JPH05281059A - Strain detecting device - Google Patents
Strain detecting deviceInfo
- Publication number
- JPH05281059A JPH05281059A JP7955392A JP7955392A JPH05281059A JP H05281059 A JPH05281059 A JP H05281059A JP 7955392 A JP7955392 A JP 7955392A JP 7955392 A JP7955392 A JP 7955392A JP H05281059 A JPH05281059 A JP H05281059A
- Authority
- JP
- Japan
- Prior art keywords
- bobbin
- shaft
- magnetic
- thermal expansion
- passive shaft
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Transmission And Conversion Of Sensor Element Output (AREA)
- Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】この発明は、歪検出装置に関し、
さらに詳細には、回転軸などの受動軸に外力が印加され
た際の歪を検出するための歪検出装置に関するものであ
る。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a strain detecting device,
More specifically, the present invention relates to a strain detection device for detecting strain when an external force is applied to a passive shaft such as a rotating shaft.
【0002】[0002]
【従来の技術】例えば図4は、出願人が先に提案した磁
歪式トルクセンサの構造を示す図である。図4におい
て、1は回転軸からなる受動軸、31,32は受動軸1
を回転自在に支持する軸受けである。この受動軸1の外
周面上に間隔をあけて高磁性材からなる第1及び第2の
磁性層3,4が固着される。2. Description of the Related Art For example, FIG. 4 is a diagram showing the structure of a magnetostrictive torque sensor previously proposed by the applicant. In FIG. 4, reference numeral 1 is a passive shaft composed of a rotary shaft, and 31, 32 are passive shafts 1.
Is a bearing that rotatably supports. The first and second magnetic layers 3 and 4 made of a high magnetic material are fixed on the outer peripheral surface of the passive shaft 1 at intervals.
【0003】第1の磁性層3は受動軸1の中心軸2に対
して+45度方向に、第2の磁性層4は中心軸2に対し
て−45度方向にそれぞれ細長く複数条形成されてい
る。また、各磁性層3,4の外周にはシールド40,4
1をインサート成形したエンジニアリングプラスチック
よりなる円筒状ボビン5が有り、このボビン5には検出
コイル11,10が巻装されている。A plurality of elongated first magnetic layers 3 are formed in the +45 degree direction with respect to the central axis 2 of the passive axis 1, and a second magnetic layer 4 is formed with a plurality of elongated lines in the −45 degree direction with respect to the central axis 2. There is. In addition, shields 40, 4 are provided on the outer circumferences of the magnetic layers 3, 4.
There is a cylindrical bobbin 5 made of engineering plastic in which 1 is insert-molded, and detection coils 11 and 10 are wound around this bobbin 5.
【0004】シールド40,41にはインサート成形時
に樹脂が流れるように図5に示すように切り欠きが設け
られている。なお、図5のリングを遮断する切り欠きは
コイル配線用のものである。各検出コイル10,11の
コイル端は、図4のA−A線断面として図6に示すよう
に、リード線34に接続されて検出回路(図示せず)に
導かれている。As shown in FIG. 5, the shields 40 and 41 are provided with notches so that the resin can flow during insert molding. The cutouts that cut off the ring in FIG. 5 are for coil wiring. The coil ends of the detection coils 10 and 11 are connected to lead wires 34 and led to a detection circuit (not shown) as shown in FIG. 6 as a cross section taken along the line AA of FIG.
【0005】検出コイル10,11が巻装されたボビン
5の周りにヨークとしての磁気収束層33が配設され、
その外側にシールド35が配設され、これらが一体とな
りケース37に納められている。軸受け31は受動軸1
に設けられた段に密着して圧入されており、軸受け32
はケース38aに圧入されている。A magnetic focusing layer 33 as a yoke is arranged around the bobbin 5 around which the detection coils 10 and 11 are wound.
A shield 35 is arranged on the outer side thereof, and these are integrally housed in a case 37. The bearing 31 is the passive shaft 1
It is press-fitted in close contact with the step provided on the
Is press-fitted into the case 38a.
【0006】検出コイル10,11を収めたケース37
は、磁性層3,4との相対位置誤差を少なくするため
に、軸受け31にボビン5端面が密着するようウェーブ
ワッシャ42により予圧されるようにケース38a,3
8b内に収められ、ケース38a,38bはネジで固定
されている。50はリード線34を支えると共に外部環
境から遮断するためのゴム状グロメットである。A case 37 containing the detection coils 10 and 11
In order to reduce the relative position error with the magnetic layers 3 and 4, the cases 38a and 3 are preloaded by the wave washer 42 so that the end surface of the bobbin 5 is in close contact with the bearing 31.
8b, the cases 38a and 38b are fixed with screws. Reference numeral 50 is a rubber-like grommet for supporting the lead wire 34 and shielding it from the external environment.
【0007】次に動作について説明する。受動軸1に外
部からのトルクが印加されると各磁性層3,4の一方に
引張力が発生すると、他方には圧縮力が発生し、歪が生
じる。この歪が生じるとその透磁率が変化し、引張力に
よる場合と圧縮力による場合では、透磁率が逆方向に変
化する。検出コイル10,11は磁性層3,4の透磁率
の変化を磁気インピーダンスの変化として検出し、検出
回路(図示せず)は各検出コイル10,11の出力を入
力され、受動軸1の歪量に応じた検出電圧を出力する。Next, the operation will be described. When a torque is applied to the passive shaft 1 from the outside, a tensile force is generated in one of the magnetic layers 3 and 4, and a compressive force is generated in the other, which causes strain. When this strain occurs, the magnetic permeability changes, and the magnetic permeability changes in the opposite direction depending on the tensile force and the compressive force. The detection coils 10 and 11 detect a change in magnetic permeability of the magnetic layers 3 and 4 as a change in magnetic impedance, and a detection circuit (not shown) receives the outputs of the detection coils 10 and 11 and receives a distortion of the passive shaft 1. The detection voltage corresponding to the quantity is output.
【0008】[0008]
【発明が解決しようとする課題】従来の歪検出装置は以
上のように構成されているので、通常受動軸1とエンジ
ニアリングプラスチックを素材とするボビン5の熱膨張
係数が大きく異なるので、温度が上昇すると受動軸1上
の磁性層3,4とボビン5即ち検出コイル10,11と
の相対位置がずれ、検出コイル10,11内のインダク
タンスが変化し、受動軸1にトルクが加わらずとも出力
が生じるという問題点があった。Since the conventional strain detecting device is constructed as described above, the thermal expansion coefficient of the passive shaft 1 and that of the bobbin 5 made of engineering plastic are greatly different from each other, so that the temperature rises. Then, the relative positions of the magnetic layers 3 and 4 on the passive shaft 1 and the bobbin 5, that is, the detection coils 10 and 11 are deviated, the inductance in the detection coils 10 and 11 changes, and the output is output even if torque is not applied to the passive shaft 1. There was a problem that it would occur.
【0009】この発明は上記のような問題点を解決する
ためになされたもので、温度によりボビンと磁性層の相
対位置が変化し出力が変動しないようにすることのでき
る歪検出装置を得ることを目的とする。The present invention has been made to solve the above problems, and provides a strain detecting device capable of preventing the output from fluctuating because the relative position of the bobbin and the magnetic layer changes due to the temperature. With the goal.
【0010】[0010]
【課題を解決するための手段】この発明の歪検出装置
は、検出コイルを巻き付けるボビンの材料を受動軸材料
に近い熱膨張係数を有する液晶ポリマー等の材料または
受動軸材料と同一材料を使用する。In the strain detecting apparatus of the present invention, the material of the bobbin around which the detection coil is wound is a material such as a liquid crystal polymer having a thermal expansion coefficient close to that of the passive shaft material or the same material as the passive shaft material. ..
【0011】[0011]
【作用】この発明における歪検出装置は、受動軸上に固
着された磁性層とボビンに巻装された検出コイルの相対
位置が温度による影響を受けにくく、製品の温度による
出力のばらつきが少ない。In the strain detecting device according to the present invention, the relative positions of the magnetic layer fixed on the passive shaft and the detecting coil wound around the bobbin are not easily influenced by temperature, and the output variation due to the temperature of the product is small.
【0012】[0012]
実施例1.以下、この発明の一実施例を図1について説
明する。図1において、図4との同一符号2〜4,1
0,11,31〜35,37,38,41,42,50
の部分は従来例と同一部分であり、その説明を省略す
る。また、受動軸1Aは図4の受動軸1に、ボビン5A
は図4のボビン5にそれぞれ相当し、それらの互いの熱
膨張係数の関係が従来例と異なる以外、受動軸1Aとボ
ビン5Aは従来例の構造と同じである。Example 1. An embodiment of the present invention will be described below with reference to FIG. In FIG. 1, the same reference numerals 2-4, 1 as those in FIG.
0, 11, 31-35, 37, 38, 41, 42, 50
The part is the same as the conventional example, and the description thereof is omitted. Further, the passive shaft 1A is the same as the passive shaft 1 of FIG.
4 correspond to the bobbins 5 in FIG. 4, respectively, and the passive shaft 1A and the bobbin 5A have the same structure as that of the conventional example, except that their mutual thermal expansion coefficients differ from those of the conventional example.
【0013】円筒状ボビン5Aはシールド41をインサ
ート成形した、受動軸1A材料に近い熱膨張係数を有す
る液晶ポリマーより構成されている。図4では、検出コ
イル10,11間を仕切っているシールド40を設けて
いたが相対位置変移が少ない場合、温度が上昇しても磁
気の流れは安定しているのでシールド40は実施例1で
は不要になる。The cylindrical bobbin 5A is made of a liquid crystal polymer in which the shield 41 is insert-molded and which has a thermal expansion coefficient close to that of the material of the passive shaft 1A. In FIG. 4, the shield 40 that partitions the detection coils 10 and 11 is provided, but when the relative position displacement is small, the magnetic flow is stable even if the temperature rises, so the shield 40 is used in the first embodiment. It becomes unnecessary.
【0014】温度が変化すると受動軸1Aの主に中心軸
2方向への熱膨張により受動軸1A上に固着された磁性
層3,4が同方向に絶対位置を変位する。一方、ボビン
5Aも主にそれと同じ方向に熱膨張するのでボビン5A
に巻装されている検出コイル10,11が同方向に絶対
位置を変位させる。受動軸1Aとボビン5Aとの熱膨張
係数が近いために、磁性層3,4と検出コイル10,1
1との変位量及び変位方向はほぼ同じで、磁性層3と検
出コイル10、磁性層4と検出コイル11の相対位置は
温度上昇してもほとんど変化しない。よって、受動軸1
Aにトルクが加わらない限り、検出コイル10,11は
出力を生じない。When the temperature changes, the thermal expansion of the passive shaft 1A mainly in the direction of the central axis 2 causes the magnetic layers 3 and 4 fixed on the passive shaft 1A to be displaced in absolute positions in the same direction. On the other hand, since the bobbin 5A also thermally expands mainly in the same direction, the bobbin 5A
The detection coils 10 and 11 wound around the coil displace the absolute position in the same direction. Since the passive shaft 1A and the bobbin 5A have similar thermal expansion coefficients, the magnetic layers 3, 4 and the detection coils 10, 1
The amount of displacement and the direction of displacement are substantially the same as those of No. 1 and the relative positions of the magnetic layer 3 and the detection coil 10 and between the magnetic layer 4 and the detection coil 11 hardly change even when the temperature rises. Therefore, passive axis 1
Unless the torque is applied to A, the detection coils 10 and 11 produce no output.
【0015】実施例2.図2は他の一実施例の歪検出装
置の構成を断面で示し、実施例1と同一又は相当部分に
は図1と同一符号を付してある。次に、実施例1と異な
る部分について説明する。ボビン5Aの材料は受動軸1
Aの材料の熱膨張係数と同一の熱膨張係数を有してい
る。受動軸1Aの材料に非磁性材料を利用している場合
は、受動軸と同一材料にてボビンを構成すれば良い。Example 2. FIG. 2 is a cross-sectional view showing the configuration of the strain detecting apparatus of another embodiment, and the same or corresponding portions as those in the first embodiment are designated by the same reference numerals as those in FIG. Next, parts different from the first embodiment will be described. The material of the bobbin 5A is the passive shaft 1
It has the same coefficient of thermal expansion as that of the material A. When a non-magnetic material is used as the material of the passive shaft 1A, the bobbin may be made of the same material as the passive shaft.
【0016】但し、軸材が金属の場合はシールド41の
インサート成型が困難であるのでシールド41は図3に
示すようにシールド片41a,41bに二分割して装着
してある。図2に示すように、同一材料を用いた場合に
はボビン5Aの形状が若干異なり、ボビン5Aはシール
ド41との当接面を広くしてシールド41を支持し易い
構造になっている。その他、動作は実施例1と同じなの
でその説明を省略する。However, since it is difficult to insert-mold the shield 41 when the shaft member is made of metal, the shield 41 is divided into two pieces and mounted on the shield pieces 41a and 41b as shown in FIG. As shown in FIG. 2, when the same material is used, the bobbin 5A has a slightly different shape, and the bobbin 5A has a wide contact surface with the shield 41 so that the shield 41 can be easily supported. Since other operations are the same as those in the first embodiment, the description thereof will be omitted.
【0017】[0017]
【発明の効果】以上のように、この発明によれば検出コ
イルを収めたボビン材料に軸材の熱膨張係数に近い素材
を用いて構成したので、磁性層と検出コイルの相対位置
が温度による影響を受けにくく、製品の温度による出力
のばらつきが少ない効果がある。As described above, according to the present invention, since the bobbin containing the detection coil is made of a material having a thermal expansion coefficient close to that of the shaft material, the relative position of the magnetic layer and the detection coil depends on the temperature. It is not easily affected and has the effect of less variation in output due to product temperature.
【図1】この発明の一実施例による歪検出装置を示す断
面図である。FIG. 1 is a sectional view showing a strain detector according to an embodiment of the present invention.
【図2】この発明の他の実施例による歪検出装置を示す
断面図である。FIG. 2 is a sectional view showing a strain detecting device according to another embodiment of the present invention.
【図3】他の実施例のシールドの構成図である。FIG. 3 is a configuration diagram of a shield of another embodiment.
【図4】従来の歪検出装置の断面図である。FIG. 4 is a sectional view of a conventional strain detection device.
【図5】シールドの平面図である。FIG. 5 is a plan view of a shield.
【図6】図4のA−A線に沿った断面図である。6 is a cross-sectional view taken along the line AA of FIG.
1A 受動軸 3,4 磁性層 5A ボビン 10,11 検出コイル 31,32 軸受け 33 磁気収束層(ヨーク) 34 リード線 35 シールド 37 ケース 38a,38b ケース 41 シールド 42 ウェーブワッシャ 1A Passive shaft 3,4 Magnetic layer 5A Bobbin 10,11 Detection coil 31,32 Bearing 33 Magnetic focusing layer (yoke) 34 Lead wire 35 Shield 37 Case 38a, 38b Case 41 Shield 42 Wave washer
Claims (1)
周面上に固着された高透磁率で所定の磁気定数を有する
軟磁性材料からなる磁性層と、ボビンに巻装されて前記
磁性層の外周に配設され、前記受動軸に印加された外力
によって引き起こされる前記磁性層の透磁率変化を検出
する検出コイルと、この検出コイルを囲んで配置され
る、シールド、ヨークを一つに収めたケースとを備え、
このケースを前記受動軸に対し軸方向に予圧を与え、前
記検出コイルと前記受動軸上の磁性層の相対位置のずれ
がないようにした歪検出装置であって、前記ボビンの材
料として前記受動軸の材料の熱膨張係数に近い素材を用
いた事を特徴とする歪検出装置。1. A passive shaft which receives an external force, a magnetic layer which is fixed on the outer peripheral surface of the passive shaft, and which is made of a soft magnetic material having a high magnetic permeability and a predetermined magnetic constant, and a magnetic layer wound around a bobbin. A detection coil arranged on the outer periphery of the layer for detecting a change in magnetic permeability of the magnetic layer caused by an external force applied to the passive shaft, and a shield and a yoke arranged around the detection coil. With a case stored,
A strain detecting device in which this case is preloaded in the axial direction with respect to the passive shaft so that the relative position of the detection coil and the magnetic layer on the passive shaft does not shift, and the passive coil is used as a material of the bobbin. A strain detecting device characterized by using a material having a coefficient of thermal expansion close to that of the material of the shaft.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7955392A JPH05281059A (en) | 1992-04-01 | 1992-04-01 | Strain detecting device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7955392A JPH05281059A (en) | 1992-04-01 | 1992-04-01 | Strain detecting device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH05281059A true JPH05281059A (en) | 1993-10-29 |
Family
ID=13693206
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP7955392A Pending JPH05281059A (en) | 1992-04-01 | 1992-04-01 | Strain detecting device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH05281059A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE19960277A1 (en) * | 1998-12-28 | 2000-07-06 | Nsk Ltd | Holder to fix coil arrangement of torque detector in electrical steering aid device, with disk spring to firmly clamp coil yoke inside housing |
-
1992
- 1992-04-01 JP JP7955392A patent/JPH05281059A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE19960277A1 (en) * | 1998-12-28 | 2000-07-06 | Nsk Ltd | Holder to fix coil arrangement of torque detector in electrical steering aid device, with disk spring to firmly clamp coil yoke inside housing |
DE19960277C2 (en) * | 1998-12-28 | 2002-07-18 | Nsk Ltd | Bracket for fixing a coil arrangement |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2811980B2 (en) | Torque sensor | |
US5245687A (en) | Optical fiber coil unit for a fiber optic gyro | |
JP4292967B2 (en) | Magnetostrictive torque sensor | |
US5165286A (en) | Strain detector | |
JPH07260413A (en) | Position sensor | |
US5481188A (en) | Method and apparatus for detecting the movement of an object with a micro machine that responds to a change in magnetic flux associated with the object | |
US5128614A (en) | Compound core element having a pair of uniaxial anisotropic ferromagnetic cell components with different coercive field strength for a thin film sensor | |
JPH0422830A (en) | Torque sensor | |
KR0151747B1 (en) | Torque sensor | |
JPH05281059A (en) | Strain detecting device | |
EP0046381B1 (en) | Tension sensor | |
US5455508A (en) | Rotational angle sensor having a magnetic member mounted on a rotatable shaft | |
JPH0552679A (en) | Strain detector | |
JPH0783769A (en) | Torque sensor and production thereof | |
JPH09280973A (en) | Torque sensor | |
JPH06258155A (en) | Strain detector and strain detecting unit | |
JPS6044839A (en) | Torque detecting device | |
JPS59188968A (en) | Torque sensor made of double layer structural amorphous magnetic thin band | |
JPH05196518A (en) | Magnetostriction type torque sensor | |
JPS60187835A (en) | Torque detection apparatus | |
JPH05133823A (en) | Torque measuring device | |
JPH01189517A (en) | Magnetic encoder | |
JPH06258156A (en) | Strain detector and strain detecting unit | |
JPH03126249A (en) | Protecting cap for magnetoelectric transducer | |
KR20000057319A (en) | Eddy current measuring arrangement for an indicating instrument |