JPH05281121A - Method of verifying correctness of quantification of moisture of solid - Google Patents

Method of verifying correctness of quantification of moisture of solid

Info

Publication number
JPH05281121A
JPH05281121A JP7421392A JP7421392A JPH05281121A JP H05281121 A JPH05281121 A JP H05281121A JP 7421392 A JP7421392 A JP 7421392A JP 7421392 A JP7421392 A JP 7421392A JP H05281121 A JPH05281121 A JP H05281121A
Authority
JP
Japan
Prior art keywords
water
solid
moisture
verifying
crystallization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7421392A
Other languages
Japanese (ja)
Other versions
JP3139818B2 (en
Inventor
Yukihiro Etsuno
幸広 越野
Akira Ubukawa
章 生川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP04074213A priority Critical patent/JP3139818B2/en
Publication of JPH05281121A publication Critical patent/JPH05281121A/en
Application granted granted Critical
Publication of JP3139818B2 publication Critical patent/JP3139818B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials Using Thermal Means (AREA)
  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)
  • Sampling And Sample Adjustment (AREA)

Abstract

PURPOSE:To verify whether a minute amount of moisture is surely measured in a moisture quantifying method, by heating a substance including water or crystal water with a solid, and confirming the collecting amount of water or crystal water. CONSTITUTION:A solvent such as methanol, chloroform, pyridine or the like is introduced into a titration cell 5 beforehand. The moisture in the cell 5 is turned to 0 through titration. A substance including crystal water, for example, barium hydrochloride, etc., is introduced along with a solid into a sample port 3 within a heater/evaporator 1 and inserted into a heating furnace 2. The substance is heated to 120-200 deg.C while being purged by nitrogen gas. Accordingly, the moisture in the crystal water and the solid is evaporated and, extracted into the solvent in the cell 5 via a pipe 4. The extracted moisture is titrated. The amount of moisture in the solid is calculated from the obtained value of the titration.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、固体の水分定量におけ
る正確さの検証方法に関するもので、詳細には、例えば
硫黄中の数十ppm程度の水分が正しく定量できること
の検証方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for verifying the accuracy in the determination of the water content of solids, and more particularly to a method for verifying that the water content of several tens of ppm in sulfur can be accurately determined. ..

【0002】[0002]

【従来の技術】従来より、固体の水分を測定する方法と
しては、 重量法により測定する方法がある。この方法は、固体
試料を乾燥器中で加熱後、重量減少分を水分として定量
する方法である。 カールフィッシャー電量滴定法では、固体試料例えば
硫黄を水分抽出用の溶媒中に投入し、抽出された水分を
ヨウ素と反応させ、ヨウ化物を電解酸化してヨウ素を発
生させ電量滴定する。
2. Description of the Related Art Conventionally, as a method for measuring the water content of a solid, there is a gravimetric method. This method is a method in which a solid sample is heated in a dryer and then the weight loss is quantified as water content. In the Karl Fischer coulometric titration method, a solid sample such as sulfur is put into a solvent for extracting water, and the extracted water is reacted with iodine, and iodide is electrolytically oxidized to generate iodine to perform coulometric titration.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、このよ
うな従来の固体の水分定量方法によると、固体が硫黄の
場合、前記の重量減量法によると、加熱温度が60℃
と低く、硫黄中の水分を完全には追い出せない可能性が
ある。また、更に温度を上昇すると硫黄自体がSO2
して揮散するため、正確な定量が困難であるという問題
がある。
However, according to such a conventional method for determining the moisture content of a solid, when the solid is sulfur, the heating temperature is 60 ° C. according to the weight loss method.
The water content in sulfur may not be completely removed. Further, when the temperature is further increased, sulfur itself is volatilized as SO 2 , so that there is a problem that accurate quantification is difficult.

【0004】前記のカールフィッシャー電量滴定法に
よると、硫黄が塊状の場合、塊の内部の水分は抽出する
ことは難しい。また硫黄が粉末の場合、溶媒との親和性
が悪く固体が溶媒上部に浮いてしまい、測定操作が困難
であるという問題がある。さらには、前記とのいず
れの方法によっても数10ppm程度の微量の水分定量
をすることはできない。
According to the Karl Fischer coulometric titration method described above, when the sulfur is in the form of lumps, it is difficult to extract the water inside the lumps. Further, when the sulfur is powder, there is a problem that the affinity with the solvent is poor and the solid floats on the upper part of the solvent, which makes the measurement operation difficult. Furthermore, it is not possible to quantify a trace amount of water of about several tens of ppm by any of the above methods.

【0005】本発明は、このような微量の水分を正確に
測定することができたかどうかの検証方法を提供するこ
とを目的とする。
An object of the present invention is to provide a method for verifying whether or not such a small amount of water could be accurately measured.

【0006】[0006]

【課題を解決するための手段】前記課題を解決するため
の本発明による固体の水分定量における正確さの検証方
法は、固体を不活性ガス気流中で加熱し、溶融状態とし
て水分を追い出す固体の水分定量方法において、この方
法による定量値が正しいことの証明に水または結晶水を
もつ物質を固体と共に加熱し、水または結晶水の回収量
により確認することを特徴とする。
The method for verifying the accuracy in determining the moisture content of a solid according to the present invention for solving the above-mentioned problems is a method of heating a solid in an inert gas stream to remove moisture as a molten state. In the method for quantifying water content, the proof that the quantitative value by this method is correct is characterized in that a substance having water or water of crystallization is heated together with a solid and confirmed by the amount of water or water of crystallization recovered.

【0007】水または結晶水をもつ物質と固体の加熱温
度が120〜200℃の範囲であることを特徴とする。
結晶水をもつ物質は、その結晶水を加熱除去できる温度
が80〜250℃の範囲であることを特徴とする。結晶
水をもつ物質は、塩化バリウム、酒石酸ナトリウムおよ
びクエン酸3ナトリウム2水和物であることを特徴とす
る。
It is characterized in that the heating temperature of the substance having water or water of crystallization and the solid is in the range of 120 to 200 ° C.
The substance having crystallization water is characterized in that the temperature at which the crystallization water can be removed by heating is in the range of 80 to 250 ° C. The substances with water of crystallization are characterized by barium chloride, sodium tartrate and trisodium citrate dihydrate.

【0008】固体が硫黄であることを特徴とする。不活
性ガスとしてアルゴン、窒素またはヘリウムの少なくと
もいずれか1種を用いることを特徴とする。
It is characterized in that the solid is sulfur. At least one of argon, nitrogen and helium is used as the inert gas.

【0009】[0009]

【作用】結晶水をもつ物質と固体を不活性ガス気流中で
温度120〜200℃に加熱し、一定時間保持すること
で、結晶水と固体中の水分を完全に溶媒中に抽出でき
る。したがって、固体中の水分が正確に定量できたか否
かの判断が可能である。
By heating the substance having crystal water and the solid in an inert gas stream to a temperature of 120 to 200 ° C. and holding for a certain period of time, the water in the crystal water and the solid can be completely extracted into the solvent. Therefore, it is possible to judge whether or not the water content in the solid can be accurately quantified.

【0010】[0010]

【実施例】以下、本発明の実施例を図面に基づいて説明
する。まず、固体の水分定量装置を図1に示す。図1
は、水分抽出装置1を示す。図1において、1は、加熱
気化装置を示す。試料ボート3の中に結晶水をもつ物質
と固体を導入し、これを加熱炉2に挿入する。この加熱
炉2の炉内を温度120〜200℃に加熱し、結晶水お
よび固体中の水分を気化させて、パイプ4を介して滴定
セル5内の溶媒に抽出する。
Embodiments of the present invention will be described below with reference to the drawings. First, a solid moisture quantification device is shown in FIG. Figure 1
Shows the water extraction device 1. In FIG. 1, 1 indicates a heating vaporizer. A substance having water of crystallization and a solid are introduced into the sample boat 3 and inserted into the heating furnace 2. The inside of the heating furnace 2 is heated to a temperature of 120 to 200 ° C. to vaporize the water of crystallization and the water in the solid, and the water in the titration cell 5 is extracted via the pipe 4.

【0011】滴定セル5の詳細を図2および図3に示
す。滴定セル5内には、あらかじめ試料投入栓6より例
えば、メタノール、クロロホルム、ピリジン等の市販の
溶媒を導入しておく。そして、図1に示すパイプ4に連
結される入口管7より容器8内の溶媒中に水分を導入す
る。次に定量操作は次のとおりである。滴定セル5内の
水分をあらかじめ滴定して0にする。加熱気化装置1中
の試料ボート3に結晶水をもつ物質と固体を入れ、窒素
パージしながら温度140℃に加熱し、固体を溶融状態
とし、約10分間保持して、水分を溶媒に抽出する。抽
出された水分を滴定する。得られた滴定値より固体中の
水分量を算出する。
Details of the titration cell 5 are shown in FIGS. Into the titration cell 5, a commercially available solvent such as methanol, chloroform, pyridine or the like is previously introduced from the sample charging plug 6. Then, water is introduced into the solvent in the container 8 through the inlet pipe 7 connected to the pipe 4 shown in FIG. Next, the quantitative operation is as follows. The water content in the titration cell 5 is previously titrated to zero. A substance and a solid having crystallization water are put into a sample boat 3 in the heating vaporizer 1 and heated to a temperature of 140 ° C. while purging with nitrogen to make the solid in a molten state and hold for about 10 minutes to extract water into a solvent. .. The extracted water content is titrated. The amount of water in the solid is calculated from the obtained titration value.

