JPH05281589A - Image processing device - Google Patents

Image processing device

Info

Publication number
JPH05281589A
JPH05281589A JP4082434A JP8243492A JPH05281589A JP H05281589 A JPH05281589 A JP H05281589A JP 4082434 A JP4082434 A JP 4082434A JP 8243492 A JP8243492 A JP 8243492A JP H05281589 A JPH05281589 A JP H05281589A
Authority
JP
Japan
Prior art keywords
reaction
image
light
image processing
input image
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP4082434A
Other languages
Japanese (ja)
Inventor
Nobuyuki Watanabe
伸之 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Optical Co Ltd filed Critical Olympus Optical Co Ltd
Priority to JP4082434A priority Critical patent/JPH05281589A/en
Publication of JPH05281589A publication Critical patent/JPH05281589A/en
Withdrawn legal-status Critical Current

Links

Abstract

PURPOSE:To enable image processing with low noise by performing the arithmetic processing of an input image using reaction after catalytic action by light, and recording this image by the light in the dead zone of a photocatalyst performing oxidation-reduction reaction. CONSTITUTION:A first filter has the function of making excitation light source monochromatic. Excitation light is radiated to the filter on which an input image 2 is described. In this case, measurement is performed selecting wavelength so as to be known afterwards, so that the input image 2 is left as it is in the position even after developing. The reaction phase 3 containing reaction reagent is optically shut into a transparent container. The chemiluminescence of phosphorescence longer in wavelength than the excitation light is observed from the reaction phase 3. A second filter selects only the wavelength of phosphorescence. The function of recording the result of image processing into a computer or a picture element recording device is further added to form an image processing device The outlining, light-shade inversion, and the like of the input image can be thereby performed without electric signal processing.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は画像処理装置に関し、画
像情報の演算処理(輪郭抽出、反転)と記録方法に関す
る分野、あるいは非線形な光化学反応を電気光学的に結
合することによる光コンピューティングに関する分野に
用いられるものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an image processing apparatus, a field relating to image information arithmetic processing (contour extraction, inversion) and a recording method, or optical computing by electro-optically coupling nonlinear photochemical reactions. It is used in the field.

【0002】[0002]

【従来の技術】従来、入力画像の輪郭抽出等の演算処理
は電気信号の処理によって行っていた。しかしながら、
画像数が多くなる様な超並列処理に至っては、電気信号
の演算処理を行うコンピュータ側の限界があるとされて
いる。そこで画像の演算処理などの並列処理はそのよう
な機能をもった光学デバイスに任せることにより電気信
号処理系の負担を軽減することが試みられている。
2. Description of the Related Art Conventionally, arithmetic processing such as contour extraction of an input image has been performed by processing electric signals. However,
It is said that there is a limit on the computer side that performs arithmetic processing of electric signals in the case of massively parallel processing such that the number of images increases. Therefore, it has been attempted to reduce the load on the electric signal processing system by entrusting parallel processing such as image calculation processing to an optical device having such a function.

【0003】光学的にこれを実現するためには例えば、
レンズ系によるフーリエ変換面の演算によって入力像の
微分を行うフィルターを作る方法がある。この方法は高
速な演算速度を持つが、レンズの焦点距離による幾何学
的な制限により微小化、一体化の開発には不利である。
To achieve this optically, for example,
There is a method of making a filter that differentiates an input image by calculating a Fourier transform plane by a lens system. Although this method has a high calculation speed, it is disadvantageous in the development of miniaturization and integration due to the geometrical limitation due to the focal length of the lens.

【0004】画像の輪郭抽出等の操作を行う方法として
は、微分干渉や差分画像の位相共役によるホログラム等
が考えられている。しかしながら、位相差ができない様
な対象物では前者の方法は適用できない、また後者は差
分をとるための画像情報を予め用意するか、光学系の途
中でこれを新たに合成しなければならない。
As a method for performing an operation such as contour extraction of an image, a hologram by differential interference or phase conjugation of a difference image is considered. However, the former method cannot be applied to an object that cannot have a phase difference, and the latter method requires that image information for obtaining the difference be prepared in advance or be newly combined in the middle of the optical system.

【0005】一方、L.Kuhnertらによって提案
された方法は光化学反応以外は一切使わず、極めて簡単
な方法で画像の演算処理を行うことができる。光触媒に
よるベロゾフ・ザボチンスキ(Belozov Zhabotinski
i )反応は一種の反応拡散系の力学系であり、反応液内
の各体積要素の挙動が非線形項で結合している。ほとん
どの反応拡散系の力学系は定常状態を持たず、また力学
系の時間発展において興味深い挙動が見られることは、
よく知られている。この様な方法は前記の全光学的な画
像処理に見られる様ないわゆる参照画像との比較または
教師付きの学習を行う処理系とは異なり、自己組織的あ
るいは自己創出的な演算処理を行う点に特徴があるとい
える。前記の方法では自己組織的な画像処理を時間発展
的に行うことができるが各状態が構造不安定であり、か
つ反応自体が光学的にも不安定なため、これを光化学反
応系に摂動を与えることなく時間発展を記録する技術と
組み合わせることにより、超並列光コンピュータを構築
できる。
On the other hand, L. The method proposed by Kuhnert et al. Does not use anything other than a photochemical reaction and can perform arithmetic processing of an image by an extremely simple method. Photocatalytic Belozov Zhabotinski
i) Reaction is a kind of reaction-diffusion dynamical system, and the behavior of each volume element in the reaction solution is linked by a nonlinear term. Most reaction-diffusion systems have no steady state, and the interesting behavior of dynamical systems in time evolution is
well known. Such a method performs self-organizing or self-creating arithmetic processing, unlike a processing system that performs comparison with a so-called reference image or supervised learning as seen in the all-optical image processing described above. Can be said to have a feature. In the above method, self-organized image processing can be performed with time evolution, but since each state is structurally unstable and the reaction itself is optically unstable, this is perturbed in the photochemical reaction system. A massively parallel optical computer can be constructed by combining with the technology of recording time evolution without giving.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、従来技
術によれば、入力画像の輪郭抽出や明暗反転等を電気信
号の処理を用いずに行う、つまり自己組織的な超並列光
コンピューティングと画像演算処理の時間発展を記録す
ることができない。また、この演算−記録装置を1素子
としていわゆるニューラルネットワークを電気信号の処
理を用い無ければできない。更に、これらを光触媒を含
んだ非平衡開放系反応で実現しようとしたとき、光触媒
の反応に影響あるいは摂動を与えることなく、非平衡開
放系反応により実現される散逸構造を記録し、これによ
って自己組織的な画像処理を実現することができない。
However, according to the prior art, the contour extraction of the input image, the brightness inversion and the like are performed without using the processing of the electric signal, that is, the self-organized massively parallel optical computing and the image calculation. The time evolution of the process cannot be recorded. In addition, a so-called neural network cannot be used unless the calculation-recording device is used as one element to process electric signals. Furthermore, when these are attempted to be realized by a non-equilibrium open system reaction containing a photocatalyst, the dissipative structure realized by the non-equilibrium open system reaction is recorded without affecting or perturbing the reaction of the photocatalyst. Systematic image processing cannot be realized.

【0007】本発明は上記事情に鑑みてなされたもの
で、入力画像の輪郭や明暗反転などを電気信号の処理を
用いずに行うことができるとともに、この演算−記録装
置を1素子としていわゆるニューラルネットワークを電
気信号の処理を用いずに行う装置が容易に構成でき、更
に光触媒の反応に影響あるいは摂動を与えることなく非
平衡開放系反応により実現される散逸構造を記録し、よ
り低ノイズな画像処理を実現できる画像処理装置を提供
することを目的とする。
The present invention has been made in view of the above circumstances, and it is possible to perform contouring of an input image, inversion of brightness and the like without using processing of an electric signal, and use this operation-recording device as one element, so-called neural. A device that does not use electrical signal processing for the network can be easily constructed, and the dissipative structure realized by the nonequilibrium open system reaction is recorded without affecting or perturbing the reaction of the photocatalyst. An object is to provide an image processing device that can realize processing.

【0008】[0008]

【課題を解決するための手段】本発明は、光によって触
媒され,空間・時間的なパターンがあらわれる反応(ベ
ロゾフ・ザボチンスキ反応)を用いて入力された画像の
演算処理を行なう画像処理部と、酸化還元反応を行なう
光触媒が感応しない領域の光でこれを記録する記録部と
を具備することを特徴とする画像処理装置である。本発
明において、次に、光によって触媒されるベロゾフ・ザ
ボチンスキ反応の主な過程について説明する。 BrO3 - +Br- +2H+ =HBrO2 +HOBr …(1) HBrO2 +Br- +H+ =2HOBr …(2) BrO3 - +HBrO2 +H+ +2Ru(II) =2Ru(III) +2HOBr+H2O …(3) 4Ru(III) +BrCH(COOH)2 +2H2 O =4Ru(II)+HCOOH+2CO2 +5H+ +Br- …(4) 2HBrO2 =HOBr+BrO3 - +H+ …(5)
SUMMARY OF THE INVENTION The present invention is a method of touching by light.
Reactions that are mediated and show a spatial / temporal pattern
Of images input using Rozov-Zabotinski reaction)
Performs redox reaction with the image processing unit that performs arithmetic processing
A recording unit that records this with the light of the area that the photocatalyst is not sensitive to
An image processing apparatus comprising: Starting
In the light, then the light-catalyzed Berozov Za
The main process of Bochinski reaction will be explained. BrO3 - + Br- + 2H+ = HBrO2+ HOBr ... (1) HBrO2+ Br- + H+ = 2HOBr (2) BrO3 - + HBrO2+ H+ + 2Ru (II) = 2Ru (III) + 2HOBr + H2O ... (3) 4Ru (III) + BrCH (COOH)2+ 2H2O = 4Ru (II) + HCOOH + 2CO2+ 5H+ + Br-  … (4) 2HBrO2= HOBr + BrO3 - + H+  … (5)

【0009】ここで、陽に現れない反応過程は省略して
いる。上記式(1)〜(5)においてBr- の再生の反
応が付加されれば、全反応は自己触媒的である。Ru(I
II) に400〜500nm付近の可視光を照射すると、
+2価の3重項励起状態になり容易にBrイオンを還元
する。 photon(光)
Here, the reaction process which does not appear explicitly is omitted. In the above formulas (1) to (5), Br If the regeneration reaction of is added, the whole reaction is autocatalytic. Ru (I
When (II) is irradiated with visible light in the vicinity of 400 to 500 nm,
A +2 valence triplet excited state is established and Br ions are easily reduced. photon

【0010】 Ru(III) +e- *Ru(II) Eo =−0.84V …(6) 6 *Ru(II)+2+BrO3 - +6H+ =6Ru(III) +3+3H2 O+Br- …(7) 即ち、光の照射によってベロゾフ・ザボチンスキ反応を
制御できる。
Ru (III) + e > * Ru (II) E o = −0.84V (6) 6 * Ru (II) +2 + BrO 3 - + 6H + = 6Ru (III) +3 + 3H 2 O + Br (7) That is, the Berosov-Zabotinski reaction can be controlled by irradiation of light.

【0011】また、Ru(bpy)3 2+吸収スペクトル
は、図1に示した様に400〜500nm付近に吸収極
大を持つことからこの付近の波長で励起し光触媒反応を
行えばよいことがわかる。光照射によって蛍光性の *
u(II)の分布ができることからそれに応じBr- イオン
の濃度分布ができる。上記式(1)〜(5)の反応にお
いてはBr- イオン濃度に応じて系が阻害され減衰した
り、また振動的に振舞ったり、成長したりすることが知
られている。その結果、図2(A)に示すように、はじ
めは均一であった反応層には光照射によってBr- の分
布ができ、これによって自己触媒反応が開始し、反応の
時間発展が見られる。また、図2(B)に見られるよう
に、Br- 濃度には反応の阻害と成長の臨界点が存在
し、その付近では吸光度分布に対応して輪郭が成長す
る。
Further, since the Ru (bpy) 3 2+ absorption spectrum has an absorption maximum near 400 to 500 nm as shown in FIG. 1, it can be seen that it is sufficient to excite at a wavelength near this range to carry out a photocatalytic reaction. .. Fluorescent by light irradiation * R
Since the distribution of u (II) is created, Br The concentration distribution of ions can be created. In the reactions of the above formulas (1) to (5), Br It is known that the system is inhibited and attenuated according to the ion concentration, and also behaves oscillatory and grows. As a result, as shown in FIG. 2A, the initially uniform reaction layer was exposed to Br by light irradiation. Can be distributed, which initiates the autocatalytic reaction and the time evolution of the reaction can be seen. Moreover, as seen in FIG. 2B, Br There is a critical point of reaction inhibition and growth in the concentration, and the contour grows in the vicinity of the concentration corresponding to the absorbance distribution.

【0012】上記式(1)〜(7)の反応は光触媒反応
を含めた自己秩序形成反応としてPrigogine−Nicoli
s,Noyesらによって詳しく研究されている。即ち、非
平衡な系においては反応速度と反応系の時間的、空間的
な構造の間に興味深い相関が見られる。確かに該当する
反応係数や輸送係数の値を決める相互作用が短距離力
(原子価力、ファンデル・ワールス力)に由来している
ことは事実ではあるが、対応する力学系の解は全体とし
ての特徴にも作用する、即ち散逸構造としては長距離の
相関が結果として見られるわけである。これは光触媒の
反応系においては励起光強度という秩序パラメータの増
加によって系が平衡状態から遠ざけられ、構造のない平
衡状態から不均一な時空構造を伴った新しいエネルギー
最小点または最小軌道を相空間上に描くようになる(不
安定性)。この様な機構によりデバイスの方が答えを
「考えて」くれわけである、これが前述の「自己組織的
なデバイス」の様式である。本発明において、自己組織
的な光化学画像処理は次の通りである。
The reactions of the above formulas (1) to (7) are Prigogine-Nicoli as a self-order forming reaction including a photocatalytic reaction.
s, Noyes et al. That is, in a non-equilibrium system, there is an interesting correlation between the reaction rate and the temporal and spatial structure of the reaction system. Although it is true that the interactions that determine the values of the corresponding reaction and transport coefficients are derived from short-range forces (valence forces and van der Waals forces), the solution of the corresponding dynamical system is As a result, a long-range correlation can be seen as a dissipative structure. This is because in the photocatalytic reaction system, the system is moved away from the equilibrium state by the increase of the order parameter called the excitation light intensity, and a new energy minimum point or minimum orbit with a non-uniform space-time structure and a non-equilibrium state is found in the phase space. To draw (instability). With such a mechanism, the device "thinks" the answer, which is the above-mentioned "self-organizing device" mode. In the present invention, self-organized photochemical image processing is as follows.

【0013】式(1)〜(7)であらわした光触媒のベ
ロゾフ・ザボチンスキ反応を用いてネガ画像の現像を行
った例を図3に示す。図3は、モデルのネガ画像を式
(1)〜(5)に含まれる試薬を含む酸性水溶液の入っ
たペトリ皿の上に置き、上部より光源を照らし露光する
様子を示している。露光後ネガを取り去った画像の変化
を調べたところ、2価のルテニウム錯体はオレンジ色で
3価のものが青色であることから、両者の分布は容易に
肉眼で判断できることが確認できる(文献[1]L.K
uhnert,et al., “Image Processing using light-
sensitive chenical waves”Nature ,vol337 No19
(1989)p224-24)。画像は青色フィルタを通して自然光
下で撮影してある。その結果、時間が経過するにつれポ
ジ像が現れ、輪郭抽出像が現れる。更に、時間が経過す
ると、先ほどの輪郭線は波と反応により入力画像から例
えば輪郭というパターンを外部からなんら操作を与える
ことなく「自己組織的に生成した」ことにほかならな
い。これは例えば入力された画像から新たな特徴を抽出
するような「特徴のデータベース」に利用できる。
FIG. 3 shows an example in which a negative image is developed by using the photocatalyst Berozov-Zabotinski reaction represented by the formulas (1) to (7). FIG. 3 shows a state in which a negative image of a model is placed on a Petri dish containing an acidic aqueous solution containing the reagent contained in the formulas (1) to (5), and a light source is illuminated from above to expose the model. When the change in the image after removal of the negative after the exposure was examined, it was confirmed that the distribution of the divalent ruthenium complex was orange and the trivalent ruthenium complex was blue. 1] LK
uhnert, et al., “Image Processing using light-
sensitive chenical waves "Nature, vol337 No19
(1989) p224-24). The image was taken under natural light through a blue filter. As a result, a positive image appears and a contour extraction image appears as time passes. Further, with the lapse of time, the contour line described above is nothing but the "self-organized generation" of the contour pattern, for example, from the input image due to the reaction with the waves, without any external operation. This can be used, for example, in a "feature database" that extracts new features from an input image.

【0014】しかし、この例では、露光をするための光
を単色光化しておらず、また画像を記録するために励起
光源と同じ波長の光を用いている。従って、このような
記録方式の場合、光触媒反応に摂動を与えながら画像を
記録していることになり、画像処理の結果が必ずしも正
しいとは言えない。即ち、画像処理の結果を得るために
吸光度分布を測定する方法を用いる限りは、必ず光触媒
反応に摂動を与えていることになる。次に、化学発光の
消光を用いた画像の記録について説明する。
However, in this example, the light for exposure is not converted into a monochromatic light, and light having the same wavelength as that of the excitation light source is used for recording an image. Therefore, in the case of such a recording method, the image is recorded while perturbing the photocatalytic reaction, and the result of the image processing is not always correct. That is, the photocatalytic reaction is always perturbed as long as the method of measuring the absorbance distribution is used to obtain the result of the image processing. Next, recording of an image using quenching of chemiluminescence will be described.

【0015】式(6),(7)において *Ru(II)は強
い還元性の試薬として用いられているが、これはまた電
荷移動型励起状態である。始めに光励起によって1重項
励起状態をとり、速い系間交叉により3重項励起状態を
とり燐光を放つ発光性の試薬とみなせる(下記式
(8))。ここで、式(7)の還元反応が生じて発光性
の化学種を消去する(消去反応)。即ち、 *Ru(II)の
燐光の解消がわかれば、BrO3 - の濃度分布を知るこ
とができる。このことから光触媒のベロゾフ・ザボチン
スキ反応による自己組織的な散逸構造を光触媒反応自身
に摂動を与えることなく記録するためには化学発光の2
次元分布を測定すればよいことがわかる。 photon(光)
In equations (6) and (7) * Ru (II) has been used as a strongly reducing reagent, which is also in a charge transfer excited state. First, it can be regarded as a luminescent reagent that emits phosphorescence by taking a singlet excited state by photoexcitation and a triplet excited state by fast intersystem crossing (formula (8) below). Here, the reduction reaction of the formula (7) occurs to erase the light-emitting chemical species (elimination reaction). That is, * If you know the resolution of phosphorescence of Ru (II), BrO 3 - It is possible to know the concentration distribution of. Therefore, in order to record the self-organized dissipative structure due to the photocatalytic Berozov-Zabotinski reaction without perturbing the photocatalytic reaction itself, chemiluminescence 2
It is understood that it is sufficient to measure the dimensional distribution. photon

【0016】 Ru(III) +e- *Ru(II)(発光性) …(8) 6 *Ru(II)+2+BrO3 - +6H+ =6Ru(III) +3+3H2 O+Br- Ru (III) + e * Ru (II) (luminous property) (8) 6 * Ru (II) +2 + BrO 3 - + 6H + = 6Ru (III) +3 + 3H 2 O + Br

【0017】(消光反応) …(9) 本発明においては、光触媒反応のための短波長の励起光
である入力光と、パターン記録のための長波長の化学発
光を光学的フィルタ等で分別し中間体の濃度を選択的に
記録することで画像処理の結果を得るものである。消光
反応によって減少した *Ru(II)+2にともなう燐光発光
の分布は例えば2次元の光子計数装置の様な光感度低ノ
イズの微弱光検出装置などにより容易に検出される。ま
たは光感度な固体撮像素子と組み合わせることによって
デバイスの小型化を図ることが可能である。
(Quenching reaction) (9) In the present invention, input light which is excitation light of short wavelength for photocatalytic reaction and chemiluminescence of long wavelength for pattern recording are separated by an optical filter or the like. The result of image processing is obtained by selectively recording the density of the intermediate. Reduced by quenching reaction * The distribution of phosphorescence emission due to Ru (II) +2 is easily detected by a weak photodetector with low photosensitivity and low noise such as a two-dimensional photon counter. Alternatively, it is possible to reduce the size of the device by combining it with a solid-state image sensor having photosensitivity.

【0018】[0018]

【実施例】以下、本発明の一実施例について図4
(A),(B)を参照して説明する。ここで、図4
(A)は透過型画素処理装置の概略断面図、図4(B)
は図4(A)の展開して示す斜視図を示す。
EXAMPLE An example of the present invention will be described below with reference to FIG.
This will be described with reference to (A) and (B). Here, FIG.
4A is a schematic cross-sectional view of a transmissive pixel processing device, FIG.
Shows a perspective view showing the developed state of FIG.

【0019】第1フィルタ1は、色ガラスフィルタでも
よく干渉フィルタでもよく、励起光源を単色化する働き
を持つ。励起光を入力画像2が描かれているフィルムに
照射する。この場合、あとから分かるように波長選別を
行って測定するので、現像後も入力画像2をそのままの
位置にしておく。あるいは、連続的に励起光を照射し
「非平衡」な状態の反応で燐光の計測を行ってもよい。
The first filter 1 may be a colored glass filter or an interference filter, and has the function of monochromaticizing the excitation light source. Excitation light is applied to the film on which the input image 2 is drawn. In this case, since wavelength selection is performed and measurement is performed as will be seen later, the input image 2 is left in the same position even after development. Alternatively, phosphorescence may be measured by continuously irradiating with excitation light and reacting in a “non-equilibrium” state.

【0020】反応試薬を含んだベロゾフ・ザボチンスキ
(BZ)反応相3は、光学的に透明な容器に閉じ込めて
おく。反応相3からは励起光より波長の長い燐光の化学
発光が観測される。第2フィルタ4は燐光の波長のみを
選別する。しかし、Ru(bpy)3 2+還元反応により
オレンジ色の燐光を発することが知られている。例え
ば、 Ru(bpy)3 3+ -OH=Ru(bpy)3 2++hν(燐光) 前記式(7)の様式においては、これは逆反応に対応す
る。平衡の概念から推測するとこの逆反応は起こる確率
は少ないと考えられる。
The Berozov-Zabotinski (BZ) reaction phase 3 containing the reaction reagent is enclosed in an optically transparent container. From the reaction phase 3, phosphorescent chemiluminescence having a wavelength longer than that of the excitation light is observed. The second filter 4 selects only the wavelength of phosphorescence. However, it is known to emit orange phosphorescence by the Ru (bpy) 3 2+ reduction reaction. For example, Ru (bpy) 3 3+ + - In the manner of OH = Ru (bpy) 3 2+ + hν ( phosphorescence) the formula (7), which corresponds to the reverse reaction. Inferring from the concept of equilibrium, this reverse reaction is unlikely to occur.

【0021】しかして、図4の装置で画像処理を行った
結果を図6に示すようにコンピュータ又は画素記録のた
めの装置に記録させる機能を付加することにより、本発
明に基づく画像処理装置が構成できる。なお、図6にお
いて、11は画像処理部12の画像入力部、13は受光部、14
は画像の記憶を行う記憶部を示す、
Therefore, by adding the function of recording the result of image processing by the apparatus of FIG. 4 to the computer or the apparatus for recording pixels as shown in FIG. 6, the image processing apparatus according to the present invention can be realized. Can be configured. In FIG. 6, 11 is an image input unit of the image processing unit 12, 13 is a light receiving unit, and 14 is an image receiving unit.
Indicates a storage unit for storing images,

【0022】なお、本発明に係る画像処理装置は、図4
のものに限らず、図5に示すように反射型画素処理装置
でもよい。この装置においては、第2のフィルタ4は
「反射による迷光」の除去のために設けらている。
The image processing apparatus according to the present invention is shown in FIG.
However, the pixel processing device may be a reflective pixel processing device as shown in FIG. In this device, the second filter 4 is provided to remove "stray light due to reflection".

【0023】また、図7に示すような構成としてもよ
い。つまり、一つのベロゾフ・ザボチンスキ反応相を入
力画像から自己組織的にパターンを創出するニューロ素
子と見なし、この様な素子を多重の結合させることによ
りさらに高度な画像処理が可能となる。これを実現する
方法としては、撮像管で受光したパターンと同じパター
ンの発光を例えばLED等を用いて実現し、これをもう
一つの画像処理部に入力させる。この様な装置を多重に
結合させることにより、画像の多層非線型変換を並列的
に実現できる。なお、図7において、21は撮像素子、22
は面発光部、23,24は画像処理部12a,12b間にそれぞ
れ設けられたA/D変換部、面発光の駆動回路を示す。
Further, the structure shown in FIG. 7 may be adopted. In other words, one berozov-zabotinski reaction phase is regarded as a neuro element that self-organizes to create a pattern from an input image, and more sophisticated image processing becomes possible by combining multiple such elements. As a method of realizing this, light emission of the same pattern as the pattern received by the image pickup tube is realized by using, for example, an LED, and this is input to another image processing unit. Multi-layer nonlinear conversion of an image can be realized in parallel by combining such devices in multiple layers. In FIG. 7, reference numeral 21 denotes an image sensor, 22
Is a surface emitting unit, 23 and 24 are A / D conversion units respectively provided between the image processing units 12a and 12b, and a surface emitting drive circuit.

【0024】[0024]

【発明の効果】以上詳述した如く本発明によれば、自己
組織的な超並列コンピュータと画像演算処理の時間発展
を記録する技術を光触媒反応を用いた非平衡開放系の反
応を用い、光強度を秩序パラメータに置き換えることに
より、入力画像の輪郭や明暗反転などを電気信号の処理
を用いずに行うことができる。また、この演算−記録装
置を1素子としていわゆるニューラルネットワークを電
気信号の処理を用いずに行う装置が容易に構成できる。
更に、光触媒の反応に影響あるいは摂動を与えることな
く非平衡開放系反応により実現される散逸構造を記録
し、より低ノイズな画像処理を行うことができる。
As described above in detail, according to the present invention, a self-organizing massively parallel computer and a technique for recording the time evolution of image processing are provided by using a non-equilibrium open system reaction using a photocatalytic reaction. By substituting the intensity for the order parameter, the contour of the input image and the light / dark reversal can be performed without using the electric signal processing. Further, it is possible to easily configure a device that uses this arithmetic-recording device as one element to perform a so-called neural network without using processing of electric signals.
Further, the dissipative structure realized by the nonequilibrium open system reaction can be recorded without affecting or perturbing the reaction of the photocatalyst, and image processing with lower noise can be performed.

【図面の簡単な説明】[Brief description of drawings]

【図1】Ru(bpy)3 +2吸収スペクトルの特性図。FIG. 1 is a characteristic diagram of Ru (bpy) 3 +2 absorption spectrum.

【図2】光照射による蛍光性の *Ru(II)の分布の特性
図。
FIG. 2 is a characteristic diagram of fluorescent * Ru (II) distribution by light irradiation.

【図3】光触媒のベロゾフ・ザボチンスキ反応を用いて
ネガ画像の現像を行う場合の説明図。
FIG. 3 is an explanatory diagram in the case of developing a negative image using the photocatalyst Berozov-Zabotinski reaction.

【図4】本発明の一実施例に係る透過型画像処理装置の
説明図。
FIG. 4 is an explanatory diagram of a transmissive image processing apparatus according to an embodiment of the present invention.

【図5】本発明の他の実施例に係る反射型画像処理装置
の説明図。
FIG. 5 is an explanatory diagram of a reflective image processing apparatus according to another embodiment of the present invention.

【図6】図4の画像処理装置からの入力画像を記録する
場合の説明図。
FIG. 6 is an explanatory diagram for recording an input image from the image processing apparatus of FIG.

【図7】本発明の他の実施例に係る画像処理装置であっ
て、面発光手段を備えた装置の説明図。
FIG. 7 is an explanatory diagram of an image processing apparatus according to another embodiment of the present invention, the apparatus including surface emitting means.

【符号の説明】[Explanation of symbols]

1,4…フィルタ、2…入力画像、3…BZ反応相、5
…撮像管、11…画像入力部、12,12a,12b…画像処理
部、13…受光部、14…記憶部、21…撮像素子、22…面発
光部、23…A/D変換部、24…面発光の駆動回路。
1, 4 ... Filter, 2 ... Input image, 3 ... BZ reaction phase, 5
... Image pickup tube, 11 ... Image input section, 12, 12a, 12b ... Image processing section, 13 ... Light receiving section, 14 ... Storage section, 21 ... Image pickup element, 22 ... Surface emitting section, 23 ... A / D conversion section, 24 ... Surface emitting drive circuit.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 光によって触媒され,空間・時間的なパ
ターンがあらわれる反応を用いて入力された画像の演算
処理を行なう画像処理部と、酸化還元反応を行なう光触
媒が感応しない領域の光でこれを記録する記録部とを具
備することを特徴とする画像処理装置。
1. An image processing unit for performing arithmetic processing of an input image using a reaction which is catalyzed by light and in which a spatial / temporal pattern appears, and a photocatalyst for performing a redox reaction using light in a region insensitive. An image processing apparatus comprising: a recording unit that records the image.
JP4082434A 1992-04-03 1992-04-03 Image processing device Withdrawn JPH05281589A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4082434A JPH05281589A (en) 1992-04-03 1992-04-03 Image processing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4082434A JPH05281589A (en) 1992-04-03 1992-04-03 Image processing device

Publications (1)

Publication Number Publication Date
JPH05281589A true JPH05281589A (en) 1993-10-29

Family

ID=13774458

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4082434A Withdrawn JPH05281589A (en) 1992-04-03 1992-04-03 Image processing device

Country Status (1)

Country Link
JP (1) JPH05281589A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020189741A1 (en) * 2019-03-20 2020-09-24 国立大学法人大阪大学 Signal processing device and signal processing method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020189741A1 (en) * 2019-03-20 2020-09-24 国立大学法人大阪大学 Signal processing device and signal processing method

Similar Documents

Publication Publication Date Title
Cooke et al. Reflection-hologram processing for high efficiency in silver-halide emulsions
Chen et al. Two-dimensional imaging through diffusing media using 150-fs gated electronic holography techniques
Bernardin et al. Dynamics of the formation of Bragg gratings in germanosilicate optical fibers
Latta The bleaching of holographic diffraction gratings for maximum efficiency
Nisenson et al. Real time optical processing with Bi 12 SiO 20 PROM
Lübbers et al. The examination of multicomponent systems in biological materials by means of a rapid scanning photometer
Heflinger et al. Holographic motion pictures of microscopic plankton
McMahon et al. Measurements of the stability of bleached photographic phase holograms
JPH05281589A (en) Image processing device
Selb et al. Nonlinear effects in acousto-optic imaging
Lehmann et al. High efficiencies, low noise, and suppression of photochromic effects in bleached silver halide holography
Jefferies et al. Blind deconvolution in optical diffusion tomography
Lupo et al. Deep photonic reservoir computer based on frequency multiplexing with fully analog connection between layers
JPH063723A (en) Image processor
Morris et al. Chemically induced dynamic nuclear polarization. General solution of CKO [Closs-Kaptein-Oosterhoff] model. Applicability to reactions run in low magnetic fields
Kassubeck et al. Shape from caustics: reconstruction of 3D-printed glass from simulated caustic images
Andreeva et al. Silver-halide photographic materials based on nanoporous glasses
CN104568850B (en) A kind of computing chip Imaging biological sensing platform using surface plasma chip
CN104568848B (en) A kind of surface plasma chip and preparation method thereof for biosensor
Hariharan et al. Suppression of printout effect in photographic phase holograms
Elek et al. Robust and practical measurement of volume transport parameters in solid photo-polymer materials for 3D printing
Dan et al. Extended Kalman filtering for enhancing a cyclic pattern-updating scheme of single-pixel dynamic fluorescence spatial frequency domain imaging
Burge et al. Dependence of spatial coherence of 23.2–23.6-nm radiation on the geometry of a multielement germanium x-ray laser target
JPH03202813A (en) Space optical modulator using electron trap material
Wang et al. Intelligent image sensor based on probing the evolution of redox potentials distributed in reaction–diffusion medium

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19990608