JPH05280872A - Low temperature crucible for continuous melting solution supply service with improved thermal efficiency - Google Patents
Low temperature crucible for continuous melting solution supply service with improved thermal efficiencyInfo
- Publication number
- JPH05280872A JPH05280872A JP7733392A JP7733392A JPH05280872A JP H05280872 A JPH05280872 A JP H05280872A JP 7733392 A JP7733392 A JP 7733392A JP 7733392 A JP7733392 A JP 7733392A JP H05280872 A JPH05280872 A JP H05280872A
- Authority
- JP
- Japan
- Prior art keywords
- crucible
- low temperature
- cooling
- melting solution
- melting
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Landscapes
- Crucibles And Fluidized-Bed Furnaces (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、金属・半導体・セラミ
ック等の材料の連続溶融および溶融材料の連続流出に用
いられるるつぼに関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a crucible used for continuous melting of materials such as metals, semiconductors and ceramics and for continuous outflow of molten materials.
【0002】[0002]
【従来の技術】通常、金属などの溶融は、例えば誘導加
熱装置を備えた耐火物性のるつぼなどの容器を用いて行
われているが、耐火物などの介在物による汚染を避ける
ことができず、高純度な材料を製造することは難しかっ
た。2. Description of the Related Art Usually, melting of metal or the like is carried out using a container such as a crucible having a refractory property equipped with an induction heating device, but contamination by inclusions such as refractory cannot be avoided. , It was difficult to produce high-purity materials.
【0003】近年、高純度を要求される溶融材料を得る
ための溶融方法として低温るつぼ(コールドクルーシブ
ル)を用いた誘導溶融によって、材料をるつぼ壁と非接
触で溶融させる技術が広く報告されている。この低温る
つぼ技術は、特に金属等の材料を高周波および中間周波
数領域の誘導溶融の場合に最適とされている。In recent years, as a melting method for obtaining a molten material requiring high purity, a technique of melting the material in a non-contact manner with a crucible wall by induction melting using a low temperature crucible (cold crucible) has been widely reported. .. This low temperature crucible technology is particularly suitable for induction melting of materials such as metals in the high and intermediate frequency regions.
【0004】この低温るつぼにおいては、るつぼ壁が複
数のセグメントが環状に連結されて構成されており、各
セグメントは内部に冷却水を通す中空部を有する一般に
銅製のものである。このるつぼ内に溶融すべき材料を入
れ、るつぼの外周に配設した誘導コイルに高周波ないし
中間周波数の電流を流すことによって、るつぼ内の材料
に渦電流を発生させ、その渦電流損によって、この材料
を溶融することができる。また、同時にるつぼ表面に発
生する渦電流と溶解材料表面に発生する渦電流とによる
電磁気力によって、るつぼ内の溶融物とるつぼ壁との非
接触化を図ると共に、るつぼ下方の壁を絞ることによっ
て内部の介在物を浮上させることによって、高純度の素
材を得ることができる。In this low temperature crucible, the crucible wall is constructed by connecting a plurality of segments in an annular shape, and each segment is generally made of copper having a hollow portion through which cooling water is passed. The material to be melted is put in this crucible, and an eddy current is generated in the material in the crucible by passing a high-frequency or intermediate-frequency current through the induction coil arranged on the outer periphery of the crucible, and the eddy current loss causes The material can be melted. At the same time, by the electromagnetic force generated by the eddy current generated on the crucible surface and the eddy current generated on the molten material surface, the melt in the crucible is prevented from coming into contact with the crucible wall and the wall below the crucible is squeezed. By raising the inclusions inside, a highly pure material can be obtained.
【0005】この低温るつぼ技術を用いた溶融・晶出方
法が、特開昭60−2876号公報において開示されて
おり、この低温るつぼ技術を用いたシリコンの連続鋳造
方法が特開昭64−53732号公報に開示されてい
る。A melting and crystallization method using this low temperature crucible technology is disclosed in Japanese Patent Laid-Open No. 60-2876, and a continuous casting method of silicon using this low temperature crucible technology is Japanese Patent Laid-Open No. 64-53732. It is disclosed in the publication.
【0006】[0006]
【発明が解決しようとする課題】前述の特開昭60−2
876号公報に開示のものは、低温るつぼ内で溶解させ
た材料をるつぼから凝固させながら連続的に取り出す方
法であり、また特開昭64−53732号公報に開示さ
れたものは、るつぼの下方で凝固させる連続鋳造方法で
あるが、これらの方法では、連続的に溶解しこれを溶融
状態で連続的に適量流出させることは困難であるため、
バッチ式の操業にせざるを得ず、連続操業ができず生産
性が低いという問題がある。DISCLOSURE OF THE INVENTION Problems to be Solved by the Invention
The method disclosed in Japanese Unexamined Patent Application Publication No. 87632/1989 is a method of continuously taking out a material melted in a low temperature crucible from the crucible while solidifying the material, and the method disclosed in Japanese Unexamined Patent Application Publication No. 64-53732 discloses a method of lowering the crucible. Although it is a continuous casting method of solidifying in, in these methods, since it is difficult to continuously melt and flow out a suitable amount continuously in a molten state,
Since there is no choice but to perform batch-type operation, continuous operation is not possible and there is a problem of low productivity.
【0007】そこで本発明者は低温るつぼ内に一定量の
溶融液(溶融液塊)を、表面張力及びコイルから発生す
る電磁力からなる支持力と重力とのバランスで保持し、
該るつぼ内に固体材料を連続的に又は間欠的に供給し、
この供給量に相当する量の溶融材料を該るつぼの下部に
設けられた流出口から流出する方式を案出した。Therefore, the present inventor holds a certain amount of molten liquid (molten liquid lump) in the low temperature crucible in balance between the surface tension and the supporting force of electromagnetic force generated from the coil and gravity.
Solid material is continuously or intermittently supplied into the crucible,
A method has been devised in which an amount of molten material corresponding to this supply amount flows out from an outlet provided in the lower part of the crucible.
【0008】しかしこの方式は、溶融液塊から冷却るつ
ぼ体への伝熱による熱損失が大きくコイルの消費電力が
非常に大きいという欠点があった。又溶融液塊から冷却
るつぼ体への伝熱量が大きく、コイルから溶融液塊に多
量の熱を供給させるときは、溶融液塊の温度が変動し易
く、前記冷却るつぼからの流出液を受け取る次工程例え
ば単結晶の引上げに好ましくない影響を与える場合が多
い。However, this method has a drawback in that the heat loss due to the heat transfer from the molten liquid mass to the cooling crucible body is large and the power consumption of the coil is very large. When the amount of heat transferred from the melt mass to the cooling crucible is large and a large amount of heat is supplied from the coil to the melt mass, the temperature of the melt mass easily fluctuates, and the effluent from the cooling crucible is received. In many cases, it has an unfavorable influence on the process such as pulling of the single crystal.
【0009】本発明の目的は溶融液塊から冷却るつぼ体
への伝熱の少ない、溶融液塊を保持しつつ固体材料の連
続的供給を受けて溶融材料を連続的に流出させる生産性
の高い低温るつぼを提供することである。It is an object of the present invention that heat transfer from a molten liquid mass to a cooling crucible body is small and a solid material is continuously supplied while the molten liquid mass is held to continuously flow out the molten material with high productivity. It is to provide a low temperature crucible.
【0010】[0010]
【課題を解決するための手段】本発明の第1の態様は、
下部に溶融液を流下させるための開口部を持つ冷却るつ
ぼ体、その外周に配置されたコイル、前記冷却るつぼ体
の内壁に沿う形を持ち、該内壁に沿って配置された下部
に溶融液流出口を有するセラミック管を含む連続融液供
給用低温るつぼである。The first aspect of the present invention is as follows.
A cooling crucible body having an opening for letting the melt flow down, a coil arranged on the outer periphery of the cooling crucible body, a shape along the inner wall of the cooling crucible body, and a melt flow to the lower portion arranged along the inner wall. A low temperature crucible for continuous melt supply including a ceramic tube having an outlet.
【0011】本発明の第2の態様は、前記冷却るつぼ体
とセラミック管の間に1〜5mmの間隙を設けてなる第1
の態様の低温るつぼである。A second aspect of the present invention is the first aspect in which a gap of 1 to 5 mm is provided between the cooling crucible body and the ceramic tube.
It is a low temperature crucible of the embodiment.
【0012】本発明の第3の態様は、前記冷却るつぼ体
の内壁と前記セラミック管の外壁の少なくとも一方に低
熱伝導性セラミックコーティング材を塗布してなる第1
又は2の態様の低温るつぼである。In a third aspect of the present invention, a low thermal conductivity ceramic coating material is applied to at least one of the inner wall of the cooling crucible body and the outer wall of the ceramic tube.
Or, the low temperature crucible according to the second aspect.
【0013】本発明の第4の態様は、前記冷却るつぼ体
とセラミック管の内に断熱材を置いてなる第1,2又は
3の態様の低温るつぼである。A fourth aspect of the present invention is the low temperature crucible of the first, second or third aspect in which a heat insulating material is placed inside the cooling crucible body and the ceramic tube.
【0014】前記冷却るつぼ体の材質は、熱伝導性が良
く、その外側の誘導コイルに高周波ないし中間周波数の
電流を流したときその材質内に渦電流を発生させるもの
であれば何でもよいが、入手の容易性及び加工の容易性
から銅が最も好ましい。Any material may be used as the material of the cooling crucible body as long as it has good thermal conductivity and generates an eddy current in the material when a high frequency or intermediate frequency current is applied to the induction coil outside thereof. Copper is most preferred because it is easily available and easily processed.
【0015】前記セラミック管に用いるセラミックとし
ては、石英、アルミナ、ムライト、ジルコニア、マグネ
シア等が挙げられる。Examples of the ceramic used for the ceramic tube include quartz, alumina, mullite, zirconia, magnesia and the like.
【0016】前記冷却るつぼ体とセラミック管に間隙を
設けるときは1〜5mmが好ましい。1mm未満だと断熱効
果の改善が小さく、5mmより大きいとコイルから溶融液
塊までの距離が離れ電磁力で誘起される溶融液塊中の渦
電流が小さくなり、逆に熱効率をおとすからである。こ
の間隙に空気を入れ空気断熱層を形成するのが好まし
い。When a gap is provided between the cooling crucible body and the ceramic tube, it is preferably 1 to 5 mm. If it is less than 1 mm, the improvement of the heat insulation effect is small, and if it is more than 5 mm, the distance from the coil to the molten mass becomes large and the eddy current in the molten mass induced by the electromagnetic force becomes small, which conversely reduces the thermal efficiency. .. It is preferable to introduce air into this gap to form an air insulating layer.
【0017】前記冷却るつぼ体の内壁と前記セラミック
管の外壁の少なくとも一方に塗布する低熱伝導性セラミ
ックコーティング材としては、シリカ、アルミナ、ジル
コニア、チタニア、ムライト、アルミナ−クロミア等お
よびそれらのセラミックスを含むサーメット系材料が挙
げられる。The low thermal conductivity ceramic coating material applied to at least one of the inner wall of the cooling crucible body and the outer wall of the ceramic tube includes silica, alumina, zirconia, titania, mullite, alumina-chromia and the like and ceramics thereof. Examples include cermet materials.
【0018】前記断熱材としては、シリカ、アルミナ、
ジルコニアを主成分とするファイバー系の断熱材等が挙
げられる。As the heat insulating material, silica, alumina,
Examples thereof include fiber-based heat insulating materials containing zirconia as a main component.
【0019】図1に前記第1の態様の1例の断面図を示
す。他の態様の形状又は構造はこれから容易に想像でき
るであろう。図1において1は冷却るつぼ体、2はセラ
ミック管、3はセラミック管の下部溶融液流出口、4は
コイル、5は給電線、6は冷却水流路、7は溶融液塊、
8は溶融用固体材料、9は流出液である。FIG. 1 shows a sectional view of an example of the first aspect. Other forms of shape or construction will be readily apparent. In FIG. 1, 1 is a cooling crucible body, 2 is a ceramic tube, 3 is a lower melt outlet of the ceramic tube, 4 is a coil, 5 is a power supply line, 6 is a cooling water flow path, 7 is a melt mass,
Reference numeral 8 is a solid material for melting, and 9 is an effluent.
【0020】[0020]
実施例1 図1に示すような低温るつぼ(実施例1)、を用い、ド
ーパント含有シリコン(比抵抗0.01Ω・cm)10g
及びイレブン9の高純度シリコン50gを誘導加熱して
溶融シリコン液塊を形成した。コイルに40KWの電力を
かけ固体高純度シリコン(イレブン9)粒子を投入し溶
融液を流下させ、投入・流下量の最大値を求めたところ
120g/分であった。Example 1 Using a low temperature crucible (Example 1) as shown in FIG. 1, 10 g of dopant-containing silicon (specific resistance 0.01 Ω · cm)
And 50 g of high-purity silicon of Eleven 9 was induction-heated to form a molten silicon liquid mass. When the power of 40 KW was applied to the coil, solid high-purity silicon (Eleven 9) particles were charged and the molten liquid was allowed to flow down, and the maximum value of the input / flow amount was 120 g / min.
【0021】尚、前記低温るつぼの冷却るつぼ体の材質
は銅、セラミック管の材質は石英とした。The material of the cooling crucible of the low temperature crucible was copper, and the material of the ceramic tube was quartz.
【0022】実施例2 実施例1と同様の形状・構造・材質であるが、冷却るつ
ぼ体とセラミック体の間隙を2mmとした点で異なる低温
るつぼについて、実施例1と同様にして実験を行なっ
た。シリコンの投入・流下量の最大値は125g/分で
あった。Example 2 An experiment was conducted in the same manner as in Example 1 on a low temperature crucible having the same shape, structure and material as those of Example 1, but different in that the gap between the cooling crucible body and the ceramic body was 2 mm. It was The maximum value of silicon input / flow rate was 125 g / min.
【0023】実施例3 実施例1と同様の形状・構造・材質であるが、冷却るつ
ぼ体の内壁面に低熱伝導性セラミックコーティング材と
してジルコニアを塗布した点で異なる低温るつぼについ
て、実施例1と同様にして実験を行なった。シリコンの
投入・流下量の最大値は130g/分であった。Example 3 A low temperature crucible having the same shape, structure and material as in Example 1 but different in that zirconia was applied as a low thermal conductive ceramic coating material to the inner wall surface of the cooling crucible body. An experiment was conducted in the same manner. The maximum amount of silicon charged / flowed was 130 g / min.
【0024】実施例4 実施例1と同様の形状・構造・材質であるが、セラミッ
ク管の外壁面に低熱伝導性セラミックコーティング材と
してジルコニアを塗布した点で異なる低温るつぼについ
て、実施例1と同様にして実験を行なった。シリコンの
投入・流下量の最大値は130g/分であった。Example 4 A low temperature crucible having the same shape, structure and material as in Example 1 but having zirconia applied as a low thermal conductive ceramic coating material on the outer wall surface of the ceramic tube was the same as in Example 1. The experiment was carried out. The maximum amount of silicon charged / flowed was 130 g / min.
【0025】実施例5 実施例1と同様の形状・構造・材質であるが、冷却るつ
ぼ体とセラミック管の間隙を2mmとしこの間に密度0.
7g/cm3 の断熱材ジルコニア製フェルトを充填した点
で異なる低温るつぼについて、実施例1と同様にして実
験を行なった。シリコンの投入・流下量の最大値は13
5g/分であった。Example 5 The shape, structure and material were the same as in Example 1, but the gap between the cooling crucible and the ceramic tube was 2 mm, and the density was 0.
An experiment was conducted in the same manner as in Example 1 with respect to a low temperature crucible which was different in that it was filled with 7 g / cm 3 of a zirconia heat insulating material felt. The maximum amount of silicon input / flow is 13
It was 5 g / min.
【0026】比較例1 セラミック管を用いない他は実施例1と同様の形状・構
造・材質の低温るつぼについて、実施例1と同様にして
実験を行なった。シリコンの投入・流下量の最大値は1
00g/分であった。Comparative Example 1 A low temperature crucible having the same shape, structure and material as in Example 1 except that a ceramic tube was not used was tested in the same manner as in Example 1. Maximum amount of silicon input / flow is 1
It was 00 g / min.
【0027】[0027]
【発明の効果】本発明の低温るつぼによれば、このるつ
ぼ内に溶融液塊を保持しつつ固体材料の連続的供給を受
けて溶融材料を連続的に流出させる生産性の高い溶融液
の連続的製造法が可能となる。又、前記溶融液塊からの
前記低温るつぼへの伝熱が少なく、熱効率が良好である
と共に流出融液の温度変化が少ない。EFFECTS OF THE INVENTION According to the low temperature crucible of the present invention, a molten liquid having a high productivity is continuously supplied by continuously feeding the solid material while holding the molten liquid mass in the crucible. Manufacturing method becomes possible. Further, heat transfer from the melt mass to the low temperature crucible is small, thermal efficiency is good, and temperature change of the outflowing melt is small.
【図1】本発明低温るつぼの一例の使用中の断面図。FIG. 1 is a sectional view of an example of a low temperature crucible of the present invention during use.
1…冷却るつぼ体 2…セラミック管 3…セラミック管の下部溶融液流出口 4…コイル 5…給電線 6…冷却水流路 7…溶融液塊 8…溶融用固体材料 9…流出液 DESCRIPTION OF SYMBOLS 1 ... Cooling crucible body 2 ... Ceramic tube 3 ... Lower part melt outlet of a ceramic tube 4 ... Coil 5 ... Power supply line 6 ... Cooling water flow path 7 ... Molten liquid mass 8 ... Solid material for melting 9 ... Outflow liquid
───────────────────────────────────────────────────── フロントページの続き (72)発明者 吉野 博之 千葉県富津市新富20−1 新日本製鐵株式 会社技術開発本部内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Hiroyuki Yoshino 20-1 Shintomi, Futtsu-shi, Chiba Nippon Steel Corporation Corporate Technology Development Division
Claims (4)
を持つ冷却るつぼ体、その外周に配置されたコイル、前
記冷却るつぼ体の内壁に沿う形を持ち、該内壁に沿って
配置された下部に溶融液流出口を有するセラミック管を
含む連続融液供給用低温るつぼ。1. A cooling crucible body having an opening for allowing a melt to flow down, a coil arranged on the outer periphery of the cooling crucible body, a shape along the inner wall of the cooling crucible body, and arranged along the inner wall. A low temperature crucible for continuous melt supply, including a ceramic tube having a melt outlet in the lower part.
1〜5mmの間隙を設けてなる請求項1の低温るつぼ。2. The low temperature crucible according to claim 1, wherein a gap of 1 to 5 mm is provided between the cooling crucible body and the ceramic tube.
ク管の外壁の少なくとも一方に低熱伝導性セラミックコ
ーティング材を塗布してなる請求項1又は2の低温るつ
ぼ。3. The low temperature crucible according to claim 1, wherein a low thermal conductivity ceramic coating material is applied to at least one of an inner wall of the cooling crucible body and an outer wall of the ceramic tube.
断熱材を置いてなる請求項1,2又は3の低温るつぼ。4. The low temperature crucible according to claim 1, wherein a heat insulating material is placed inside the cooling crucible body and the ceramic tube.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7733392A JPH05280872A (en) | 1992-03-31 | 1992-03-31 | Low temperature crucible for continuous melting solution supply service with improved thermal efficiency |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7733392A JPH05280872A (en) | 1992-03-31 | 1992-03-31 | Low temperature crucible for continuous melting solution supply service with improved thermal efficiency |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH05280872A true JPH05280872A (en) | 1993-10-29 |
Family
ID=13631003
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP7733392A Withdrawn JPH05280872A (en) | 1992-03-31 | 1992-03-31 | Low temperature crucible for continuous melting solution supply service with improved thermal efficiency |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH05280872A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006153362A (en) * | 2004-11-30 | 2006-06-15 | Daido Steel Co Ltd | Metal melting and tapping device, and its casting device |
JP2008267797A (en) * | 2007-03-28 | 2008-11-06 | Mitsubishi Heavy Ind Ltd | Metal melting crucible and its surface treatment method |
-
1992
- 1992-03-31 JP JP7733392A patent/JPH05280872A/en not_active Withdrawn
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006153362A (en) * | 2004-11-30 | 2006-06-15 | Daido Steel Co Ltd | Metal melting and tapping device, and its casting device |
JP2008267797A (en) * | 2007-03-28 | 2008-11-06 | Mitsubishi Heavy Ind Ltd | Metal melting crucible and its surface treatment method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3219763B2 (en) | Oxidation mixture continuous melting furnace with high frequency direct induction with very short purification time and low power consumption | |
JP2006516046A (en) | Melt heating method and apparatus | |
US20090145933A1 (en) | Induction powered ladle bottom nozzle | |
US4133969A (en) | High frequency resistance melting furnace | |
JPH10139580A (en) | Production of unidirectionally solidified material and unidirectional solidifying device | |
JPH05280872A (en) | Low temperature crucible for continuous melting solution supply service with improved thermal efficiency | |
EP0053810A1 (en) | An apparatus and process for electromagnetically shaping a molten material within a narrow containment zone | |
JPH05280871A (en) | Water-cooled divided copper crucible for induction melting service | |
US3100250A (en) | Zone melting apparatus | |
JP3160956B2 (en) | Cold wall melting equipment using ceramic crucible | |
JP3098094B2 (en) | Continuous melting of material using low temperature crucible and temperature control method at outlet | |
US3549353A (en) | Method and apparatus for melting reactive materials | |
JP3087277B2 (en) | Cold wall crucible melting device and melting method | |
JP2006153362A (en) | Metal melting and tapping device, and its casting device | |
TW561081B (en) | Method to adjust the temperature of a moulding trough and the moulding trough to implement this method | |
JP4655301B2 (en) | Metal melting and tapping equipment | |
JPH05280873A (en) | Low temperature crucible capable of discharging molten material | |
JPH04285091A (en) | Manufacturing device for oxide single crystal | |
TW574442B (en) | Apparatus and method for producing semiconductor single crystal | |
JPH05279166A (en) | Production of single crystal | |
JP2000088467A (en) | Floating melting apparatus | |
JP3628355B2 (en) | High frequency induction heating coil device | |
US20240246852A1 (en) | High capacity bushing plate for producing igneous rock fibers | |
JP2000271706A (en) | Twin roll type continuous casting method and device thereof | |
JPS60137833A (en) | Melting furnace of high-frequency induction heating for glass |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 19990608 |