【0012】実験例 1 実験例1は、結晶水をもつ物質中の結晶水の回収量を検
討した結果である。結晶水をもつ物質として、その結晶
水を加熱除去できる温度は80〜250℃である物質を
用いることが望ましい。例えば、塩化バリウム、酒石酸
ナトリウム、クエン酸3ナトリウム2水和物等である。
Experimental Example 1 Experimental Example 1 is the result of examining the amount of crystal water recovered in a substance having crystal water. As the substance having water of crystallization, it is desirable to use a substance whose temperature at which the water of crystallization can be removed by heating is 80 to 250 ° C. For example, barium chloride, sodium tartrate, trisodium citrate dihydrate and the like.

【0013】結晶水をもつ物質の選定は、温度120〜
200℃で結晶水が100%回収できる次の化合物が適
当である。塩化バリウム(BaCl2 ・2H2 O)、
酒石酸ナトリウム(Na2446 ・2H2
O)、クエン酸3ナトリウム2水和物(Na36
57 ・2H2 O)である。以下、塩化バリウムを用い
た実験条件は、硫黄中の水分定量法と同じ条件で実施し
た。回収実験結果を表1に示す。
A material having water of crystallization is selected at a temperature of 120 to
The following compounds, which can recover 100% of water of crystallization at 200 ° C., are suitable. Barium chloride (BaCl 2 · 2H 2 O),
Sodium tartrate (Na 2 C 4 H 4 O 6・ 2H 2
O), trisodium citrate dihydrate (Na 3 C 6 H
5 O 7 · 2H 2 O). Hereinafter, the experimental conditions using barium chloride were carried out under the same conditions as the method for determining the water content in sulfur. The results of recovery experiments are shown in Table 1.

【0014】[0014]

【表1】 実験例 2 実験例2は、硫黄と塩化バリウム共存下での結晶水を回
収することにより、前記固体の水分定量方法が正しいこ
とを検証する例である。回収量の実験結果を表2に示
す。
[Table 1] Experimental Example 2 Experimental Example 2 is an example of verifying that the solid water quantification method is correct by recovering water of crystallization in the coexistence of sulfur and barium chloride. Table 2 shows the experimental results of the recovered amount.

【0015】[0015]

【表2】 表2の結果より、硫黄中の水分は数ppm以下であるこ
とが推定された。 実験例 3 実験例3は、硫黄と水分共存下での水を回収することに
より、前記固体の水分定量方法が正しいことを検証する
例である。回収量の実験結果を表3に示す。
[Table 2] From the results in Table 2, it was estimated that the water content in sulfur was several ppm or less. Experimental Example 3 Experimental Example 3 is an example in which water in the coexistence of sulfur and water is recovered to verify that the solid water quantification method is correct. Table 3 shows the experimental results of the recovery amount.

【0016】[0016]

【表3】 次に、本発明の実施例で用いた電量滴定法について説明
する。図3および図4は、本発明の実施例で用いた電量
滴定装置と電量滴定セルの一例を示す。電量滴定セル
は、陽極液室11と陰極液室12の2室からなり、両室
11、12はセラミックスあるいはイオン交換樹脂等の
隔膜13により分離される。この隔膜13には、電解
時、陽極液と陰極液が混合せず、かつ電気抵抗の小さい
ものが用いられる。陽極液室11、陰極液室12は、そ
れぞれ電解電極15と滴定の終点を求める指示電極をも
っている。大気開放部には、シリカゲル等を充填した乾
燥管18を有している。
[Table 3] Next, the coulometric titration method used in the examples of the present invention will be described. 3 and 4 show an example of the coulometric titration device and the coulometric titration cell used in the examples of the present invention. The coulometric titration cell is composed of two chambers, an anolyte chamber 11 and a catholyte chamber 12, and the chambers 11 and 12 are separated by a diaphragm 13 such as ceramics or ion exchange resin. The diaphragm 13 is made of a material that does not mix the anolyte and the catholyte during electrolysis and has a low electric resistance. The anolyte compartment 11 and the catholyte compartment 12 each have an electrolytic electrode 15 and an indicator electrode for determining the end point of titration. A drying tube 18 filled with silica gel or the like is provided in the atmosphere opening portion.

【0017】図4に示す各部は次の機能を有する。 分極電流検出部20:指示電極に直流または交流電源よ
り定電圧または定電流を加え、指示電極管の微小電流ま
たは微小電圧変化を増幅して終点を検出する。 電流制御部21:検出増幅部からの信号を受けて終点近
くで電解電流を断続または漸減して電解を制御する。
Each part shown in FIG. 4 has the following functions. Polarization current detection unit 20: A constant voltage or constant current is applied to the indicator electrode from a DC or AC power source, and a minute current or minute voltage change in the indicator electrode tube is amplified to detect the end point. Current control unit 21: Controls electrolysis by receiving a signal from the detection amplification unit and intermittently or gradually decreasing the electrolysis current near the end point.

【0018】電解電流電源22:定電流(107.1m
Aまたはその倍数)または可変電流(0〜500mA)
電源である。 終点検出表示部23:検出増幅部からの信号を受けて分
極電圧または電流が設定された終点値になったとき、測
定終了を表示する。 電流積算部24:滴定に要した電流を積算して電気量ま
たは水分量(μgH2O)を表示する。
Electrolytic current power source 22: constant current (107.1 m)
A or multiple thereof) or variable current (0 to 500 mA)
Power. End point detection display unit 23: Displays the end of measurement when the polarization voltage or current reaches the set end point value in response to the signal from the detection amplification unit. Current accumulator 24: Accumulates the current required for titration and displays the amount of electricity or the amount of water (μg H 2 O).

【0019】[0019]

【発明の効果】以上説明したように、本発明による固体
の水分定量における正確さの検証方法によると、固体を
溶融状態にして検出された固体中の水分量の正確さを容
易かつ的確に検証することができるという効果がある。
As described above, according to the method for verifying the accuracy in determining the moisture content of a solid according to the present invention, the accuracy of the moisture content in the solid detected in the molten state of the solid can be easily and accurately verified. There is an effect that can be done.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の加熱気化装置を示す概略模式図であ
る。
FIG. 1 is a schematic diagram showing a heating vaporizer of the present invention.

【図2】滴定セルを示す概略斜視図である。FIG. 2 is a schematic perspective view showing a titration cell.

【図3】滴定セルを示す概略構成図である。FIG. 3 is a schematic configuration diagram showing a titration cell.

【図4】滴定装置を示す概略構成図である。FIG. 4 is a schematic configuration diagram showing a titration device.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 固体を不活性ガス気流中で加熱し、溶融
状態として水分を追い出す固体の水分定量方法におい
て、この方法による定量値が正しいことの証明に水また
は結晶水をもつ物質を固体と共に加熱し、水または結晶
水の回収量により確認することを特徴とする固体の水分
定量における正確さの検証方法。
1. A method for quantifying water content of a solid, which comprises heating a solid in an inert gas stream to remove water as a molten state, and demonstrating that the quantitative value obtained by this method is correct. A method for verifying the accuracy in determining the moisture content of a solid, which comprises heating and confirming the recovered amount of water or crystal water.
【請求項2】 固体と水または結晶水をもつ物質と固体
の加熱温度が120〜200℃の範囲であることを特徴
とする請求項1記載の固体の水分定量における正確さの
検証方法。
2. The method for verifying the accuracy in determining the water content of a solid according to claim 1, wherein the heating temperature of the solid and water or the substance having water of crystallization and the solid is in the range of 120 to 200 ° C.
【請求項3】 結晶水をもつ物質は、その結晶水を加熱
除去できる温度が80〜250℃の範囲であることを特
徴とする請求項1記載の固体の水分定量における正確さ
の検証方法。
3. The method for verifying the accuracy in quantifying the water content of a solid according to claim 1, wherein the substance having water of crystallization has a temperature at which the water of crystallization can be removed by heating in the range of 80 to 250 ° C.
【請求項4】 結晶水をもつ物質は、塩化バリウム、酒
石酸ナトリウムおよびクエン酸3ナトリウム2水和物で
あることを特徴とする請求項1記載の固体の水分定量に
おける正確さの検証方法。
4. The method for verifying the accuracy in determining the water content of a solid according to claim 1, wherein the substance having water of crystallization is barium chloride, sodium tartrate and trisodium citrate dihydrate.
【請求項5】 固体が硫黄であることを特徴とする請求
項1記載の固体の水分定量における正確さの検証方法。
5. The method for verifying the accuracy of moisture determination of a solid according to claim 1, wherein the solid is sulfur.
【請求項6】 不活性ガスとしてアルゴン、窒素または
ヘリウムの少なくともいずれか1種を用いることを特徴
とする請求項1記載の固体の水分定量における正確さの
検証方法。
6. The method for verifying the accuracy in determining the water content of a solid according to claim 1, wherein at least one of argon, nitrogen and helium is used as the inert gas.
JP04074213A 1992-03-30 1992-03-30 Verification method of accuracy in moisture determination of solids Expired - Fee Related JP3139818B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04074213A JP3139818B2 (en) 1992-03-30 1992-03-30 Verification method of accuracy in moisture determination of solids

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04074213A JP3139818B2 (en) 1992-03-30 1992-03-30 Verification method of accuracy in moisture determination of solids

Publications (2)

Publication Number Publication Date
JPH05281121A true JPH05281121A (en) 1993-10-29
JP3139818B2 JP3139818B2 (en) 2001-03-05

Family

ID=13540692

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04074213A Expired - Fee Related JP3139818B2 (en) 1992-03-30 1992-03-30 Verification method of accuracy in moisture determination of solids

Country Status (1)

Country Link
JP (1) JP3139818B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003083947A (en) * 2001-07-06 2003-03-19 Tosoh Corp Quantitative analysis apparatus and method of moisture in baking soda
WO2011108384A1 (en) * 2010-03-01 2011-09-09 セントラル硝子株式会社 Method and device for measuring water content in hydrogen fluoride-containing compound

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101014413B1 (en) 2004-06-14 2011-02-15 삼성전자주식회사 Large scale integrated circuit with data cache and at speed test method thereof
CN102692357B (en) * 2012-06-06 2013-11-20 中粮生物化学(安徽)股份有限公司 Quantitative analysis method for calcium sulphate crystal

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003083947A (en) * 2001-07-06 2003-03-19 Tosoh Corp Quantitative analysis apparatus and method of moisture in baking soda
WO2011108384A1 (en) * 2010-03-01 2011-09-09 セントラル硝子株式会社 Method and device for measuring water content in hydrogen fluoride-containing compound
JP2011179951A (en) * 2010-03-01 2011-09-15 Central Glass Co Ltd Method and instrument for measuring amount of moisture in hydrogen fluoride-containing compound
US9097688B2 (en) 2010-03-01 2015-08-04 Central Glass Company, Limited Method and device for measuring water content in hydrogen fluoride-containing fluoride salt compounds

Also Published As

Publication number Publication date
JP3139818B2 (en) 2001-03-05

Similar Documents

Publication Publication Date Title
EP2995940B1 (en) Karl fischer titrator and karl fischer titration method
Smyth A STUDY OF SODIUM-LEAD COMPOUNDS IN LIQUID AMMONIA SOLUTION.
Mullabaev et al. Properties of the LiCl-KCl-Li2O system as operating medium for pyro-chemical reprocessing of spent nuclear fuel
JP3139818B2 (en) Verification method of accuracy in moisture determination of solids
US4352068A (en) Method of measuring activities by means of solid ion conductors
CN111624300A (en) Moisture determination method and moisture determination device
CN102288933B (en) Calibration method used for measuring solution conductivity lower than 10mus/cm
Furman et al. Coulometric titrations with electrically generated ceric ion
JPH05281170A (en) Method for determining quantity of moisture in solid
EP0281037B1 (en) Method of measuring oxygen in silicon
Opoka et al. Applicability of the silver amalgam electrode in voltammetric determination of zinc and copper in gastric juice and gastric mucosa of rats
Lewis et al. THE POTENTIAL OF THE RUBIDIUM ELECTRODE.
Haring et al. Amalgam Activities and Standard Electrode Potentials: I. Tin
GB2069147A (en) Coulometric titration method
JP2015179057A (en) Moisture measuring method and moisture measuring device using karl fischer reagent
Cahen et al. Gibbs free energy of formation of Bi2O3 from EMF cells with δ-Bi2O3 solid electrolyte
Bohrer et al. Anodic stripping voltammetric determination of thallium as [TlBr4]-rhodamine B complex
Fetcher Jr et al. A Method for the Investigation of Electrostenolysis
Vajgand et al. Potentiometric determination of pKA of organic bases in acetone by the application of coulometry
JPS6236554A (en) Electrochemical type acid gas detector
Lanza et al. The determination of copper in silicon by anodic stripping and differential pulse voltammetry
JP2006258780A (en) Measurement of heavy water content in water by capacitor
Davis et al. A Novel Method for Analyzing Silver Sediment With High Precision
JPS6021343B2 (en) oxygen meter
JP3153133B2 (en) Method for measuring sodium concentration in molten aluminum or aluminum alloy

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees