JPH05277402A - Turbid material separator - Google Patents

Turbid material separator

Info

Publication number
JPH05277402A
JPH05277402A JP4073801A JP7380192A JPH05277402A JP H05277402 A JPH05277402 A JP H05277402A JP 4073801 A JP4073801 A JP 4073801A JP 7380192 A JP7380192 A JP 7380192A JP H05277402 A JPH05277402 A JP H05277402A
Authority
JP
Japan
Prior art keywords
gas
liquid
stock solution
turbidity
tubular member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4073801A
Other languages
Japanese (ja)
Other versions
JP2910955B2 (en
Inventor
Keiya Nagahara
啓也 永原
Yoichiro Kitano
洋一郎 北野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP7380192A priority Critical patent/JP2910955B2/en
Publication of JPH05277402A publication Critical patent/JPH05277402A/en
Application granted granted Critical
Publication of JP2910955B2 publication Critical patent/JP2910955B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Cyclones (AREA)

Abstract

PURPOSE:To provide a simple and compact turbid matter separator capable of sufficiently enhancing the separation efficiency of turbid matter. CONSTITUTION:The raw solution supplied into an outer cylindrical member 15 from a raw solution supply passage 1 forms a revolving stream to form a static pressure head in the diameter direction of the member 15. Air particles are moved to the central part of the member 15 by the buoyancy due to the static pressure head and a gasliquid mixed phase vortex stream is formed from air and the raw solution. The turbid matter in the raw solution is discharged to thick solution discharge passages 4, 5 by the gas-liquid mixed phase vortex stream. Further, the gas-liquid mixed phase vortex stream enters an inner cylindrical member 16 and an air rich layer is formed around a communication hole 17 by said vortex stream and the penetration of the turbid matter into a clarified solution discharge passage 3 is prevented by the air rich layer and the separation efficiency of the turbid matter is enhanced.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、気液混その渦流を利用
した混濁物分離装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a turbid matter separating apparatus using gas-liquid mixture and its vortex flow.

【0002】[0002]

【従来の技術】流体(気体または液体)から、該流体に含
まれる異相成分(例えば、固体粒子)を分離する分離装置
の1つであるサイクロンは、従来より知られている(例
えば、実開昭63−152656号公報参照)。そし
て、サイクロンにおいては、一般に、円筒部と円錐部と
からなる外筒に原液が接線方向に供給され、外筒内に生
じる旋回流による遠心力によって、混濁物が外筒(円錐
部)の下端部に集められ、下端出口から混濁物含有率の
高い濃厚液が排出される一方、外筒(円筒部)の上端部に
配置された内筒から清澄液が排出されるようになってい
る。かかるサイクロンは、構造が簡素かつコンパクトで
あり、とくには駆動機構を要しないといった利点があ
る。
2. Description of the Related Art A cyclone, which is one of separation devices for separating a heterogeneous component (eg, solid particles) contained in a fluid (gas or liquid) from the fluid (eg, actual application). (See Japanese Patent Laid-Open No. 63-152656). In a cyclone, generally, the undiluted solution is tangentially supplied to an outer cylinder composed of a cylindrical portion and a conical portion, and the centrifugal force due to the swirling flow generated in the outer cylinder causes the turbid matter to fall into the lower end of the outer cylinder (conical portion). The concentrated liquid with a high turbidity content is discharged from the lower end outlet while the clear liquid is discharged from the inner cylinder arranged at the upper end of the outer cylinder (cylindrical part). Such a cyclone has the advantages that it has a simple and compact structure and does not require a drive mechanism.

【0003】そして、サイクロンにおいては、その分離
効率は、実質的に、液体の旋回流速度及び旋回流径すな
わち遠心力の強さと、流体と異相成分との間の比重差と
によって支配される。なお、分離効率が、サイクロンの
形状、例えば外筒径、内筒径等によっても左右されるの
はもちろんである。
In the cyclone, the separation efficiency is substantially governed by the swirling flow velocity and swirling flow diameter of the liquid, that is, the strength of the centrifugal force, and the specific gravity difference between the fluid and the heterophase component. Of course, the separation efficiency also depends on the shape of the cyclone, such as the outer cylinder diameter and the inner cylinder diameter.

【0004】[0004]

【発明が解決しようとする課題】ところで、かかるサイ
クロンは、混濁物を含む液体を、混濁物含有率の高い濃
厚液と、混濁物を実質的に含まない清澄液とに分離する
ためにも用いられ、かかるサイクロンは液体サイクロン
(湿式サイクロン)と呼ばれる。しかしながら、かかる液
体サイクロンにおいては、気体サイクロンの場合とは違
って、液体の旋回流速度をそれほど大きくすることがで
きないので、それほど強い遠心力は得られない。また、
液体と混濁物との間の比重差は概して小さく、とくに混
濁物が有機物である場合には、比重差が非常に小さくな
る。このため、液体サイクロンにおいては、分離効率が
比較的低く、実用レベルでは気体サイクロンほどは普及
していないのが現状である。
By the way, such a cyclone is also used for separating a liquid containing turbidity into a concentrated liquid having a high content of turbidity and a clear liquid containing substantially no turbidity. And such a cyclone is a liquid cyclone
It is called (wet cyclone). However, in such a liquid cyclone, unlike in the case of the gas cyclone, the swirling flow velocity of the liquid cannot be increased so much, so that a strong centrifugal force cannot be obtained. Also,
The difference in specific gravity between the liquid and the turbidity is generally small, and the difference in specific gravity is very small, especially when the turbidity is an organic matter. Therefore, liquid cyclones have a relatively low separation efficiency and are not as popular as gas cyclones at the practical level.

【0005】これを改善すべく、原液に圧搾空気を圧入
し、この圧搾空気によって遠心力を高め、分離効率を高
めるようにした液体サイクロンが提案されている(特開
昭57−24652号公報参照)。すなわち、液体中に
気体を分散させるとそのみかけ上の粘度が低くなるの
で、その分旋回流速度が高められ、遠心力が増加するわ
けである。しかしながら、かかる圧搾空気の圧入による
遠心力の増加はそれほど大きくないので、液体サイクロ
ンの分離効率が十分に高められるまでには至っていな
い。
In order to improve this, a liquid cyclone has been proposed in which compressed air is press-fitted into the stock solution, and the compressed air enhances the centrifugal force to enhance the separation efficiency (see Japanese Patent Laid-Open No. 57-24652). ). That is, when the gas is dispersed in the liquid, the apparent viscosity of the liquid is lowered, so that the swirling flow velocity is increased and the centrifugal force is increased accordingly. However, since the increase of the centrifugal force due to the press-fitting of the compressed air is not so large, the separation efficiency of the hydrocyclone has not been sufficiently increased.

【0006】本発明は、上記従来の問題点を解決するた
めになされたものであって、混濁物の分離効率を十分に
高めることができる、簡素でかつコンパクトな混濁物分
離装置を提供することを目的とする。
The present invention has been made to solve the above-mentioned conventional problems, and provides a simple and compact turbid matter separating apparatus capable of sufficiently increasing the efficiency of separating turbid materials. With the goal.

【0007】[0007]

【課題を解決するための手段】上記の目的を達するた
め、第1の発明は、混濁物を含む原液を、混濁物含有率
の高い濃厚液と混濁物含有率の低い清澄液とに分離する
混濁物分離装置であって、(a)原液を供給する原液供給
通路と、(b)原液供給通路内の原液に気体を分散させて
注入する気体注入手段と、(c)原液供給通路から流入し
た原液を旋回させて径方向の静圧差を生じさせ、該静圧
差によって原液中の気体粒子を中心部に移動させ、該中
心部に気液混相渦流を生じさせ、該気液混相渦流により
混濁物を渦流軸線方向の一端側に集中させて原液を濃厚
液と清澄液とに分離する混濁物分離部と、(d)混濁物分
離部内の濃厚液を排出する濃厚液排出通路と、(e)混濁
物分離部内の清澄液を排出する清澄液排出通路とが設け
られていることを特徴とする混濁物分離装置を提供す
る。
To achieve the above object, the first invention is to separate a stock solution containing turbid matter into a concentrated solution having a high turbidity content and a clear solution having a low turbidity content. A turbidity separator, (a) a stock solution supply passage for supplying a stock solution, (b) a gas injection means for dispersing and injecting a gas into the stock solution in the stock solution supply passage, and (c) an inlet from the stock solution supply passage The undiluted solution is swirled to generate a radial static pressure difference, and the static pressure difference causes the gas particles in the undiluted solution to move to the central portion to generate a gas-liquid mixed phase vortex flow, and the gas-liquid mixed phase vortex flow causes turbidity. A turbid matter separating section for concentrating the substance on one end side in the vortex flow axis direction to separate the stock solution into a concentrated solution and a clarified solution; (d) a concentrated solution discharge passage for discharging the concentrated solution in the turbid matter separating section; ) A clarified liquid discharge passage for discharging the clarified liquid in the turbid matter separating section is provided. Providing objects separator.

【0008】第2の発明は、第1の発明にかかる混濁物
分離装置において、(a)混濁物分離部が、大径の外筒部
材と、該外筒部材内に略同軸状に配置される小径の内筒
部材とで構成されていて、(b)内筒部材の第1の端面
が、外筒部材の対向する端面とは離間するように形成さ
れていて、上記第1の端面に内筒部材内空間部と外筒部
材内空間部とを連通させる連通部が形成され、かつ内筒
部材の第2の端面に清澄液排出通路が接続され、(c)外
筒部材の周面に、原液供給通路が外筒部材周方向を指向
して接続され、かつ内筒部材の上記第1の端面と対向す
る外筒部材の端面に、濃厚液排出通路が接続されている
ことを特徴とする混濁物分離装置を提供する。
A second aspect of the invention is the turbidity separating apparatus according to the first aspect of the invention, in which (a) the turbidity separating portion is arranged substantially coaxially with the large-diameter outer cylinder member. And (b) the first end surface of the inner cylinder member is formed so as to be separated from the facing end surface of the outer cylinder member. A communication portion that connects the inner tubular member inner space portion and the outer tubular member inner space portion is formed, and the fining liquid discharge passage is connected to the second end surface of the inner tubular member, and (c) the outer circumferential surface of the outer tubular member. And a concentrated liquid discharge passage is connected to an end surface of the outer cylinder member facing the first end surface of the inner cylinder member, and the stock solution supply passage is connected to the outer cylinder member in the circumferential direction. A turbid matter separating device is provided.

【0009】第3の発明は、第2の発明にかかる混濁物
分離装置において、内筒部材の第1の端面が平板状に形
成されていて、その略中心部に連通部が設けられている
ことを特徴とする混濁物分離装置を提供する。
According to a third aspect of the invention, in the turbidity separating apparatus according to the second aspect of the invention, the first end surface of the inner tubular member is formed in a flat plate shape, and a communication portion is provided at a substantially central portion thereof. There is provided a turbid matter separating apparatus, which is characterized by the above.

【0010】第4の発明は、第2の発明にかかる混濁物
分離装置において、内筒部材の第1の端面が外方に膨出
するテーパ状に形成されていて、その頂部に連通部が設
けられていることを特徴とする混濁物分離装置を提供す
る。
According to a fourth aspect of the present invention, in the turbidity separating apparatus according to the second aspect, the first end surface of the inner tubular member is formed in a tapered shape so as to bulge outward, and the communicating portion is provided at the top thereof. Provided is a turbid matter separating device characterized by being provided.

【0011】第5の発明は、第2〜第4の発明のいずれ
か1つにかかる混濁物分離装置において、内筒部材の第
1の端面に、連通部を囲みつつ外方に突出する円管部材
が設けられていることを特徴とする混濁物分離装置を提
供する。
A fifth aspect of the present invention is the turbidity separating apparatus according to any one of the second to fourth aspects of the invention, wherein the first end surface of the inner tubular member is a circle projecting outward while surrounding the communicating portion. Provided is a turbid matter separating device, which is provided with a tube member.

【0012】第6の発明は、第2〜第4の発明のいずれ
か1つにかかる混濁物分離装置において、内筒部材の第
1の端面に、連通部を囲みつつ内方に突出する円管部材
が設けられていることを特徴とする混濁物分離装置を提
供する。
A sixth aspect of the invention is a turbidity separating apparatus according to any one of the second to fourth aspects of the invention, wherein the first end surface of the inner tubular member is a circle protruding inward while surrounding the communicating portion. Provided is a turbid matter separating device, which is provided with a tube member.

【0013】第7の発明は、原液と気体とを接触させ、
気液間で物質移動を行わせる気液接触装置であって、
(a)原液を供給する原液供給通路と、(b)原液供給通路内
の原液に所定の気体を分散させて注入する気体注入手段
と、(c)原液供給通路から流入した原液を旋回させて径
方向の静圧差を生じさせ、該静圧差によって原液中の気
体粒子を中心部に移動させ、該中心部に気液混相渦流を
生じさせ、該気液混相渦流によって気液間の物質移動速
度を高める気液接触部と、(d)気液接触後の気体及び液
体を排出する気液排出通路とが設けられていることを特
徴とする気液接触装置を提供する。
A seventh aspect of the present invention is to bring a stock solution and a gas into contact with each other,
A gas-liquid contact device for effecting mass transfer between gas and liquid,
(a) an undiluted solution supply passage for supplying undiluted solution, (b) a gas injection means for injecting a predetermined gas by dispersing a predetermined gas in the undiluted solution supply passage, and (c) swirling the undiluted solution flowing from the undiluted solution supply passage. A radial static pressure difference is generated, the gas particles in the stock solution are moved to the central portion by the static pressure difference, a gas-liquid mixed phase vortex flow is generated in the central portion, and the gas-liquid mixed phase vortex flow causes a mass transfer rate between gas and liquid. And a gas-liquid discharge passage for discharging the gas and the liquid after the gas-liquid contact (d).

【0014】[0014]

【実施例】以下、本発明の実施例を具体的に説明する。
図1〜図3に示すように、混濁物分離装置S1は、基本
的には、液体と非溶解性の混濁物とが混合されてなるス
ラリ状の原液を、エアを分散させて注入した上で、原液
供給通路1を通して混濁物分離部2に供給し、この混濁
物分離部2で、混濁物をほとんど含まない清澄液と、混
濁物含有率の高い濃厚液(スラッジ)とに分離し、清澄液
を清澄液排出通路3を通して排出する一方、濃厚液を上
側濃厚液排出通路4と横側濃厚液排出通路5とを通して
排出するようになっている。そして、原液供給速度は第
1バルブ6によって調節され、清澄液排出速度は第2バ
ルブ7によって調節され、上側濃厚液排出通路4と横側
濃厚液排出通路5とからの濃厚液排出速度は、夫々、第
3バルブ8と第4バルブ9とによって調節されるように
なっている。なお、後で説明するように、上側濃厚液排
出通路4からは、エアと混濁物中の比重ないし粒径の小
さい成分とが排出され、横側濃厚液排出通路5からは混
濁物中の比重ないし粒径の大きい成分が排出されるよう
になっている。
EXAMPLES Examples of the present invention will be specifically described below.
As shown in FIGS. 1 to 3, the turbid matter separating apparatus S1 basically injects a slurry-like stock solution obtained by mixing a liquid and an insoluble turbid material by dispersing air. Then, it is supplied to the turbid matter separating section 2 through the undiluted solution supply passage 1, and in the turbid matter separating section 2, it is separated into a clear solution containing almost no turbid matter and a concentrated solution (sludge) having a high turbidity content rate, The clarified liquid is discharged through the clarified liquid discharge passage 3, while the concentrated liquid is discharged through the upper concentrated liquid discharge passage 4 and the lateral concentrated liquid discharge passage 5. The stock solution supply rate is adjusted by the first valve 6, the clear solution discharge rate is adjusted by the second valve 7, and the concentrated solution discharge rate from the upper concentrated solution discharge passage 4 and the lateral concentrated solution discharge passage 5 is Each of them is adjusted by the third valve 8 and the fourth valve 9. As will be described later, the upper concentrated liquid discharge passage 4 discharges air and components having a specific gravity or small particle size in the turbid material, and the lateral concentrated liquid discharge passage 5 discharges specific gravity in the turbid material. Or, a component having a large particle size is discharged.

【0015】以下、混濁物分離装置S1の各部の具体的
な構造を説明する。原液供給通路1には、エジェクタ1
1が介設され、このエジェクタ11には、その負圧によ
ってエア供給通路12からエアが吸い込まれるようにな
っている。なお、エア流量はエア調節バルブ13によっ
て調節される。このエジェクタ11で、エアが細かく分
散されて原液中に注入される。
The specific structure of each part of the turbidity separating apparatus S1 will be described below. The stock solution supply passage 1 includes an ejector 1
1 is interposed, and the negative pressure of the ejector 11 sucks air from the air supply passage 12. The air flow rate is adjusted by the air adjusting valve 13. Air is finely dispersed by the ejector 11 and injected into the stock solution.

【0016】混濁物分離部2には、下方に狭まる略円錐
形の外筒部材15と、該外筒部材15内に配置され下方
に狭まる略円錐形の内筒部材16とが設けられている。
ここで、内筒部材16の上端部16aは、外筒部材15
の上端部15aとは所定の間隔をあけて配置されてい
る。そして、内筒部材16の上端部16aは、外方に若
干膨出する鈍い円錐状に形成され、その頂部には、内筒
部材16内の空間部と外筒部材15内の空間部(但し、
内筒部材外部)とを連通させる連通穴17が形成されて
いる。また、内筒部材16の底部は外筒部材15の底部
に接合され、内筒部材16は下端部では、外筒部材15
と仕切られている。そして、外筒部材15の内周面に
は、原液供給通路1がほぼ外筒部材周方向を指向するよ
うにして開口している。このため、原液供給通路1から
外筒部材15内に流入した原液は、外筒部材15内に旋
回流を生成する。
The turbid matter separating portion 2 is provided with a substantially conical outer cylinder member 15 that narrows downward and a substantially conical inner cylinder member 16 that is disposed in the outer cylinder member 15 and narrows downward. ..
Here, the upper end portion 16a of the inner tubular member 16 is the outer tubular member 15
The upper end portion 15a is spaced apart from the upper end portion 15a by a predetermined distance. Then, the upper end portion 16a of the inner tubular member 16 is formed in a blunt conical shape that slightly bulges outward, and a space portion inside the inner tubular member 16 and a space portion inside the outer tubular member 15 (however, at the top thereof). ,
A communication hole 17 for communicating with the outside of the inner cylinder member) is formed. Further, the bottom portion of the inner tubular member 16 is joined to the bottom portion of the outer tubular member 15, and the inner tubular member 16 has a lower end portion at the outer tubular member 15.
It has been partitioned. The stock solution supply passage 1 is opened on the inner peripheral surface of the outer cylinder member 15 so as to be oriented substantially in the outer cylinder member circumferential direction. Therefore, the stock solution that has flowed into the outer cylinder member 15 from the stock solution supply passage 1 generates a swirling flow in the outer cylinder member 15.

【0017】内筒部材16の下端部には下側パイプ18
が接続され、この下側パイプ18の他端は清澄液排出通
路3に接続されている。そして、下側パイプ18の下端
部近傍には、支持部材19によって支持された気液混相
渦流係止部材20が設けられている。この気液混相渦流
係止部材20は、後で説明する気液混相渦流が、これよ
り下流側に侵入するのを防止するために設けられてい
る。
A lower pipe 18 is provided at the lower end of the inner tubular member 16.
Is connected, and the other end of the lower pipe 18 is connected to the clarified liquid discharge passage 3. A gas-liquid mixed phase eddy current locking member 20 supported by a supporting member 19 is provided near the lower end of the lower pipe 18. The gas-liquid mixed phase vortex flow locking member 20 is provided to prevent a gas-liquid mixed phase vortex, which will be described later, from entering the downstream side.

【0018】外筒部材15の上端部15aには、上側パ
イプ21が接続され、この上側パイプ21の上端部には
上側から下方に向かって上側濃厚液排出通路4が差し込
まれている。このため、上側パイプ21は、その上端部
近傍では2重管構造となっている。また、上側パイプ2
1の上端部近傍において、上側パイプ21の内周面に
は、横側濃厚液排出通路5がほぼ上側パイプ部材周方向
を指向するようにして開口している。
An upper pipe 21 is connected to an upper end portion 15a of the outer cylinder member 15, and an upper concentrated liquid discharge passage 4 is inserted into the upper end portion of the upper pipe 21 from the upper side to the lower side. Therefore, the upper pipe 21 has a double pipe structure near the upper end thereof. Also, the upper pipe 2
In the vicinity of the upper end portion of 1, the lateral concentrated liquid discharge passage 5 is opened in the inner peripheral surface of the upper pipe 21 so as to be oriented substantially in the circumferential direction of the upper pipe member.

【0019】図4に、上記の混濁物分離装置S1とは基
本的には同一構成であるが、以下の点で若干構成が異な
る第2の混濁物分離装置S2を示す。すなわち、図4に
示すように、混濁物分離装置S2では、外筒部材15'
と内筒部材16'とが略円柱形に形成されている。ま
た、内筒部材16'の上端部16'aに、連通穴17を囲
むようにして内筒部材16'の内側(下方)に突出する円
管部材24が設けられている。かかる円管部材24は混
濁物の分離効率を高める機能を有する。なお、円管部材
24を、外方(上方)に突出させてもよい。さらに、横側
濃厚液排出通路5とこれを開閉するバルブ9とが2組設
けられ、上側パイプ21の上端部付近での渦流を強める
ようになっている。また、外筒部材15'の周面に予備
通路25が接続され、この予備通路25の他端はフラン
ジ26で閉止されている。なお、図1〜図4に示す両混
濁物分離装置S1,S2は、縦置きに配置されている
が、これらを横置きにしてもよい。
FIG. 4 shows a second turbid matter separating device S2 which is basically the same as the turbid substance separating device S1 described above, but slightly different in the following points. That is, as shown in FIG. 4, in the turbid matter separating apparatus S2, the outer cylinder member 15 ′ is provided.
And the inner cylinder member 16 'are formed in a substantially cylindrical shape. Further, a circular pipe member 24 is provided on the upper end portion 16′a of the inner tubular member 16 ′ so as to surround the communication hole 17 and project inside (downward) of the inner tubular member 16 ′. The circular tube member 24 has a function of increasing the efficiency of separating turbid substances. The circular tube member 24 may be projected outward (upward). Further, two sets of the lateral concentrated liquid discharge passage 5 and a valve 9 for opening and closing the same are provided to enhance the vortex flow near the upper end of the upper pipe 21. A spare passage 25 is connected to the peripheral surface of the outer cylinder member 15 ′, and the other end of the spare passage 25 is closed by a flange 26. The two turbid matter separating devices S1 and S2 shown in FIGS. 1 to 4 are vertically arranged, but they may be horizontally arranged.

【0020】以下、図4に示す混濁物分離装置S2を例
にとって、その機能ないし作用を説明する。外筒部材1
5'ないし内筒部材16'内での液体の流れ特性は、図5
(a),(b),(c)の通りである。図5(a),(b),(c)から明らか
なとおり、エアを伴って原液供給通路1から外筒部材1
5'内に流入した原液は、外筒部材15'内に旋回流を生
成する。
The function or action of the turbid matter separating apparatus S2 shown in FIG. 4 will be described below as an example. Outer cylinder member 1
The flow characteristics of the liquid in 5'or the inner cylinder member 16 'are shown in FIG.
They are as shown in (a), (b) and (c). As is apparent from FIGS. 5 (a), 5 (b) and 5 (c), the stock solution supply passage 1 through the outer cylinder member 1 is accompanied by air.
The undiluted solution that has flowed into the 5'generates a swirling flow in the outer cylinder member 15 '.

【0021】図8に示すように、かかる旋回流は、中心
部付近(r0〜r1)では旋回流速が旋回半径にほぼ比例する
コア部を形成し、該コア部の外側(r1〜r2)では、旋回流
速が旋回半径にほぼ反比例する準自由渦部を形成する。
このため、外筒部材15'内には、遠心力分布G(r)が形
成され、かかる遠心力分布によってな静圧分布P(r)が
形成される。なお、上下方向の静圧分布は、図9に示す
とおりであり、A〜C間の静圧がとくに低くなってい
る。一般に径方向の静圧分布は、遠心力分布を積分する
ことによって求められる。すなわち、静圧Pと遠心力G
の間には、次の式1のような関係が成立する。
As shown in FIG. 8, the swirling flow forms a core portion in which the swirling flow velocity is substantially proportional to the swirling radius in the vicinity of the central portion (r 0 to r 1 ) and outside the core portion (r 1 to r 1 ). At r 2 ), the swirling velocity forms a quasi-free vortex part, which is almost inversely proportional to the swirling radius.
Therefore, a centrifugal force distribution G (r) is formed in the outer cylinder member 15 ', and a static pressure distribution P (r) is formed by the centrifugal force distribution. The static pressure distribution in the vertical direction is as shown in FIG. 9, and the static pressure between A and C is particularly low. Generally, the static pressure distribution in the radial direction is obtained by integrating the centrifugal force distribution. That is, static pressure P and centrifugal force G
The relationship expressed by the following Expression 1 is established between the two.

【数1】 dP/dr=ρ・d(r・G)/dr………………………………式1 ρ……液体密度 r………半径 この静圧分布においては、静圧が、周縁部(r2)で最も高
くなり、中心部(r0)に向かって急速に低下している。こ
のため、外筒部材15'内の液体中のエア粒子には、か
かる静圧分布ないし静圧落差ΔPによって、中心部に向
かう非常に強い浮力が作用する。
[Formula 1] dP / dr = ρ · d (r · G) / dr ………………………………………………………………………………………………………………………………………………………………………………………………………………………………. The pressure is highest at the peripheral portion (r 2 ) and rapidly decreases toward the central portion (r 0 ). Therefore, due to the static pressure distribution or the static pressure drop ΔP, the air particles in the liquid in the outer cylinder member 15 ′ have a very strong buoyancy acting toward the center.

【0022】したがって、図6に示すように、外筒部材
15'内において、エア粒子は旋回しつつ急速に中心部
に移動し、外筒部材15'の中心部には、液体とエアと
が異相で激しく渦巻く渦流、いわゆる気液混相渦流T
2(トルネード)が発生する。この気液混相渦流T2は、激
しく旋回しつつ上側パイプ21内を上昇し、上側濃厚液
排出通路4内に達する。ここにおいて、液体中に浮遊し
ている混濁物は、気液混相渦流T2とともに上側パイプ
21内を旋回しつつ上昇する。そして、混濁物中の比重
ないし粒径の大きい成分は、強い遠心力を受けるので上
側パイプ21の周縁側に多く集まり、比重ないし粒径の
小さい成分はそれほど強い遠心力を受けないので上側パ
イプ21の中心部付近に多く集まる。したがって、上側
濃厚液排出通路4からは、エアと比重ないし粒径の小さ
い成分とを含む濃厚液が排出され、横側濃厚液排出通路
5からは、比重ないし粒径の大きい成分を含む濃厚液が
排出される。
Therefore, as shown in FIG. 6, in the outer cylinder member 15 ', the air particles swirl and rapidly move to the center portion, and liquid and air are collected in the center portion of the outer cylinder member 15'. Vortex that violently swirls in different phase, so-called gas-liquid mixed-phase vortex T
2 (tornado) occurs. The gas-liquid mixed phase vortex T 2 rises in the upper pipe 21 while swirling violently and reaches the upper concentrated liquid discharge passage 4. Here, the suspended matter floating in the liquid rises while swirling in the upper pipe 21 together with the gas-liquid mixed phase vortex T 2 . Then, the components having a large specific gravity or large particle diameter in the turbid matter are concentrated on the peripheral side of the upper pipe 21 due to the strong centrifugal force, and the components having a small specific gravity or small particle diameter are not subjected to the strong centrifugal force so that the upper pipe 21 is Many gather near the center of the city. Therefore, a concentrated liquid containing air and a component having a specific gravity or a small particle size is discharged from the upper concentrated liquid discharge passage 4, and a concentrated liquid containing a component having a specific gravity or a large particle size is discharged from the lateral concentrated liquid discharge passage 5. Is discharged.

【0023】内筒部材16'内の液体は、前記したとお
り、下側パイプ18と清澄液排出通路3とを介して排出
される。したがって、外筒部材15'内(但し、内筒部材
外)の液体の一部は、連通穴17を介して内筒部材16'
内へ流入する。このとき、静圧落差ΔPによって中心部
付近に集まっているエア粒子は、急激に内筒部材16'
内に入り込み、かかるエア粒子によって、内筒部材1
6'内にも気液混相渦流T1が生成される。この気液混相
渦流T1は、液体の下方への流れにのって、下側パイプ
18内に入り込む。しかしながら、下側パイプ18の下
端部付近には気液混相渦流係止部材20が設けられてい
るので、気液混相渦流T1はここより下流側には入り込
まない。
The liquid in the inner cylinder member 16 'is discharged through the lower pipe 18 and the clearing liquid discharge passage 3 as described above. Therefore, a part of the liquid inside the outer cylinder member 15 ′ (outside the inner cylinder member) is part of the inner cylinder member 16 ′ through the communication hole 17.
Flows in. At this time, the air particles gathered in the vicinity of the central portion due to the static pressure drop ΔP suddenly abruptly move to the inner cylinder member 16 ′.
The inner cylinder member 1 enters the inside and is caused by the air particles.
A gas-liquid mixed-phase vortex T 1 is also generated in 6 ′. The gas-liquid mixed phase vortex T 1 flows into the lower pipe 18 along with the downward flow of the liquid. However, since the gas-liquid mixed phase vortex flow locking member 20 is provided near the lower end of the lower pipe 18, the gas-liquid mixed phase vortex flow T 1 does not enter the downstream side.

【0024】図7に拡大して示すように、気液混相渦流
1が形成される際には、まず内筒部材16'の外周部に
押し付けられている、エア粒子を多く含む液体層33中
のエア粒子32が多量に連通穴17を通って内筒部材1
6'内へ入り込む。このとき、連通穴17よりやや下側
の領域には、エア粒子32が密集した層が形成される。
そして、このエア粒子32が密集した層は、混濁物粒子
31の内筒部材16'内への侵入を妨げる。すなわち、
混濁物粒子31に対してフィルタ作用を及ぼす。このた
め、内筒部材16'には混濁物が入り込まず、清澄液排
出通路4からは、ほとんど混濁物を含まない清澄液が排
出される。このような簡素な構成で、原液供給通路1か
ら混濁物分離部2に供給された原液が、非常に高い分離
効率で、ほとんど混濁物を含まない清澄液と、エアと比
重ないし粒径の小さい混濁物成分とを含む濃厚液と、比
重ないし粒径の大きい混濁物成分を含む濃厚液とに分離
される。
As shown in the enlarged view of FIG. 7, when the gas-liquid mixed phase vortex T 1 is formed, first, the liquid layer 33 containing a large amount of air particles is pressed against the outer peripheral portion of the inner cylindrical member 16 '. A large amount of air particles 32 inside pass through the communication hole 17 and the inner cylinder member 1
Go inside 6 '. At this time, a layer in which the air particles 32 are densely formed is formed in a region slightly below the communication hole 17.
The layer in which the air particles 32 are dense prevents the turbid particles 31 from entering the inner cylindrical member 16 ′. That is,
A filter action is exerted on the turbid particles 31. Therefore, the turbid substance does not enter the inner tube member 16 ′, and the clarified liquid containing almost no turbid substance is discharged from the clarified liquid discharge passage 4. With such a simple structure, the undiluted solution supplied from the undiluted solution supply passage 1 to the turbid matter separating section 2 has a very high separation efficiency and a clear solution containing almost no turbidity, and a specific gravity or a particle size smaller than that of air. It is separated into a concentrated liquid containing a turbid component and a concentrated liquid containing a turbid component having a large specific gravity or particle size.

【0025】ところで、かかる混濁物分離装置において
は、外筒部材15,15'内で静圧落差ΔPによってエア
粒子が中心部に移動する際、静圧の低下によってエア粒
子が急膨張するので、気液が激しく接触し、かつ気液接
触面積が非常に大きくなる。また、気液混相渦流内でも
気液が激しく接触する。
By the way, in such a turbid matter separating apparatus, when the air particles move to the central portion due to the static pressure drop ΔP in the outer cylindrical members 15 and 15 ', the air particles rapidly expand due to the decrease in static pressure. Gas-liquid contacts violently, and the gas-liquid contact area becomes very large. In addition, the gas-liquid violently contacts even in the gas-liquid mixed-phase vortex.

【0026】したがって、図10に示すように、下側パ
イプ以下の部分を設けず、あるいは清澄液排出通路のバ
ルブを完全に閉止すれば、混濁物を分離することはでき
ないが、気液を激しく接触させることはできる。なお、
この場合の、径方向の遠心力分布及び静圧分布は、図1
1のとおりである。そこで、図10に示す装置は、これ
を気液接触装置として用いることができる。例えば、所
定の液体X1に溶解度の高い(ヘンリー定数の小さい)気
体Y1を効果的に吸収させることができる。この場合
は、原液供給通路1に液体X1を通し、エジェクタ11
に気体Y1を供給すれば、外筒部材15内ないし上側パ
イプ21内で、気液が激しく接触し、気体Y1が効果的
に液体X1に吸収される。また、溶解度の小さい(ヘン
リー定数の大きい)気体Y2を含む液体X2から、気体
Y2を効果的に除去することができる。この場合は、原
液供給通路1に液体X2を通し、エジェクタ11に所定
のイナートガスを供給すれば、外筒部材15ないし上側
パイプ21内で、液体X2中の気体Y2がイナートガス
中に効果的に放散される。
Therefore, as shown in FIG. 10, if the portion below the lower pipe is not provided or the valve of the clear liquid discharge passage is completely closed, the turbid matter cannot be separated, but the gas-liquid is violently violent. Can be contacted. In addition,
The radial centrifugal force distribution and static pressure distribution in this case are shown in FIG.
It is as 1. Therefore, the device shown in FIG. 10 can be used as a gas-liquid contact device. For example, the gas Y1 having a high solubility (small Henry constant) can be effectively absorbed in the predetermined liquid X1. In this case, the liquid X1 is passed through the stock solution supply passage 1 and the ejector 11
When the gas Y1 is supplied to the inside of the outer cylinder member 15 or the upper pipe 21, the gas-liquid violently contacts with the gas Y1 and the gas Y1 is effectively absorbed by the liquid X1. Further, the gas Y2 can be effectively removed from the liquid X2 containing the gas Y2 having low solubility (large Henry constant). In this case, when the liquid X2 is passed through the stock solution supply passage 1 and a predetermined inert gas is supplied to the ejector 11, the gas Y2 in the liquid X2 is effectively diffused into the inert gas in the outer cylinder member 15 or the upper pipe 21. To be done.

【0027】また、図10に示す装置は、外筒部材15
内で急激な静圧変化が生じるので、滅菌機能を有する。
したがって、この装置を用いれば、所定の液体を無薬注
滅菌することができる。なお、この場合、エジェクタ1
1にオゾンを供給し、あるいは外筒部材15内の液体に
紫外線を照射し、または超音波をあてれば滅菌効果を高
めることができる。さらに、図10に示す装置は、その
高い気液接触性を利用して、アルコール燃料等へのエア
の分散(燃焼性)の促進、気液反応系に対する触媒作用の
促進、凝集反応の促進、気液系の熱交換作用の促進等を
図るために用いることができる。
Further, the apparatus shown in FIG.
It has a sterilization function because a sudden change in static pressure occurs inside.
Therefore, by using this device, it is possible to sterilize a predetermined liquid without chemical injection. In this case, the ejector 1
The sterilization effect can be enhanced by supplying ozone to 1, or irradiating the liquid in the outer cylinder member 15 with ultraviolet rays or applying ultrasonic waves. Furthermore, the device shown in FIG. 10 utilizes its high gas-liquid contact property to promote dispersion (combustibility) of air in alcohol fuel or the like, promotion of catalytic action for gas-liquid reaction system, promotion of aggregation reaction, It can be used for promoting heat exchange action of a gas-liquid system.

【0028】以下、本願発明者らが、本発明にかかる混
濁物分離装置の好ましい構成、好ましい操作条件等を知
るために行った各種実験結果を説明する。 (1)実験1 図12(a)〜(f)、図13(g)〜(l)および図14(m)〜(p)
は、次の実験条件で、内筒部材の位置、大きさ、連通穴
径等の好ましい構成を知るために行った実験の結果であ
る。 <実験条件> 混濁物分離部……大型円錐形 混濁物……………のこくず(3mmふるいアンダ、比重約
1.2) 液体………………水 原液供給圧………2K なお、ここにおいて評価Aは分離効果・大を意味し、評
価Bは分離効果・中を意味し、評価Cは分離効果・小を
意味する。なお、これはその他の実験においても同様で
ある。この実験1からは、概ね次のようなことがわかる (a)内筒部材の上端部は、平板形または外方へ膨出する
山形が好ましい。 (b)内筒部材の上端部位置が高すぎるのは好ましくな
い。 (c)内筒部材が大きすぎるのは好ましくない。 (d)連通穴が大きすぎるのは好ましくない。
Hereinafter, the results of various experiments conducted by the inventors of the present application in order to know the preferable configuration of the turbid matter separating apparatus according to the present invention, preferable operating conditions, and the like will be described. (1) Experiment 1 FIGS. 12 (a) to (f), FIGS. 13 (g) to (l) and FIGS. 14 (m) to (p)
Is a result of an experiment conducted under the following experimental conditions in order to know a preferable configuration such as the position, size, and communication hole diameter of the inner cylinder member. <Experimental conditions> Turbid matter separating part …… Large conical turbid matter ……………… Sawdust (3mm sieve under, specific gravity about 1.2) Liquid ………… Water undiluted liquid supply pressure …… 2K Here, the evaluation A means the separation effect / large, the evaluation B means the separation effect / medium, and the evaluation C means the separation effect / small. Note that this is the same in other experiments. From this Experiment 1, it is understood that the following is roughly understood: (a) The upper end portion of the inner tubular member is preferably flat plate-shaped or mountain-shaped which bulges outward. (b) It is not preferable that the upper end position of the inner tubular member is too high. (c) It is not preferable that the inner cylinder member is too large. (d) It is not preferable that the communication hole is too large.

【0029】(2)実験2 図15〜図17は、実験1と同様の条件で、内筒部材の
上端部の好ましい構成を知るために行った実験の結果で
ある。なお、ここで評価の数字は、100を満点とする
評価点数である。この実験2からは、概ね次のようなこ
とがわかる (a)内筒部材の上端部が内方(下方)に膨出するのは好ま
しくない。 (b)内筒部材の連通穴まわりに円管部材を設けるのが好
ましい。
(2) Experiment 2 FIGS. 15 to 17 show the results of an experiment conducted under the same conditions as in Experiment 1 to find out a preferable configuration of the upper end portion of the inner cylinder member. The evaluation numbers here are evaluation scores with 100 being the perfect score. From this Experiment 2, it can be seen that the followings are roughly understood: (a) It is not preferable that the upper end of the inner tubular member bulges inward (downward). (b) It is preferable to provide a circular pipe member around the communication hole of the inner tubular member.

【0030】(3)実験3 図18〜図19は、実験1と同様の条件で、ただし原液
供給圧を3Kとして、内筒部材の上端部の好ましい構成
と上側パイプの好ましい形状とを知るために行った実験
の結果である。なお、ここで評価の数字は、100を満
点とする評価点数である。また、表1は、この実験3の
実験条件および実験結果をさらに詳細に示している。な
お、表1におけるアイテム1〜6は、夫々図18(a)〜
(f)に対応し、アイテム7〜12は、夫々図19(a)〜
(f)に対応する。
(3) Experiment 3 FIGS. 18 to 19 were conducted under the same conditions as in Experiment 1 except that the stock solution supply pressure was 3K, in order to know the preferable configuration of the upper end of the inner tubular member and the preferable shape of the upper pipe. It is the result of the experiment conducted in. The evaluation numbers here are evaluation scores with 100 being the perfect score. In addition, Table 1 shows the experimental conditions and experimental results of Experiment 3 in more detail. Items 1 to 6 in Table 1 are shown in FIG.
Corresponding to (f), items 7 to 12 are shown in FIG.
Corresponds to (f).

【表1】 この実験3からは、概ね次のようなことがわかる。 (a)清澄水の引き抜き量は、原液供給量の40〜50%
が可能である。 (b)上側パイプの上部形状は、円筒型の方がテーパ型よ
りやや好ましい。
[Table 1] From Experiment 3, the following can be seen. (a) The amount of clear water drawn is 40 to 50% of the stock solution supply
Is possible. (b) As for the upper shape of the upper pipe, the cylindrical shape is slightly preferable to the tapered shape.

【0031】(4)実験4 図20〜図22は、次の実験条件で、内筒部材の好まし
い構成を知るために行った実験の結果である。 <実験条件> 混濁物分離部……大型円筒形 混濁物……………のこくず(3mmふるいアンダ、比重約
1.2) 液体………………水 原液供給圧………3K なお、ここで評価の数字は清澄液(下出口)のSS濃度(m
g/l)である。また、表2は、この実験4の実験条件及
び実験結果をさらに詳細に示している。なお、表2にお
けるアイテム1〜3は夫々図20(a)〜(c)に対応し、ア
イテム4〜6は夫々図21(a)〜(c)に対応し、アイテム
7〜9は夫々図22(a)〜(c)に対応する。
(4) Experiment 4 FIGS. 20 to 22 show the results of an experiment conducted to find out the preferable configuration of the inner cylinder member under the following experimental conditions. <Experimental conditions> Turbid matter separation part …… Large cylindrical turbid matter ……………… Sawdust (3mm sieve under, specific gravity about 1.2) Liquid ………… Water stock solution supply pressure …… 3K , Here, the evaluation number is the SS concentration (m
g / l). In addition, Table 2 shows the experimental conditions and experimental results of Experiment 4 in more detail. Items 1 to 3 in Table 2 correspond to FIGS. 20 (a) to 20 (c), items 4 to 6 correspond to FIGS. 21 (a) to 21 (c), and items 7 to 9 correspond to FIGS. 22 (a) to 22 (c).

【表2】 この実験4からは、概ね次のようなことがわかる (a)内筒部材は小さいほうが好ましい。 (b)連通穴径が20mmを超えるのは好ましくない。 (c)清澄水の引き抜き量が、原液供給量の50%を超え
ても分離効果が低下せず、円錐型の場合より安定性が高
い。
[Table 2] From this Experiment 4, the following facts can be seen (a) It is preferable that the inner cylinder member is small. (b) It is not preferable that the diameter of the communication hole exceeds 20 mm. (c) Even if the amount of the clear water drawn out exceeds 50% of the amount of the undiluted solution supplied, the separation effect does not decrease, and the stability is higher than that of the conical type.

【0032】[0032]

【発明の作用・効果】第1の発明によれば、混濁物分離
部内に生じる静圧差に起因する浮力によって中心部に移
動するエア粒子と、液体とからなる気液混相渦流によっ
て、原液中の混濁物が濃厚液排出通路に排出され、かつ
中心部に移動したエアのフィルタ効果によって、混濁物
の清澄液排出通路への侵入が防止されるので、簡素な構
成で、分離効率を高めることができる。
According to the first aspect of the present invention, the gas-liquid mixed-phase vortex flow composed of the liquid and the air particles moving to the center due to the buoyancy caused by the static pressure difference generated in the turbid matter separating portion causes The turbidity is discharged to the concentrated liquid discharge passage, and the filter effect of the air that has moved to the center portion prevents the turbidity from entering the clear liquid discharge passage. it can.

【0033】第2の発明によれば、基本的には第1の発
明と同様の作用・効果が得られる。さらに、外筒部材内
に強い静圧落差が生じるので、簡素な構成で分離効率を
一層高めることができる。
According to the second invention, basically, the same operation and effect as those of the first invention can be obtained. Furthermore, since a strong static pressure drop occurs in the outer cylinder member, the separation efficiency can be further enhanced with a simple configuration.

【0034】第3の発明によれば、基本的には第2の発
明と同様の作用・効果が得られる。さらに、内筒部材の
第1の端面が平板状に形成されるので、気液混相渦流に
よる混濁物分離性と、エア粒子のフィルタ効果とが一層
高められる。
According to the third invention, basically, the same operation and effect as those of the second invention can be obtained. Further, since the first end surface of the inner cylinder member is formed in a flat plate shape, the turbidity separating property by the gas-liquid mixed phase vortex and the filter effect of air particles are further enhanced.

【0035】第4の発明によれば、基本的には第2の発
明と同様の作用・効果が得られる。さらに、内筒部材の
第1の端面が外方に膨出するテーパ状に形成されるの
で、気液混相渦流による混濁物分離性と、エア粒子のフ
ィルタ効果とが一層高められる。
According to the fourth invention, basically, the same operation and effect as those of the second invention can be obtained. Furthermore, since the first end surface of the inner tubular member is formed in a tapered shape that bulges outward, the turbidity separating property due to the gas-liquid mixed phase vortex flow and the filter effect of air particles are further enhanced.

【0036】第5の発明によれば、基本的には第2〜第
4の発明のいずれか1つと同様の作用・効果が得られ
る。さらに、外方に突出する円管部材によって、気液混
相渦流による混濁物分離性と、エア粒子のフィルタ効果
とが一層高められる。
According to the fifth invention, basically, the same action and effect as any one of the second to fourth inventions can be obtained. Further, the circular tube member protruding outwardly further enhances the turbidity separating property by the gas-liquid mixed phase vortex and the filter effect of the air particles.

【0037】第6の発明によれば、基本的には第2〜第
4の発明のいずれか1つと同様の作用・効果が得られ
る。さらに、内方に突出する円管部材によって、気液混
相渦流による混濁物分離性と、エア粒子のフィルタ効果
とが一層高められる。
According to the sixth invention, basically, the same action and effect as any one of the second to fourth inventions can be obtained. Furthermore, the inwardly projecting circular tube member further enhances the turbidity separating property by the gas-liquid mixed phase vortex and the filter effect of air particles.

【0038】第7の発明によれば、気液接触部内に生じ
る静圧差に起因する浮力によってエア粒子が中心部に移
動する際、静圧の低下によって急膨張するので、気液間
の物質移動が促進される。また、気液混相渦流内で気液
が激しく接触するので、気液間の物質移動がさらに促進
される。
According to the seventh aspect of the invention, when the air particles move to the central part by the buoyancy resulting from the static pressure difference generated in the gas-liquid contact portion, they rapidly expand due to the decrease in static pressure. Is promoted. In addition, since the gas and the liquid violently contact each other in the gas-liquid mixed phase vortex, the mass transfer between the gas and the liquid is further promoted.

【図面の簡単な説明】[Brief description of drawings]

【図1】 混濁物分離装置の一部断面立面説明図であ
る。
FIG. 1 is an elevational view of a partial cross section of a turbid matter separating apparatus.

【図2】 図1に示す混濁物分離装置の上側パイプ上端
部位置における平面断面説明図である。
FIG. 2 is an explanatory plan cross-sectional view at the upper end position of the upper pipe of the turbid matter separating apparatus shown in FIG.

【図3】 図1に示す混濁物分離装置の下側パイプ下端
部位置における平面断面説明図である。
FIG. 3 is a plan cross-sectional explanatory view at a lower pipe lower end position of the turbidity separating apparatus shown in FIG.

【図4】 もう1つの好ましい混濁物分離装置の一部断
面立面説明図である。
FIG. 4 is a partial cross-sectional elevational view of another preferred turbidity separator.

【図5】 (a)〜(c)は混濁物分離部内での液体の流動状
態を示す図である。
5 (a) to 5 (c) are diagrams showing a liquid flow state in a turbid matter separating section.

【図6】 混濁物分離部内でのエアの動きと気液混相渦
流の状態とを示す図である。
FIG. 6 is a view showing the movement of air and the state of a gas-liquid mixed phase vortex in the turbid matter separating unit.

【図7】 図6の連通穴まわりを拡大して示した図であ
る。
FIG. 7 is an enlarged view of the area around the communication hole in FIG. 6;

【図8】 遠心力及び静圧の径方向の分布特性を示す図
である。
FIG. 8 is a diagram showing radial distribution characteristics of centrifugal force and static pressure.

【図9】 静圧の上下方向の分布特性を示す図である。FIG. 9 is a diagram showing a vertical distribution characteristic of static pressure.

【図10】 気液接触装置の模式図である。FIG. 10 is a schematic view of a gas-liquid contact device.

【図11】 遠心力及び静圧分布の径方向の分布特性を
示す図である。
FIG. 11 is a diagram showing radial distribution characteristics of centrifugal force and static pressure distribution.

【図12】 (a)〜(f)は、混濁物分離部の好ましい構成
を知るために行った実験結果を示す図である。
12 (a) to 12 (f) are diagrams showing the results of an experiment conducted to know a preferable configuration of a turbid matter separating section.

【図13】 (g)〜(l)は、混濁物分離部の好ましい構成
を知るために行った実験結果を示す図である。
13 (g) to (l) are diagrams showing the results of an experiment conducted to find out a preferable configuration of the turbid matter separating section.

【図14】 (m)〜(p)は、混濁物分離部の好ましい構成
を知るために行った実験結果を示す図である。
14 (m) to (p) are diagrams showing the results of an experiment conducted to know a preferable configuration of a turbid matter separating section.

【図15】 内筒部材の好ましい構成を知るために行っ
た実験結果を示す図である。
FIG. 15 is a diagram showing a result of an experiment conducted to know a preferable configuration of the inner cylinder member.

【図16】 内筒部材の好ましい構成を知るために行っ
た実験結果を示す図である。
FIG. 16 is a diagram showing a result of an experiment conducted to know a preferable configuration of the inner cylinder member.

【図17】 内筒部材の好ましい構成を知るために行っ
た実験結果を示す図である。
FIG. 17 is a diagram showing a result of an experiment conducted to know a preferable configuration of the inner cylinder member.

【図18】 内筒部材及び上側パイプの好ましい構成を
知るために行った実験結果を示す図である。
FIG. 18 is a diagram showing a result of an experiment conducted to know a preferable configuration of the inner cylinder member and the upper pipe.

【図19】 内筒部材及び上側パイプの好ましい構成を
知るために行った実験結果を示す図である。
FIG. 19 is a diagram showing a result of an experiment conducted to know a preferable configuration of the inner cylinder member and the upper pipe.

【図20】 内筒部材の好ましい構成を知るために行っ
た実験結果を示す図である。
FIG. 20 is a diagram showing a result of an experiment conducted to know a preferable configuration of the inner cylinder member.

【図21】 内筒部材の好ましい構成を知るために行っ
た実験結果を示す図である。
FIG. 21 is a diagram showing a result of an experiment conducted to know a preferable configuration of the inner cylinder member.

【図22】 内筒部材の好ましい構成を知るために行っ
た実験結果を示す図である。
FIG. 22 is a diagram showing a result of an experiment conducted to know a preferable configuration of the inner cylinder member.

【符号の説明】[Explanation of symbols]

S1,S2…混濁物分離装置 1…原液供給通路 2…混濁物分離部 3…清澄液排出通路 4…上側濃厚液排出通路 5…横側濃厚液排出通路 11…エジェクタ 12…エア供給通路 15…外筒部材 15a…上端部 16…内筒部材 16a…上端部 17…連通穴 24円管部材 S1, S2 ... Turbid matter separating device 1 ... Stock solution supply passage 2 ... Turbid matter separating section 3 ... Clarified liquid discharge passage 4 ... Upper concentrated liquid discharge passage 5 ... Horizontal concentrated liquid discharge passage 11 ... Ejector 12 ... Air supply passage 15 ... Outer tubular member 15a ... upper end portion 16 ... inner tubular member 16a ... upper end portion 17 ... communication hole 24 circular pipe member

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 混濁物を含む原液を、混濁物含有率の高
い濃厚液と混濁物含有率の低い清澄液とに分離する混濁
物分離装置であって、 原液を供給する原液供給通路と、 原液供給通路内の原液に気体を分散させて注入する気体
注入手段と、 原液供給通路から流入した原液を旋回させて径方向の静
圧差を生じさせ、該静圧差によって原液中の気体粒子を
中心部に移動させ、該中心部に気液混相渦流を生じさ
せ、該気液混相渦流により混濁物を渦流軸線方向の一端
側に集中させて原液を濃厚液と清澄液とに分離する混濁
物分離部と、 混濁物分離部内の濃厚液を排出する濃厚液排出通路と、 混濁物分離部内の清澄液を排出する清澄液排出通路とが
設けられていることを特徴とする混濁物分離装置。
1. A turbid matter separating apparatus for separating a stock solution containing a turbid material into a concentrated solution having a high turbid material content and a clear solution having a low turbid material content, comprising a stock solution supply passage for supplying the stock solution. A gas injection means for dispersing and injecting a gas into the undiluted solution in the undiluted solution supply passage and a swirl of the undiluted solution flowing in from the undiluted solution supply passage to generate a radial static pressure difference, and the static pressure difference causes the gas particles in the undiluted solution to be centered. To produce a gas-liquid mixed phase vortex flow in the central part, and the gas-liquid mixed phase vortex flow concentrates the turbidity on one end side in the vortex flow axis direction to separate the stock solution into a concentrated solution and a clarified solution. And a clear liquid discharge passage for discharging the clear liquid in the turbid matter separating unit, and a turbid liquid separating apparatus for discharging the concentrated liquid in the turbid matter separating unit.
【請求項2】 請求項1に記載された混濁物分離装置に
おいて、 混濁物分離部が、大径の外筒部材と、該外筒部材内に略
同軸状に配置される小径の内筒部材とで構成されてい
て、 内筒部材の第1の端面が、外筒部材の対向する端面とは
離間するように形成されていて、上記第1の端面に内筒
部材内空間部と外筒部材内空間部とを連通させる連通部
が形成され、かつ内筒部材の第2の端面に清澄液排出通
路が接続され、 外筒部材の周面に、原液供給通路が外筒部材周方向を指
向して接続され、かつ内筒部材の上記第1の端面と対向
する外筒部材の端面に、濃厚液排出通路が接続されてい
ることを特徴とする混濁物分離装置。
2. The turbidity separating apparatus according to claim 1, wherein the turbidity separating section has a large-diameter outer cylinder member, and a small-diameter inner cylinder member arranged substantially coaxially in the outer cylinder member. And a first end surface of the inner tubular member is formed so as to be separated from an opposing end surface of the outer tubular member, and the inner tubular member inner space portion and the outer tubular member are formed on the first end surface. A communication portion that communicates with the member inner space portion is formed, a fining liquid discharge passage is connected to the second end surface of the inner cylinder member, and a stock solution supply passage is formed on the peripheral surface of the outer cylinder member in the outer cylinder member circumferential direction. The concentrated liquid discharge device is characterized in that a concentrated liquid discharge passage is connected to an end surface of an outer cylinder member that is directionally connected and is opposed to the first end surface of the inner cylinder member.
【請求項3】 請求項2に記載された混濁物分離装置に
おいて、 内筒部材の第1の端面が平板状に形成されていて、その
略中心部に連通部が設けられていることを特徴とする混
濁物分離装置。
3. The turbidity separating apparatus according to claim 2, wherein the first end surface of the inner tubular member is formed in a flat plate shape, and a communication portion is provided at a substantially central portion thereof. And a turbid matter separation device.
【請求項4】 請求項2に記載された混濁物分離装置に
おいて、 内筒部材の第1の端面が外方に膨出するテーパ状に形成
されていて、その頂部に連通部が設けられていることを
特徴とする混濁物分離装置。
4. The turbidity separating apparatus according to claim 2, wherein the first end surface of the inner tubular member is formed in a tapered shape that bulges outward, and a communication portion is provided at the top thereof. The turbidity separation device characterized by being.
【請求項5】 請求項2〜請求項4のいずれか1つに記
載された混濁物分離装置において、 内筒部材の第1の端面に、連通部を囲みつつ外方に突出
する円管部材が設けられていることを特徴とする混濁物
分離装置。
5. The turbidity separating apparatus according to any one of claims 2 to 4, wherein the first tubular member has a first end surface of the inner tubular member that projects outward while surrounding the communication portion. The turbidity separation device is provided with.
【請求項6】 請求項2〜請求項4のいずれか1つに記
載された混濁物分離装置において、 内筒部材の第1の端面に、連通部を囲みつつ内方に突出
する円管部材が設けられていることを特徴とする混濁物
分離装置。
6. The turbidity separating apparatus according to any one of claims 2 to 4, wherein the first tubular member has a first end surface of the inner tubular member that projects inward while surrounding the communication portion. The turbidity separation device is provided with.
【請求項7】 原液と気体とを接触させ、気液間で物質
移動を行わせる気液接触装置であって、 原液を供給する原液供給通路と、 原液供給通路内の原液に所定の気体を分散させて注入す
る気体注入手段と、 原液供給通路から流入した原液を旋回させて径方向の静
圧差を生じさせ、該静圧差によって原液中の気体粒子を
中心部に移動させ、該中心部に気液混相渦流を生じさ
せ、該気液混相渦流によって気液間の物質移動速度を高
める気液接触部と、 気液接触後の気体及び液体を排出
する気液排出通路とが設けられていることを特徴とする
気液接触装置。
7. A gas-liquid contact device for bringing a stock solution and a gas into contact with each other to perform mass transfer between the gas and the liquid, the stock solution supply passage supplying the stock solution, and a predetermined gas for the stock solution in the stock solution supply passage. The gas injection means for dispersing and injecting the solution and the stock solution flowing from the stock solution supply passage are swirled to generate a static pressure difference in the radial direction, and the static pressure difference moves the gas particles in the stock solution to the central part, and to the central part. A gas-liquid contact portion for generating a gas-liquid mixed-phase vortex and increasing the mass transfer rate between the gas and the liquid by the gas-liquid mixed-phase vortex, and a gas-liquid discharge passage for discharging the gas and the liquid after the gas-liquid contact are provided. A gas-liquid contact device characterized in that
JP7380192A 1992-03-30 1992-03-30 Turbidity separation equipment Expired - Fee Related JP2910955B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7380192A JP2910955B2 (en) 1992-03-30 1992-03-30 Turbidity separation equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7380192A JP2910955B2 (en) 1992-03-30 1992-03-30 Turbidity separation equipment

Publications (2)

Publication Number Publication Date
JPH05277402A true JPH05277402A (en) 1993-10-26
JP2910955B2 JP2910955B2 (en) 1999-06-23

Family

ID=13528645

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7380192A Expired - Fee Related JP2910955B2 (en) 1992-03-30 1992-03-30 Turbidity separation equipment

Country Status (1)

Country Link
JP (1) JP2910955B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000012220A1 (en) * 1998-08-31 2000-03-09 Mazda Motor Corporation Particle separating apparatus
JP2011072904A (en) * 2009-09-30 2011-04-14 Sekisui Chem Co Ltd Solid-liquid separator and water treatment apparatus
KR101296466B1 (en) * 2005-04-29 2013-08-20 지엘브이 피난스 헝가리 케이에프티, 룩셈부르크 브랜치 Hydrocyclone unit and method for separating a fibre pulp suspension containing relatively heavy contaminants
US11311921B2 (en) 2014-03-14 2022-04-26 Pcs Co., Ltd. Ultrafine bubble cleaning method using ultrafine bubble-containing liquid, apparatus therefor, and dissolved air floatation apparatus

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000012220A1 (en) * 1998-08-31 2000-03-09 Mazda Motor Corporation Particle separating apparatus
US6450344B1 (en) 1998-08-31 2002-09-17 Mazda Motor Corporation Particle separating apparatus
CN1095405C (en) * 1998-08-31 2002-12-04 马自达汽车股份有限公司 Particle separating apparatus
US6840383B2 (en) 1998-08-31 2005-01-11 Mazda Motor Corporation Particle separating apparatus
KR101296466B1 (en) * 2005-04-29 2013-08-20 지엘브이 피난스 헝가리 케이에프티, 룩셈부르크 브랜치 Hydrocyclone unit and method for separating a fibre pulp suspension containing relatively heavy contaminants
JP2011072904A (en) * 2009-09-30 2011-04-14 Sekisui Chem Co Ltd Solid-liquid separator and water treatment apparatus
US11311921B2 (en) 2014-03-14 2022-04-26 Pcs Co., Ltd. Ultrafine bubble cleaning method using ultrafine bubble-containing liquid, apparatus therefor, and dissolved air floatation apparatus

Also Published As

Publication number Publication date
JP2910955B2 (en) 1999-06-23

Similar Documents

Publication Publication Date Title
US5407584A (en) Water clarification method
AU2004308411B2 (en) Device and methodology for improved mixing of liquids and solids
US4556523A (en) Microbubble injector
US6007055A (en) Gas and liquid contact apparatus
US4857197A (en) Liquid separator with tangential drive fluid introduction
CN101347687B (en) Device for generating oil-containing water with micro air bubble
CN106587243A (en) Efficient cyclone and floatation integrated device
CN109107789A (en) A kind of corrugated plate dst coalescence cyclone separation device
US20010032812A1 (en) System and method to improve flotation systems
JPH05277402A (en) Turbid material separator
US5474749A (en) Ozone reaction device
CN107879412B (en) Air-flotation rotational flow contactor and air-flotation rotational flow system
JP5051761B2 (en) Suspended substance separator
US3567194A (en) Wet approach venturi scrubber
KR20010031561A (en) Particle separating apparatus
CN210261198U (en) Microbubble dissolved air water generating system
CN210825537U (en) Demulsification and oil removal device
CN113526614B (en) Pipeline air-entrapping cyclone coalescence-separation device and method for treating oily sewage
CN111039432B (en) Oil-water separation device convenient for integration of cyclone air floatation process
JP2002200402A (en) Gas-liquid separator and gas-liquid separating apparatus provided therewith
RU29248U1 (en) Hydrocyclone microflotator
CN206823567U (en) Unpowered mixing apparatus
JPH0211296B2 (en)
CN201283275Y (en) Device for generating oil-containing water with micro air bubble
AU2013262502A1 (en) Separator and method for treatment of a contaminated liquid

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080409

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090409

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090409

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100409

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees