ディスク、スマートフォン等に用いられる光学レンズ、フラットパネルディスプレイ等に用いられる光学フィルムなどの光学用途や、エンジニアリングプラスチックとして自動車分野、電気・電子分野、各種容器等、様々な分野での使用が期待できる。
 また、ポリカーボネートオリゴマーとしては、各種重合方法により、高分子量ポリカーボネートを製造する際の原料として使用することができるだけでなく、表面改質剤、難燃剤、紫外線吸収剤、流動性改質剤、可塑剤、樹脂アロイ用溶化剤などのポリマー改質剤等、添加剤としても幅広く利用することができる。
 更に、その他の用途として、本発明のジヒドロキシ化合物は、末端のヒドロキシ基を利用して、ポリカーボネート以外にも、エポキシ樹脂、オキセタン樹脂、アクリル系樹脂、ポリエステル、ポリアリレート、ポリエーテルエーテルケトン、ポリサルフォン、ノボラック、レゾール等の樹脂原料、その他感光性組成物原料、レジスト添加剤、顕色剤、酸化防止剤としての利用も期待できる。
 特に、本発明のジヒドロキシ化合物をアクリル酸等と反応させて得られるジアクリレート等のアクリルモノマーやアクリル樹脂原料としての利用、及びそれらを用いた光学ハードコーティング材料としての使用が期待できる。
The prepolymerization in the first step is carried out by a melt transesterification reaction, and a dihydroxy compound and diphenyl carbonate are distilled at a temperature of 120 to 360 ° C., preferably 150 to 280 ° C., particularly preferably while distilling phenol in the presence of a catalyst. A polycarbonate oligomer is obtained by reacting at 180 to 270 ° C. for 0.5 to 10 hours. The polycarbonate oligomer obtained in the first step is preferably made into a solid body such as flakes, powders or particles according to a known method from the viewpoint of operability in the second step.
In the second step, the above-described transesterification catalyst, such as a quaternary phosphonium salt, is optionally added to the polycarbonate oligomer obtained in the first step as necessary under reduced pressure, and an inert gas is introduced. Then, by stirring and reacting while distilling the remaining phenol in a solid phase state or a swollen solid phase state in which the crystallized oligomer during solid phase polymerization is not melted or melted at a temperature above the glass transition temperature of the polycarbonate, A molecular weight polycarbonate is obtained.
The reaction in the first step and the reaction in the second step may be performed separately or continuously. Here, the polycarbonate oligomer usually has a weight average molecular weight of, for example, about 500 to 15,000. The high molecular weight polycarbonate usually has a weight average molecular weight of, for example, about 15000 to 100,000. However, the polycarbonate using the dihydroxy compound of the present invention as a raw material is not limited to such a molecular weight.
The polycarbonate obtained as described above is a high molecular weight polycarbonate, which is excellent in transparency, heat resistance, mechanical properties, impact resistance, fluidity, etc., and optical lenses and flat panel displays used in optical disks, smartphones, etc. It can be expected to be used in various fields such as optical applications such as optical films, and automotive plastics, electrical / electronics, and various containers as engineering plastics.
Polycarbonate oligomers can be used not only as raw materials for producing high molecular weight polycarbonate by various polymerization methods, but also as surface modifiers, flame retardants, ultraviolet absorbers, fluidity modifiers, plasticizers. Also, it can be widely used as additives such as polymer modifiers such as resin alloy solubilizers.
Furthermore, as other uses, the dihydroxy compound of the present invention uses an epoxy resin, an oxetane resin, an acrylic resin, a polyester, a polyarylate, a polyether ether ketone, a polysulfone, in addition to a polycarbonate, using a terminal hydroxy group. Use as a resin raw material such as novolak and resol, other photosensitive composition raw materials, resist additives, developers, and antioxidants can also be expected.
In particular, it can be expected to be used as an acrylic monomer or acrylic resin raw material such as diacrylate obtained by reacting the dihydroxy compound of the present invention with acrylic acid or the like, and as an optical hard coating material using them.
 以下、本発明を実施例により具体的に説明するが、本発明はこれら実施例に限定されるものではない。
 なお、実施例における軟化点、屈折率、純度は以下の方法により測定した。
[分析方法]
1.軟化点測定
 装置  :株式会社島津製作所製 DSC-60 DIFFERENTIAL SCANNING CALORIMETER
 昇温条件:10℃/分(30℃→200℃)
 雰囲気ガス:窒素ガス(流量:50ml/分)
 測定方法:
  上記昇温条件で1回目の測定を行い、その吸熱ピークから融点を測定した。
 その後、同じ試料を室温まで冷却し、同条件で2回目の測定を行い、その吸熱ピークを軟化点とした。
2.屈折率測定
 装置  :京都電子工業株式会社製 Refractometer RA-500N
 測定方法:
  濃度10、15、30%のTHF溶液(THF屈折率1.40)を調整し、その溶液の屈折率から測定化合物の屈折率を外挿法により算出した。
3.純度測定
 装置  :株式会社島津製作所製 CLASS-LC10
 ポンプ :LC-10ATvp
 カラムオーブン:CTO-10Avp
 検出器 :SPD-10Avp
 カラム :Shim-pack CLC-ODS 内径6mm、長さ150mm
 オーブン温度:50℃
 流量  :1.0ml/min
 移動相 :(A)メタノール、(B)0.2vol%酢酸水
 グラジエント条件:(A)体積%(分析開始からの時間)
  60%(0min)→60%(20min)→100%(40min)→100%(50min)
 試料注入量:20μl
 検出波長:280nm
EXAMPLES The present invention will be specifically described below with reference to examples, but the present invention is not limited to these examples.
In addition, the softening point, refractive index, and purity in the examples were measured by the following methods.
[Analysis method]
1. Softening point measurement device: DSC-60 DIFFERENTIAL SCANNING CALORIMETER manufactured by Shimadzu Corporation
Temperature rising condition: 10 ℃ / min (30 ℃ → 200 ℃)
Atmospheric gas: Nitrogen gas (Flow rate: 50ml / min)
Measuring method:
The first measurement was performed under the above temperature rising conditions, and the melting point was measured from the endothermic peak.
Thereafter, the same sample was cooled to room temperature, the second measurement was performed under the same conditions, and the endothermic peak was taken as the softening point.
2. Refractive index measuring device: Refractometer RA-500N manufactured by Kyoto Electronics Industry Co., Ltd.
Measuring method:
A THF solution (THF refractive index of 1.40) having a concentration of 10, 15, or 30% was adjusted, and the refractive index of the measurement compound was calculated from the refractive index of the solution by extrapolation.
3. Purity measurement device: CLASS-LC10 manufactured by Shimadzu Corporation
Pump: LC-10ATvp
Column oven: CTO-10Avp
Detector: SPD-10Avp
Column: Shim-pack CLC-ODS inner diameter 6mm, length 150mm
Oven temperature: 50 ° C
Flow rate: 1.0ml / min
Mobile phase: (A) Methanol, (B) 0.2 vol% acetic acid water Gradient condition: (A) Volume% (time from the start of analysis)
60% (0min) → 60% (20min) → 100% (40min) → 100% (50min)
Sample injection volume: 20 μl
Detection wavelength: 280nm
<実施例1>
3,3-ビス(4-(2-ヒドロキシエトキシ)フェニル)-1-フェニル-1H-インドール-2-オンの製造
 温度計、撹拌機、冷却管を備えた四つ口フラスコに2-フェノキシエタノール331.2g(2.40モル)、1-フェニル-1H-インドール-2,3-ジオン44.6g(0.20モル)を仕込み、反応容器を窒素置換した後、40℃で塩化水素ガスを吹込み、気相部の塩化水素ガス濃度を95%以上とした。その後、15%メチルメルカプタンナトリウム水溶液4.2g(メチルメルカプタンナトリウムとして0.009モル)を添加し、40℃で22時間撹拌した。
 反応終了後の1-フェニル-1H-インドール-2,3-ジオン転化率は99.7%、3,3-ビス(4-(2-ヒドロキシエトキシ)フェニル)-1-フェニル-1H-インドール-2-オンの反応収率(対1-フェニル-1H-インドール-2,3-ジオン)は93.7%であった。
 反応終了後、16%水酸化ナトリウム水溶液304.5g(水酸化ナトリウムとして1.22モル)を加え、pHが6となるように調整した。得られた溶液を150℃まで昇温し、2.4kPaの減圧下で未反応の2-フェノキシエタノールを蒸留により除去した後、トルエン268.3gを添加した。得られた溶液に水45.0gを加え、80℃で撹拌した後静置して水層を抜き取る水洗操作を2回行った。水洗後、得られた油層を160℃まで昇温し、1.0kPaの減圧下に溶媒を蒸留により除去した後、冷却し、110℃でトルエン582.2gを添加、70℃でメタノール72.3gを添加した。その後、30℃まで冷却し、析出した結晶を濾別することにより、白色結晶として粗結晶61.4gを得た。
 得られた粗結晶55.5gに1-ブタノール226.5gを添加し、110℃で溶解した後、常圧下で1-ブタノール112.7gを蒸留により除去した後、30℃まで冷却し、析出した結晶を濾別した。得られた結晶を減圧下、80℃で乾燥することにより、3,3-ビス(4-(2-ヒドロキシエトキシ)フェニル)-1-フェニル-1H-インドール-2-オン48.5gを得た。
  純度       99.2%(高速液体クロマトグラフィー面積%)
           一般式(8)で表される1EO体(検出限界以下)
           一般式(10)で表される3EO体(検出限界以下
           )
  収率       55%(対1-フェニル-1H-インドール-2,
           3-ジオン)
  融点       153℃(示差走査熱量分析)
  軟化温度     73℃(示差走査熱量分析)
  屈折率(n20) 1.60
  プロトン核磁気共鳴スペクトル(400MHz、溶媒DMSO-D、標準TMS)  化学シフト(シグナル形状、プロトン数):3.7ppm(m, 4H), 4.0ppm(t, 4H), 4.9ppm(t, 2H), 6.7ppm(d, 1H), 6.9ppm(d, 4H),  7.1~7.2ppm(m, 5H), 7.3ppm(t, 1H), 7.4ppm(d, 1H), 7.5ppm(m, 3H), 7.6ppm(t, 2H).
<Example 1>
Production of 3,3-bis (4- (2-hydroxyethoxy) phenyl) -1-phenyl-1H-indol-2-one In a four-necked flask equipped with a thermometer, stirrer and condenser, 2-phenoxyethanol 331 .2 g (2.40 mol) and 14.6-phenyl-1H-indole-2,3-dione (44.6 g, 0.20 mol) were charged, the reaction vessel was purged with nitrogen, and hydrogen chloride gas was blown at 40 ° C. The hydrogen chloride gas concentration in the gas phase was set to 95% or more. Thereafter, 4.2 g of a 15% aqueous solution of methyl mercaptan (0.009 mol as sodium methyl mercaptan) was added and stirred at 40 ° C. for 22 hours.
After completion of the reaction, the conversion of 1-phenyl-1H-indole-2,3-dione was 99.7%, 3,3-bis (4- (2-hydroxyethoxy) phenyl) -1-phenyl-1H-indole- The reaction yield of 2-one (vs. 1-phenyl-1H-indole-2,3-dione) was 93.7%.
After completion of the reaction, 304.5 g of a 16% sodium hydroxide aqueous solution (1.22 mol as sodium hydroxide) was added to adjust the pH to 6. The resulting solution was heated to 150 ° C., unreacted 2-phenoxyethanol was removed by distillation under a reduced pressure of 2.4 kPa, and 268.3 g of toluene was added. 45.0 g of water was added to the obtained solution, and the mixture was stirred at 80 ° C. and then allowed to stand, and a water washing operation for removing the aqueous layer was performed twice. After washing with water, the obtained oil layer was heated to 160 ° C., the solvent was removed by distillation under a reduced pressure of 1.0 kPa, then cooled, 582.2 g of toluene was added at 110 ° C., and 72.3 g of methanol at 70 ° C. Was added. Thereafter, the mixture was cooled to 30 ° C., and the precipitated crystals were separated by filtration to obtain 61.4 g of crude crystals as white crystals.
After adding 226.5 g of 1-butanol to 55.5 g of the obtained crude crystals and dissolving at 110 ° C., 112.7 g of 1-butanol was removed by distillation under normal pressure, then cooled to 30 ° C. and precipitated. The crystals were filtered off. The obtained crystals were dried at 80 ° C. under reduced pressure to obtain 48.5 g of 3,3-bis (4- (2-hydroxyethoxy) phenyl) -1-phenyl-1H-indol-2-one. .
Purity 99.2% (High performance liquid chromatography area%)
1EO body represented by the general formula (8) (below detection limit)
3EO body represented by general formula (10) (below detection limit)
Yield 55% (vs 1-phenyl-1H-indole-2,
3-dione)
Melting point 153 ° C (differential scanning calorimetry)
Softening temperature 73 ° C (differential scanning calorimetry)
Refractive index (n D 20) 1.60
Proton nuclear magnetic resonance spectrum (400 MHz, solvent DMSO-D 6 , standard TMS) Chemical shift (signal shape, number of protons): 3.7 ppm (m, 4H), 4.0 ppm (t, 4H), 4.9 ppm (t , 2H), 6.7 ppm (d, 1H), 6.9 ppm (d, 4H), 7.1 to 7.2 ppm (m, 5H), 7.3 ppm (t, 1H), 7.4 ppm (d, 1H), 7.5 ppm (m, 3H), 7.6 ppm (t, 2H).
<比較例1>
3,3-ビス(4-(2-ヒドロキシエトキシ)フェニル)-2-フェニルフタルイミジンの製造
(工程1)
 温度計、撹拌機、冷却管を備えた四つ口フラスコにアニリン902.5g(9.70モル)を仕込み、反応容器を窒素置換した後、85~95℃を保ちながらメタンスルホン酸192.7gを系内に滴下した。その後、90~100℃でフェノールフタレイン385.4g(1.21モル)を添加し、添加終了後、147~153℃を保ちながら21.5時間撹拌した。反応終了後、冷却して110℃でトルエン1480.6gを、90℃で水1480.6gを添加した後、30℃まで冷却して析出した結晶を濾別することにより、粗結晶481.6gを得た。
 上記で得られた粗結晶にトルエン913.4g、メタノール228.4gを添加し、71℃で5時間撹拌した後30℃まで冷却し、析出した結晶を濾別した。得られた結晶を減圧下、乾燥することにより、3,3-ビス(4-ヒドロキシフェニル)-2-フェニルフタルイミジン347.2gを得た。
  純度       99.6%(高速液体クロマトグラフィー)
  収率       75%(対フェノールフタレイン)
  融点       291.5℃(示差走査熱量分析)
(工程2)
 温度計、撹拌機、冷却管を備えた四つ口フラスコに工程1で得られた3,3-ビス(4-ヒドロキシフェニル)-2-フェニルフタルイミジン30.0g(0.076モル)、エチレンカーボネート19.5g(0.22モル)、48%水酸化カリウム水溶液0.44g(水酸化カリウムとして0.0038モル)、1-ブタノール45.0gを仕込み、反応容器を窒素置換した後、115~118℃で11時間撹拌した。反応終了後、水2.7gを添加し、106~109℃で3時間撹拌した。次いで10%酢酸2.2gを添加し、水層のpHが4~5となるように調整した。得られた油層にメチルイソブチルケトンを添加し、さらに水を添加して80~85℃で撹拌した後水層を抜き取る操作を2回行った。得られた油層を125℃まで昇温し、蒸留により留分50.0gを留出させた。得られた溶液にアセトン及び水を添加した後30℃まで冷却し、析出した結晶を濾別した。得られた結晶を乾燥することにより、3,3-ビス(4-(2-ヒドロキシエトキシ)フェニル)-2-フェニルフタルイミジン28.5gを得た。
  純度       96.7% (高速液体クロマトグラフィー面積%)
           下記一般式(12)で表される1EO体(0.7%
           )
           下記一般式(13)で表される3EO体(1.6%
           )
  収率       78%(対 3,3-ビス(4-ヒドロキシフェニル
           )-2-フェニルフタルイミジン)
  融点       155℃(示差走査熱量分析)
  軟化点      68℃(示差走査熱量分析)
  屈折率(n20) 1.60
<Comparative Example 1>
Production of 3,3-bis (4- (2-hydroxyethoxy) phenyl) -2-phenylphthalimidine (Step 1)
A four-necked flask equipped with a thermometer, a stirrer, and a condenser tube was charged with 902.5 g (9.70 mol) of aniline, and after the reaction vessel was purged with nitrogen, 192.7 g of methanesulfonic acid was maintained at 85 to 95 ° C. Was dropped into the system. Thereafter, 385.4 g (1.21 mol) of phenolphthalein was added at 90 to 100 ° C., and after completion of the addition, the mixture was stirred for 21.5 hours while maintaining 147 to 153 ° C. After completion of the reaction, the mixture was cooled, 1480.6 g of toluene was added at 110 ° C., and 1480.6 g of water was added at 90 ° C., then cooled to 30 ° C. and the precipitated crystals were filtered off to obtain 481.6 g of crude crystals. Obtained.
To the crude crystals obtained above, 913.4 g of toluene and 228.4 g of methanol were added, stirred at 71 ° C. for 5 hours, cooled to 30 ° C., and the precipitated crystals were separated by filtration. The obtained crystals were dried under reduced pressure to obtain 347.2 g of 3,3-bis (4-hydroxyphenyl) -2-phenylphthalimidine.
Purity 99.6% (high performance liquid chromatography)
Yield 75% (vs. phenolphthalein)
Melting point 291.5 ° C (differential scanning calorimetry)
(Process 2)
30.0 g (0.076 mol) of 3,3-bis (4-hydroxyphenyl) -2-phenylphthalimidine obtained in Step 1 was added to a four-necked flask equipped with a thermometer, a stirrer and a condenser. 19.5 g (0.22 mol) of ethylene carbonate, 0.44 g of 48% potassium hydroxide aqueous solution (0.0038 mol as potassium hydroxide) and 45.0 g of 1-butanol were charged, and the reaction vessel was purged with nitrogen. Stir at ˜118 ° C. for 11 hours. After completion of the reaction, 2.7 g of water was added and stirred at 106 to 109 ° C. for 3 hours. Next, 2.2 g of 10% acetic acid was added to adjust the pH of the aqueous layer to 4-5. Methyl isobutyl ketone was added to the obtained oil layer, water was further added, the mixture was stirred at 80 to 85 ° C., and then the aqueous layer was removed twice. The obtained oil layer was heated to 125 ° C., and 50.0 g of a fraction was distilled by distillation. Acetone and water were added to the resulting solution, followed by cooling to 30 ° C., and the precipitated crystals were separated by filtration. The obtained crystals were dried to obtain 28.5 g of 3,3-bis (4- (2-hydroxyethoxy) phenyl) -2-phenylphthalimidine.
Purity 96.7% (High-performance liquid chromatography area%)
1EO body represented by the following general formula (12) (0.7%
)
3EO body represented by the following general formula (13) (1.6%
)
Yield 78% (vs. 3,3-bis (4-hydroxyphenyl) -2-phenylphthalimidine)
Melting point 155 ° C (differential scanning calorimetry)
Softening point 68 ° C (differential scanning calorimetry)
Refractive index (n D 20) 1.60
 比較例1の工程2で得られた3,3-ビス(4-(2-ヒドロキシエトキシ)フェニル)-2-フェニルフタルイミジンは、不純物である下記一般式(12)で表される1EO体と、下記一般式(13)で表される3EO体を含有する。
 比較例1における1EO体は一般式(12)で表される。
Figure JPOXMLDOC01-appb-C000015
 比較例1における3EO体は一般式(13)で表される。
Figure JPOXMLDOC01-appb-C000016
 比較例1の工程2の製造方法は、一般式(12)で表される1EO体や一般式(13)で表される3EO体の生成を避けられず、これら不純物は精製工程においても工業的な方法で分離除去することが困難であるため、比較例1では目的物である3,3-ビス(4-(2-ヒドロキシエトキシ)フェニル)-2-フェニルフタルイミジンの純度は、96.7%(高速液体クロマトグラフィー面積%)となり、より高純度の目的物を得ることは出来なかった。
3,3-bis (4- (2-hydroxyethoxy) phenyl) -2-phenylphthalimidine obtained in Step 2 of Comparative Example 1 is an 1EO compound represented by the following general formula (12), which is an impurity And a 3EO body represented by the following general formula (13).
The 1EO body in Comparative Example 1 is represented by the general formula (12).
Figure JPOXMLDOC01-appb-C000015
The 3EO body in Comparative Example 1 is represented by the general formula (13).
Figure JPOXMLDOC01-appb-C000016
The production method of Step 2 of Comparative Example 1 cannot avoid the production of 1EO body represented by the general formula (12) and 3EO body represented by the general formula (13), and these impurities are industrially used in the purification process. In Comparative Example 1, the purity of 3,3-bis (4- (2-hydroxyethoxy) phenyl) -2-phenylphthalimidine, which is the target product, is 96. It was 7% (high performance liquid chromatography area%), and a higher-purity target product could not be obtained.
 上記実施例1で得られた化合物と比較例1の工程2で得られた化合物との融点、軟化点、屈折率について、それぞれ表1に記載する。
Figure JPOXMLDOC01-appb-T000017
Table 1 shows the melting point, softening point, and refractive index of the compound obtained in Example 1 and the compound obtained in Step 2 of Comparative Example 1.
Figure JPOXMLDOC01-appb-T000017
 本発明の実施例1の化合物は、公知の比較例1の工程2の化合物と比較して、耐熱性(軟化点温度)が高く、また、高屈折率を有しているため、光学材料用途のポリカーボネート原料として有用である。 Since the compound of Example 1 of the present invention has higher heat resistance (softening point temperature) and higher refractive index than the known compound of Step 2 of Comparative Example 1, it is used for optical materials. It is useful as a raw material for polycarbonate.
<比較例2>
3,3-ビス(4-(2-ヒドロキシエトキシ)フェニル)-2-フェニルフタルイミジンの製造検討1
 温度計、撹拌機、冷却管を備えた四つ口フラスコに、2-フェノキシエタノール331.6g (2.40モル)、N-フェニルフタルイミド44.8g(0.20モル)を仕込み、反応容器を窒素置換した後、40℃で塩化水素ガスを吹込み、気相部の塩化水素ガス濃度を95%以上とした。その後、15%メチルメルカプタンナトリウム水溶液4.2g(メチルメルカプタンナトリウムとして0.009モル)を添加し、40℃で22時間撹拌した。
 反応22時間後の反応液において、3,3-ビス(4-(2-ヒドロキシエトキシ)フェニル)-2-フェニルフタルイミジンの生成は認められなかった。
<Comparative example 2>
Study on production of 3,3-bis (4- (2-hydroxyethoxy) phenyl) -2-phenylphthalimidine 1
A 4-necked flask equipped with a thermometer, stirrer, and condenser is charged with 331.6 g (2.40 mol) of 2-phenoxyethanol and 44.8 g (0.20 mol) of N-phenylphthalimide, and the reaction vessel is filled with nitrogen. After the replacement, hydrogen chloride gas was blown at 40 ° C., so that the hydrogen chloride gas concentration in the gas phase was 95% or more. Thereafter, 4.2 g of a 15% aqueous solution of methyl mercaptan (0.009 mol as sodium methyl mercaptan) was added and stirred at 40 ° C. for 22 hours.
In the reaction solution after 22 hours of reaction, formation of 3,3-bis (4- (2-hydroxyethoxy) phenyl) -2-phenylphthalimidine was not observed.
<比較例3>
3,3-ビス(4-(2-ヒドロキシエトキシ)フェニル)-2-フェニルフタルイミジンの製造検討2
 温度計、撹拌機、冷却管を備えた四つ口フラスコに、N-フェニルフタルイミド9.6g(0.043モル)、リンタングステン酸190mg(5.6×10-5モル)、2-フェノキシエタノール71.3g(0.52モル)を加え、2.0~3.0kPaの減圧下、温度130~135℃で22時間攪拌して反応をおこなった。
 反応22時間後の反応液において、3,3-ビス(4-(2-ヒドロキシエトキシ)フェニル)-2-フェニルフタルイミジンの生成は認められなかった。
<Comparative Example 3>
Study on production of 3,3-bis (4- (2-hydroxyethoxy) phenyl) -2-phenylphthalimidine 2
In a four-necked flask equipped with a thermometer, stirrer and condenser, N-phenylphthalimide 9.6 g (0.043 mol), phosphotungstic acid 190 mg (5.6 × 10 −5 mol), 2-phenoxyethanol 71 .3 g (0.52 mol) was added, and the reaction was carried out by stirring at a temperature of 130 to 135 ° C. for 22 hours under a reduced pressure of 2.0 to 3.0 kPa.
In the reaction solution after 22 hours of reaction, formation of 3,3-bis (4- (2-hydroxyethoxy) phenyl) -2-phenylphthalimidine was not observed.
 本発明の実施例1と比較例2の実験結果は、1-フェニル-1H-インドール-2,3-ジオンは、2-フェノキシエタノールと反応し3,3-ビス(4-(2-ヒドロキシエトキシ)フェニル)-1-フェニル-1H-インドール-2-オンを生成する(実施例1)のに対し、N-フェニルフタルイミドは、同じ反応条件において、2-フェノキシエタノールと縮合反応が進行せず3,3-ビス(4-(2-ヒドロキシエトキシ)フェニル)-2-フェニルフタルイミジンが生成しない(比較例2)ことを示している。さらに、比較例3の実験結果は、N-フェニルフタルイミドと2-フェノキシエタノールとの縮合反応において、リンタングステン酸を触媒に使用しても、反応が進行せず3,3-ビス(4-(2-ヒドロキシエトキシ)フェニル)-2-フェニルフタルイミジンが生成しない(比較例3)ことを示している。
すなわち、一般式(5)で表されるN-フェニルイサチン化合物は、N-フェニルフタルイミド化合物に比べて、一般式(6)で表されるフェノキシアルコールとの反応性が極めて高いことが明らかとなった。
 一般式(5)で表されるN-フェニルイサチン化合物は、その特異な化学構造により、一般式(6)で表されるフェノキシアルコールとの反応が容易に進行するため、従来公知化合物が含有する、ヒドロキシアルコキシ体(1EO体)や、ヒドロキシアルコキシ基のヒドロキシ基が更にヒドロキシアルコキシ基に置換した化合物(多EO体)等の不純物を含有しない、高純度な一般式(1)で表されるジヒドロキシ化合物を得ることが可能となる。本発明の一般式(1)で表されるジヒドロキシ化合物は、高純度であるために熱安定性、製品色相等の光学特性に優れている。
 さらに、本発明のジヒドロキシ化合物を原料とするポリカーボネートは、高純度の一般式(1)で表されるジヒドロキシ化合物を原料モノマーとしているため、高純度で、高耐熱性、高屈折率を有することが期待され、特に光学材料用ポリカーボネートにおいて優れた効果が期待される。
 
The experimental results of Example 1 and Comparative Example 2 of the present invention show that 1-phenyl-1H-indole-2,3-dione reacts with 2-phenoxyethanol to produce 3,3-bis (4- (2-hydroxyethoxy) (Phenyl) -1-phenyl-1H-indol-2-one is produced (Example 1), whereas N-phenylphthalimide does not undergo a condensation reaction with 2-phenoxyethanol under the same reaction conditions. This shows that -bis (4- (2-hydroxyethoxy) phenyl) -2-phenylphthalimidine is not produced (Comparative Example 2). Further, the experimental result of Comparative Example 3 shows that in the condensation reaction of N-phenylphthalimide and 2-phenoxyethanol, even when phosphotungstic acid was used as a catalyst, the reaction did not proceed and 3,3-bis (4- (2 This shows that -hydroxyethoxy) phenyl) -2-phenylphthalimidine is not produced (Comparative Example 3).
That is, it is clear that the N-phenylisatin compound represented by the general formula (5) has extremely high reactivity with the phenoxy alcohol represented by the general formula (6) as compared with the N-phenylphthalimide compound. became.
The N-phenylisatin compound represented by the general formula (5) contains a conventionally known compound because the reaction with the phenoxy alcohol represented by the general formula (6) easily proceeds due to its unique chemical structure. It is represented by high-purity general formula (1) that does not contain impurities such as a hydroxyalkoxy compound (1EO form) or a compound in which the hydroxy group of the hydroxyalkoxy group is further substituted with a hydroxyalkoxy group (multi-EO form). It becomes possible to obtain a dihydroxy compound. Since the dihydroxy compound represented by the general formula (1) of the present invention is highly pure, it is excellent in optical properties such as thermal stability and product hue.
Furthermore, since the polycarbonate using the dihydroxy compound of the present invention as a raw material uses the dihydroxy compound represented by the general formula (1) having a high purity as a raw material monomer, it may have a high purity, a high heat resistance, and a high refractive index. Expected to be particularly effective in polycarbonate for optical materials.

Claims (1)

  1.  下記一般式(1)で表されるジヒドロキシ化合物。
    Figure JPOXMLDOC01-appb-C000001
    (式中、Rは炭素原子数2~6のアルキレン基を示し、R、Rは各々独立して炭素原子数1~8のアルキル基又は炭素原子数1~8のアルコキシ基を示し、mは0~3の整数を示し、nは0~2の整数を示し、ただし、mが2以上の場合、Rは同一でも異なっていてもよく、nが2の場合、Rは同一でも異なっていてもよい。)
     
    A dihydroxy compound represented by the following general formula (1).
    Figure JPOXMLDOC01-appb-C000001
    (Wherein R represents an alkylene group having 2 to 6 carbon atoms, R 1 and R 2 each independently represents an alkyl group having 1 to 8 carbon atoms or an alkoxy group having 1 to 8 carbon atoms, m represents an integer of 0 to 3, n represents an integer of 0 to 2, provided that when m is 2 or more, R 1 may be the same or different. When n is 2, R 2 is the same But it may be different.)
PCT/JP2017/011626 2016-03-28 2017-03-23 Novel dihydroxy compound WO2017170095A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2018509159A JPWO2017170095A1 (en) 2016-03-28 2017-03-23 Novel dihydroxy compounds
KR1020187029623A KR102350817B1 (en) 2016-03-28 2017-03-23 Novel dihydroxy compound
CN201780020433.5A CN108884038A (en) 2016-03-28 2017-03-23 Novel dihydroxy compounds

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016063775 2016-03-28
JP2016-063775 2016-03-28

Publications (1)

Publication Number Publication Date
WO2017170095A1 true WO2017170095A1 (en) 2017-10-05

Family

ID=59965376

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/011626 WO2017170095A1 (en) 2016-03-28 2017-03-23 Novel dihydroxy compound

Country Status (5)

Country Link
JP (1) JPWO2017170095A1 (en)
KR (1) KR102350817B1 (en)
CN (1) CN108884038A (en)
TW (1) TWI770014B (en)
WO (1) WO2017170095A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022112943A1 (en) * 2020-11-26 2022-06-02 Shpp Global Technologies B.V. Polycarbonate and compositions and articles comprising the polycarbonate

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001206863A (en) * 2000-01-25 2001-07-31 Osaka Gas Co Ltd Fluorene compound and method for the same
JP2009155252A (en) * 2007-12-26 2009-07-16 Osaka Gas Co Ltd Alcohol having fluorene skeleton
JP2009256342A (en) * 2008-03-27 2009-11-05 Osaka Gas Co Ltd Method for producing alcohol having fluorene skeleton
JP2010505011A (en) * 2006-09-28 2010-02-18 バイエル・マテリアルサイエンス・アクチェンゲゼルシャフト Polycarbonates and copolycarbonates with improved adhesion to metals
JP2015054946A (en) * 2013-09-13 2015-03-23 Jsr株式会社 Resin molded article, film/lens, transparent electroconductive film, resin composition and polymer
WO2016014536A1 (en) * 2014-07-22 2016-01-28 Sabic Global Technologies B.V. High heat monomers and methods of use thereof

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08183853A (en) * 1994-12-28 1996-07-16 Nippon G Ii Plast Kk Polycarbonate, polycarbonate composition and production thereof
JPH08295646A (en) * 1995-04-26 1996-11-12 Teijin Ltd Production of bis(hydroxyethoxyphenyl) compound
DE19638888A1 (en) * 1996-09-23 1998-03-26 Bayer Ag Production of cyclic aromatic bis:phenol compounds
JP5517022B2 (en) * 2008-11-21 2014-06-11 ナガセケムテックス株式会社 Condensed ring structure-containing alcohol compound
KR101486560B1 (en) * 2010-12-10 2015-01-27 제일모직 주식회사 Photosensitive resin composition and black matrix using the same
WO2016014629A1 (en) * 2014-07-22 2016-01-28 Sabic Global Technologies B.V. High heat monomers and methods of use thereof

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001206863A (en) * 2000-01-25 2001-07-31 Osaka Gas Co Ltd Fluorene compound and method for the same
JP2010505011A (en) * 2006-09-28 2010-02-18 バイエル・マテリアルサイエンス・アクチェンゲゼルシャフト Polycarbonates and copolycarbonates with improved adhesion to metals
JP2009155252A (en) * 2007-12-26 2009-07-16 Osaka Gas Co Ltd Alcohol having fluorene skeleton
JP2009256342A (en) * 2008-03-27 2009-11-05 Osaka Gas Co Ltd Method for producing alcohol having fluorene skeleton
JP2015054946A (en) * 2013-09-13 2015-03-23 Jsr株式会社 Resin molded article, film/lens, transparent electroconductive film, resin composition and polymer
WO2016014536A1 (en) * 2014-07-22 2016-01-28 Sabic Global Technologies B.V. High heat monomers and methods of use thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022112943A1 (en) * 2020-11-26 2022-06-02 Shpp Global Technologies B.V. Polycarbonate and compositions and articles comprising the polycarbonate

Also Published As

Publication number Publication date
CN108884038A (en) 2018-11-23
TWI770014B (en) 2022-07-11
TW201738207A (en) 2017-11-01
KR20180130517A (en) 2018-12-07
KR102350817B1 (en) 2022-01-13
JPWO2017170095A1 (en) 2019-02-07

Similar Documents

Publication Publication Date Title
JPH0753430A (en) Substantially pure bisphenol and polymer comprising bisphenol
JP2017105996A (en) Aromatic polycarbonate oligomer
JP6778213B2 (en) Bisphenol compounds and aromatic polycarbonate
WO2017170095A1 (en) Novel dihydroxy compound
JP7267008B2 (en) Novel dihydroxy compound
JP6068204B2 (en) New trisphenol compounds
JP6205349B2 (en) Novel bis (4-hydroxyphenyl) cyclohexenes
KR102357570B1 (en) New bis(hydroxyalkoxyphenyl)diphenylmethanes
TWI718276B (en) Novel dihydroxy compound
JP2019026627A (en) Novel bisphenol compound
JP6071739B2 (en) Process for producing 1,3-bis (4-hydroxyphenyl) cyclohexanes
JP4383180B2 (en) Method for producing crystalline epoxy compound
JP2011046623A (en) New epoxy compound
JP6017363B2 (en) Novel diepoxy compounds
JP2024056799A (en) Bisphenol composition and polycarbonate resin

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2018509159

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20187029623

Country of ref document: KR

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17774636

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17774636

Country of ref document: EP

Kind code of ref document: A1