JPH05281170A - Method for determining quantity of moisture in solid - Google Patents

Method for determining quantity of moisture in solid

Info

Publication number
JPH05281170A
JPH05281170A JP7421292A JP7421292A JPH05281170A JP H05281170 A JPH05281170 A JP H05281170A JP 7421292 A JP7421292 A JP 7421292A JP 7421292 A JP7421292 A JP 7421292A JP H05281170 A JPH05281170 A JP H05281170A
Authority
JP
Japan
Prior art keywords
solid
moisture
water
quantifying
water content
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7421292A
Other languages
Japanese (ja)
Other versions
JP3058748B2 (en
Inventor
Yukihiro Etsuno
幸広 越野
Akira Ubukawa
章 生川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP4074212A priority Critical patent/JP3058748B2/en
Publication of JPH05281170A publication Critical patent/JPH05281170A/en
Application granted granted Critical
Publication of JP3058748B2 publication Critical patent/JP3058748B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Sampling And Sample Adjustment (AREA)
  • Devices For Use In Laboratory Experiments (AREA)
  • Investigating Or Analyzing Materials Using Thermal Means (AREA)
  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)

Abstract

PURPOSE:To obtain the highly accurate method for determining the quantity of moisture in solid, which can determine the minute quantity of the moisture and has the excellent operability. CONSTITUTION:Solid such as sulfer is heated to the temperature of 120-200 deg.C in the flow of inactive gas so as to obtain the fused state. The moisture is removed, and the quantity of the moisture is determined. As the inactive gas, argon, nitrogen, helium or the like is used. The moisture, which is adsorbed in the surface of the lump of the solid and the moisture in the lump can be completely extracted into solvent by transforming the solid into the fused state. The minute quantity of the moisture at a p.p.m. lcan be accurately measured.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、固体の水分定量方法に
関するもので、詳細には例えば硫黄中の水分を定量する
ための測定方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for quantifying water in a solid, and more particularly to a measuring method for quantifying water in sulfur.

【0002】[0002]

【従来の技術】従来より、固体の水分を測定する方法と
しては、 重量法により測定する方法がある。この方法は、固体
試料を乾燥器中で加熱後、重量減少分を水分として定量
する方法である。 カールフィッシャー電量滴定法では、固体試料例えば
硫黄を水分抽出用の溶媒中に投入し、抽出された水分を
ヨウ素と反応させ、ヨウ化物を電解酸化してヨウ素を発
生させ電量滴定する。
2. Description of the Related Art Conventionally, as a method for measuring the water content of a solid, there is a gravimetric method. This method is a method in which a solid sample is heated in a dryer and then the weight loss is quantified as water content. In the Karl Fischer coulometric titration method, a solid sample such as sulfur is put into a solvent for extracting water, and the extracted water is reacted with iodine, and iodide is electrolytically oxidized to generate iodine to perform coulometric titration.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、このよ
うな従来の固体の水分定量方法によると、固体が硫黄の
場合、前記の重量減量法によると、加熱温度が60℃
と低く、硫黄中の水分を完全に追い出せない可能性があ
る。また、更に温度を上昇すると硫黄自体がSO 2 とし
て揮散するため、正確な定量が困難であるという問題が
ある。
[Problems to be Solved by the Invention]
According to the conventional method for determining the moisture content of solids, solids contain sulfur.
In this case, according to the above weight loss method, the heating temperature is 60 ° C.
And the water in the sulfur may not be completely removed.
It Further, when the temperature is further increased, sulfur itself becomes SO 2 age
The problem is that accurate quantification is difficult
is there.

【0004】前記のカールフィッシャー電量滴定法に
よると、硫黄が塊状の場合、塊の内部の水分は抽出する
ことは難しい。また硫黄が粉末の場合、溶媒との親和性
が悪く固体が溶媒上部に浮いてしまい、測定操作が困難
であるという問題がある。さらには、前記とのいず
れの方法によっても数10ppm程度の微量の水分定量
をすることはできない。
According to the Karl Fischer coulometric titration method described above, when the sulfur is in the form of lumps, it is difficult to extract the water inside the lumps. Further, when the sulfur is powder, there is a problem that the affinity with the solvent is poor and the solid floats on the upper part of the solvent, which makes the measurement operation difficult. Furthermore, it is not possible to quantify a trace amount of water of about several tens of ppm by any of the above methods.

【0005】本発明は、このような問題点に鑑みなされ
たもので、操作性が良好で微量の水分定量をも可能な高
精度の固体の水分定量方法を提供することを目的とす
る。
The present invention has been made in view of the above problems, and an object of the present invention is to provide a highly accurate solid water quantification method which has good operability and is capable of quantifying a small amount of water.

【0006】[0006]

【課題を解決するための手段】前記課題を解決するため
の本発明による固体の水分定量方法は、固体を不活性ガ
ス流中で加熱し、溶融状態にして水分を除去し、この水
分を定量することを特徴とする。固体を加熱し、溶融状
態とする温度が120〜200℃の範囲であることを特
徴とする。
The method for quantifying the water content of a solid according to the present invention for solving the above-mentioned problems is a method of heating a solid in an inert gas flow to bring it into a molten state to remove the water content, and quantifying the water content. It is characterized by doing. It is characterized in that the temperature for heating the solid to a molten state is in the range of 120 to 200 ° C.

【0007】固体が硫黄であることを特徴とする。不活
性ガスとしてアルゴン、窒素またはヘリウムの少なくと
もいずれか1種を用いることを特徴とする。
It is characterized in that the solid is sulfur. At least one of argon, nitrogen and helium is used as the inert gas.

【0008】[0008]

【作用】固体を不活性ガス中で温度120〜200℃に
加熱し、溶融状態とすることで、固体の塊の表面に吸着
した水分と、塊の中に存在する水分とを、完全に溶媒中
に抽出でき、正確で精度の高い水分の定量を行える。本
発明によると、固体の表面および固体の内部の水分を完
全に追い出し、ppmレベルの微量の水分を正確に測定
可能である。
By heating the solid in an inert gas to a temperature of 120 to 200 ° C. to bring it into a molten state, the water adsorbed on the surface of the solid mass and the water present in the mass are completely dissolved in the solvent. It can be extracted into the inside and the amount of water can be determined accurately and accurately. According to the present invention, moisture on the surface of the solid and the inside of the solid can be completely removed, and a trace amount of moisture at the ppm level can be accurately measured.

【0009】[0009]

【実施例】以下、本発明の実施例を図面に基づいて説明
する。まず、固体の水分定量装置を図1に示す。図1
は、水分抽出装置1を示す。図1において、1は、加熱
気化装置を示す。試料ボート3の中に硫黄を導入し、こ
れを加熱炉2に挿入する。この加熱炉2の炉内を温度1
20〜200℃に加熱し、硫黄を溶融状態にし、水分を
気化させて、パイプ4を介して滴定セル5内の溶媒に抽
出する。
Embodiments of the present invention will be described below with reference to the drawings. First, a solid moisture quantification device is shown in FIG. Figure 1
Shows the water extraction device 1. In FIG. 1, 1 indicates a heating vaporizer. Sulfur is introduced into the sample boat 3 and inserted into the heating furnace 2. The temperature inside the heating furnace 2 is 1
It is heated to 20 to 200 ° C. to bring sulfur into a molten state, vaporize water, and extract the solvent in the titration cell 5 via the pipe 4.

【0010】滴定セル5の詳細を図2および図3に示
す。滴定セル5内には、あらかじめ試料投入栓6より例
えば、メタノール、クロロホルム、ピリジン等の市販の
溶媒を導入しておく。そして、図1に示すパイプ4に連
結される入口管7より容器8内の溶媒中に水分を導入す
る。次に定量操作は次のとおりである。滴定セル5内の
水分をあらかじめ滴定して0にする。加熱気化装置1中
の試料ボート3に固体を入れ、窒素パージしながら温度
140℃に加熱し、固体を溶融状態とし、約10分間保
持して、水分を溶媒に抽出する。抽出された水分を滴定
する。得られた滴定値より固体の水分量を算出する。
Details of the titration cell 5 are shown in FIGS. 2 and 3. Into the titration cell 5, a commercially available solvent such as methanol, chloroform, pyridine or the like is previously introduced from the sample charging plug 6. Then, water is introduced into the solvent in the container 8 through the inlet pipe 7 connected to the pipe 4 shown in FIG. Next, the quantitative operation is as follows. The water content in the titration cell 5 is previously titrated to zero. The solid is put in the sample boat 3 in the heating vaporizer 1 and heated to a temperature of 140 ° C. while purging with nitrogen to bring the solid into a molten state and hold it for about 10 minutes to extract water into the solvent. The extracted water content is titrated. The water content of the solid is calculated from the obtained titration value.

【0011】実験例 1 実験例1は、上記定量操作により分析した例である。分
析条件は、試料量:2〜6g、加熱温度:140℃、不
活性ガス:窒素である。この分析結果を表1に示す。
Experimental Example 1 Experimental example 1 is an example of analysis by the above quantitative operation. The analysis conditions are sample amount: 2 to 6 g, heating temperature: 140 ° C., inert gas: nitrogen. The results of this analysis are shown in Table 1.

【0012】[0012]

【表1】 実験例 2 実験例2は、水分を吸着させた硫黄中の水分を定量する
例である。この場合の試料の調製法は次のとおりであ
る。硫黄試料20gに蒸留水20μlを加え、これを乳
鉢中で粉砕混合し、この粉砕混合品を1g取り、更に1
9gの硫黄試料とともに再び粉砕混合して調製した。
[Table 1] Experimental Example 2 Experimental Example 2 is an example of quantifying the water content in the sulfur that has adsorbed the water content. The sample preparation method in this case is as follows. 20 μl of distilled water was added to 20 g of a sulfur sample, which was crushed and mixed in a mortar, and 1 g of this crushed mixed product was taken.
Prepared by milling again with 9 g of sulfur sample.

【0013】上記定量操作による分析結果を表2に示
す。
Table 2 shows the results of analysis by the above quantitative operation.

【0014】[0014]

【表2】 表2中、nの1〜5に示す水分量の測定値にばらつきが
あるが、試料調製法から考えると誤差範囲である。次
に、本発明の実施例で用いた電量滴定法について説明す
る。図3および図4は、本発明の実施例で用いた電量滴
定装置と電量滴定セルの一例を示す。
[Table 2] In Table 2, there are variations in the measured values of water content indicated by n of 1 to 5, but this is an error range when considered from the sample preparation method. Next, the coulometric titration method used in the examples of the present invention will be described. 3 and 4 show an example of the coulometric titration device and the coulometric titration cell used in the examples of the present invention.

【0015】電量滴定セルは、陽極液室11と陰極液室
12の2室からなり、両室11、12はセラミックスあ
るいはイオン交換樹脂等の隔膜13により分離される。
この隔膜13には、電解時、陽極液と陰極液が混合せ
ず、かつ電気抵抗の小さいものが用いられる。陽極液室
11、陰極液室12は、それぞれ電解電極15と滴定の
終点を求める指示電極をもっている。大気開放部には、
シリカゲル等を充填した乾燥管18を有している。
The coulometric titration cell comprises two chambers, an anolyte chamber 11 and a catholyte chamber 12, and the chambers 11 and 12 are separated by a diaphragm 13 such as ceramics or ion exchange resin.
The diaphragm 13 is made of a material that does not mix the anolyte and the catholyte during electrolysis and has a low electric resistance. The anolyte compartment 11 and the catholyte compartment 12 each have an electrolytic electrode 15 and an indicator electrode for determining the end point of titration. In the atmosphere open part,
It has a drying tube 18 filled with silica gel or the like.

【0016】図4に示す各部は次の機能を有する。 分極電流検出部20:指示電極に直流または交流電源よ
り定電圧または定電流を加え、指示電極管の微小電流ま
たは微小電圧変化を増幅して終点を検出する。 電流制御部21:検出増幅部からの信号を受けて終点近
くで電解電流を断続または漸減して電解を制御する。
Each part shown in FIG. 4 has the following functions. Polarization current detection unit 20: A constant voltage or constant current is applied to the indicator electrode from a DC or AC power source, and a minute current or minute voltage change in the indicator electrode tube is amplified to detect the end point. Current control unit 21: Controls electrolysis by receiving a signal from the detection amplification unit and intermittently or gradually decreasing the electrolysis current near the end point.

【0017】電解電流電源22:定電流(107.1m
Aまたはその倍数)または可変電流(0〜500mA)
電源である。 終点検出表示部23:検出増幅部からの信号を受けて分
極電圧または電流が設定された終点値になったとき、測
定終了を表示する。 電流積算部24:滴定に要した電流を積算して電気量ま
たは水分量(μgH2O)を表示する。
Electrolytic current power source 22: constant current (107.1 m)
A or multiple thereof) or variable current (0 to 500 mA)
Power. End point detection display unit 23: Displays the end of measurement when the polarization voltage or current reaches the set end point value in response to the signal from the detection amplification unit. Current accumulator 24: Accumulates the current required for titration and displays the amount of electricity or the amount of water (μg H 2 O).

【0018】[0018]

【発明の効果】以上説明したように、本発明による固体
の水分定量方法によると、固体中の微小水分量を正確に
検出することができるという効果がある。
As described above, the method for quantifying the water content of a solid according to the present invention has the effect that the minute water content in a solid can be accurately detected.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の加熱気化装置を示す概略模式図であ
る。
FIG. 1 is a schematic diagram showing a heating vaporizer of the present invention.

【図2】滴定セルを示す概略斜視図である。FIG. 2 is a schematic perspective view showing a titration cell.

【図3】滴定セルを示す概略構成図である。FIG. 3 is a schematic configuration diagram showing a titration cell.

【図4】滴定装置を示す概略構成図である。FIG. 4 is a schematic configuration diagram showing a titration device.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 固体を不活性ガス気流中で加熱し、溶融
状態にして水分を追い出し、この水分を定量することを
特徴とする固体の水分定量方法。
1. A method for quantifying moisture in a solid, comprising heating the solid in an inert gas stream to bring it into a molten state, expelling the moisture, and quantifying the moisture.
【請求項2】 固体を加熱し、溶融状態とする温度が1
20〜200℃の範囲であることを特徴とする請求項1
記載の固体の水分定量方法。
2. The temperature at which a solid is heated to a molten state is 1
It is in the range of 20 to 200 ° C.
A method for quantifying the water content of a solid as described.
【請求項3】 固体が硫黄であることを特徴とする請求
項1記載の固体の水分定量方法。
3. The method for quantifying the water content of a solid according to claim 1, wherein the solid is sulfur.
【請求項4】 不活性ガスとしてアルゴン、窒素または
ヘリウムの少なくともいずれか1種を用いることを特徴
とする請求項1記載の固体の水分定量方法。
4. The method for quantifying water content in a solid according to claim 1, wherein at least one of argon, nitrogen and helium is used as the inert gas.
JP4074212A 1992-03-30 1992-03-30 Sulfur moisture determination method Expired - Fee Related JP3058748B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4074212A JP3058748B2 (en) 1992-03-30 1992-03-30 Sulfur moisture determination method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4074212A JP3058748B2 (en) 1992-03-30 1992-03-30 Sulfur moisture determination method

Publications (2)

Publication Number Publication Date
JPH05281170A true JPH05281170A (en) 1993-10-29
JP3058748B2 JP3058748B2 (en) 2000-07-04

Family

ID=13540662

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4074212A Expired - Fee Related JP3058748B2 (en) 1992-03-30 1992-03-30 Sulfur moisture determination method

Country Status (1)

Country Link
JP (1) JP3058748B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011108384A1 (en) * 2010-03-01 2011-09-09 セントラル硝子株式会社 Method and device for measuring water content in hydrogen fluoride-containing compound

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011108384A1 (en) * 2010-03-01 2011-09-09 セントラル硝子株式会社 Method and device for measuring water content in hydrogen fluoride-containing compound
JP2011179951A (en) * 2010-03-01 2011-09-15 Central Glass Co Ltd Method and instrument for measuring amount of moisture in hydrogen fluoride-containing compound
CN102782491A (en) * 2010-03-01 2012-11-14 中央硝子株式会社 Method and device for measuring water content in hydrogen fluoride-containing compound
KR101469668B1 (en) * 2010-03-01 2014-12-05 샌트랄 글래스 컴퍼니 리미티드 Method and device for measuring water content in hydrogen fluoride-containing compound
US9097688B2 (en) 2010-03-01 2015-08-04 Central Glass Company, Limited Method and device for measuring water content in hydrogen fluoride-containing fluoride salt compounds

Also Published As

Publication number Publication date
JP3058748B2 (en) 2000-07-04

Similar Documents

Publication Publication Date Title
Marinenko et al. Electrochemical equivalents of benzoic and oxalic acid
US4352068A (en) Method of measuring activities by means of solid ion conductors
JPH05281170A (en) Method for determining quantity of moisture in solid
JP3139818B2 (en) Verification method of accuracy in moisture determination of solids
CN111624300A (en) Moisture determination method and moisture determination device
US2870067A (en) Process for fluoride detection
CA1036538A (en) Electric surface area meter
EP0281037B1 (en) Method of measuring oxygen in silicon
CN103822962A (en) Apparatus for measuring PCT curve of material by using solid state proton conductor, and method thereof
Haring et al. Amalgam Activities and Standard Electrode Potentials: I. Tin
Shin et al. Precision isoperibol calorimeter with automatic data acquisition and processing
Chreitzbeeg et al. The overpotential of the manganese dioxide electrode
Cahen et al. Gibbs free energy of formation of Bi2O3 from EMF cells with δ-Bi2O3 solid electrolyte
JPH10282087A (en) Method and instrument for measuring unsaturated moisture in earth and sand
GB2069147A (en) Coulometric titration method
Yoshimori et al. The Precise Coulometric Titration of the Acidic Primary Standard using Amperometric End-point Detection
JPS61191956A (en) Method and apparatus for measuring sulfur portion in material containing nitrogen and sulfur
JP2015179057A (en) Moisture measuring method and moisture measuring device using karl fischer reagent
GB1208209A (en) Method and system for determining the oxygen content in liquids
US4416736A (en) Procedure for the enrichment of the element of interest from a solution for nonflame atomic absorption spectroscopy
Finno et al. Coefficient of permeability from AC electroosmosis experiments. II: Results
RU2110119C1 (en) Method for determining degree of storage battery charging
Barbier Continuous monitoring of lithium in dynamic Pb–17Li systems
SU819677A1 (en) Method of determination of oxygen ion transfer number
RU1577506C (en) Method of determining concentration of oxygen in metals and alloys

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees