JPH0527720B2 - - Google Patents

Info

Publication number
JPH0527720B2
JPH0527720B2 JP63261440A JP26144088A JPH0527720B2 JP H0527720 B2 JPH0527720 B2 JP H0527720B2 JP 63261440 A JP63261440 A JP 63261440A JP 26144088 A JP26144088 A JP 26144088A JP H0527720 B2 JPH0527720 B2 JP H0527720B2
Authority
JP
Japan
Prior art keywords
chromium
layer
tfs
chromic acid
hydrated oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP63261440A
Other languages
Japanese (ja)
Other versions
JPH02111899A (en
Inventor
Nobuyoshi Shimizu
Fumio Kunishige
Hideaki Hamano
Akio Myaji
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Kohan Co Ltd
Original Assignee
Toyo Kohan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Kohan Co Ltd filed Critical Toyo Kohan Co Ltd
Priority to JP26144088A priority Critical patent/JPH02111899A/en
Publication of JPH02111899A publication Critical patent/JPH02111899A/en
Publication of JPH0527720B2 publication Critical patent/JPH0527720B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/38Chromatising

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Treatment Of Metals (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は、飲料缶、食料缶などの食缶関係、あ
るいは、18缶、美術缶などの雑缶関係の分野で
使用される溶接缶溶電解クロム酸処理鋼板の製造
方法に関する。 〔従来の技術〕 鋼板表面に金属クロム層およびクロム水和酸化
層の2層皮膜を有する電解クロム酸処理鋼板(以
下、TFS−CTという)は飲料缶、食缶、美術
缶、18缶などの分野に、ブリキの代替品とし
て、近年ますます重用されつつある。これは、
TFS−CTがブリキに比べて安価であると共に、
優れた塗装下地用鋼板としての機能を有している
ためである。しかしながら、このTFS−CTを溶
接缶用材料として使用する場合、金属クロム、ク
ロム水和酸化物からなる皮膜を溶接直前に機械的
に研削などの手段で除去することが必要である。
溶接前に皮膜を除去することは製缶コスト上、品
質上、衛生上の問題がある。クロム水和酸化物皮
膜を研削除去せずに、溶接可能なTFS−CTおよ
びその製造方法については種々の方法が提案され
ている。例えば、特公昭57−19752、特公昭5−
36986、特開昭61−213398、特開昭63−186894な
どがすでに公知である。 特公昭57−19752は、鋼板表面に3〜40mg/m2
の金属クロム層とその上部にクロムとして2〜15
mg/m2のクロム酸化物を主体とする非金属クロム
層からなり、金属クロム層をポーラスにすること
を特徴とするものである。しかしながら、このよ
うに金属クロム量を単純に少なくし、金属クロム
層をポーラスにすると、耐食性が低下する。ま
た、表面に塗布した塗料のキユアーのため施され
る加熱により、金属クロム層のポアーから露出し
た鋼板表面が酸化されるため、意図的に露出させ
た鋼板表面が溶接性の改良に寄与しないという欠
点がある。 特公昭57−36986は、硫酸イオン、硝酸イオン、
塩素イオンなどの陰イオンを意図的には添化しな
いクロム酸、重クロム酸などを主成分とする水溶
液中で、鋼板表面に0.5〜30mg/m2の金属クロム
と、クロムとして2〜50mg/m2のクロム水和酸化
物を生成することを特徴とする塗装性、溶接性、
加工性に優れたTFS−CTの製造方法に関するも
のである。これは、溶接性、加工性の向上のため
に、金属クロム量を少なくし、それによる耐食性
の低下をクロム水和酸化物を主体とする非金属ク
ロム層を改質によつて補うものである。しかしな
がら、溶接性の観点から見ると、前述の特公昭57
−19572と同様に、金属クロム層にポアーが多く、
塗料のキユアーのための加熱により露出した鋼板
表面が酸化され、溶接性が低下するおそれがあ
る。 特開昭61−213398は、鋼板表面に10〜40mg/m2
の平滑な金属クロム層と3〜30mg/m2の均一な厚
みのクロム水和酸化物層を形成させた塗装耐食性
の優れた溶接缶用TFS−CTに関するものであ
る。その製造方法は、析出した金属クロム層の一
部を陽極処理によつて、溶解させることを特徴と
している。しかしながら、公知のクロム酸浴を用
い、10〜40mg/m2の金属クロムの析出でポーラス
状でなく連続的に鋼板表面を被覆することは非常
に難しく、また、一度析出した金属クロムを陽極
処理によつて溶解させる方法は、かえつて金属ク
ロム層のポアーを増加させ、鋼板表面の露出率を
増加させる結果になる。 特開昭63−186984は、鋼板表面に50〜150mg/
m2の金属クロム層と、クロムとして5〜20mg/m2
のクロム酸化皮膜を有し、かつ金属クロムの一部
に突起部を持つことを特徴とする溶接缶用TFS
−CTに関するものである。金属クロム層に突起
部を持たせると接触電気抵抗値(以下、Rc値と
いう)が小さくなり、その結果、溶接性が良くな
るという考えのもとに見出されたものであるが、
金属クロムの平滑状あるいは突起状などの析出形
態が異なる場合を含めると、Rc値と溶接性には
相関関係があるとは言えない。また、突起部分で
は金属クロム層は極端に厚く、また突起のない部
分は極端に薄いため、金属クロムの薄い部分で
は、鉄露出が高くなる。 溶接缶用TFS−CTを製造する方法が開示され
ていながら、いまだに実用化されていないこと
は、溶接缶用材料として種々の問題点があること
を示唆している。従来の技術は、金属クロムの減
少により、溶接性を改良し、同時にクロム水和酸
化物の改質により耐食性、塗装耐食性、塗料密着
性を付与する技術思想であるため、溶接性に影響
する因子に対する詳細な検討がなされなかつたと
考えられる。また、溶接性の評価は、スプラツシ
ユが出始めて外観が悪くなる時の電流と、十分な
接合強度が得られ始める時の電流との差である溶
接可能電流範囲の広さでなされるべきであるが、
先行技術の実施例に記載してある溶接性の評価方
法は、特開昭63−186894を除きいずれも、この評
価方法と異なり、必ずしも、溶接性を正しく評価
していない可能性がある。 〔本発明が解決しようとする課題〕 溶接缶用TFS−CTの実用化のため、すでに記
したように種々の努力がなされているが、満足で
きるものは得られていない。この理由は、先行技
術に開示されたTFS−CTが、溶接缶用材料とし
て実用に供せられる程に十分に広い溶接可能電流
範囲を有していなかつたためである。 本発明は、十分に広い溶接可能電流範囲を得る
ための最適な皮膜構成を決定すると共に、その安
定的、経済的製造方法を提供することを目的とし
ている。 〔課題を解決するための手段〕 上記目的を達成するために、本発明は鋼板上に
平滑で、被覆率の高い45〜90mg/m2の金属クロム
層を形成し、引続き、最表層の易溶性クロム水和
酸化物を溶解させることにより、クロムとして1
〜10mg/m2の均一な難溶性のクロム水和酸化物層
を形成するものである。 以下、本発明を詳細に説明する。 TFS−CTの製造方法は、フツ素化合物、硫酸
などの助剤を添加したクロム酸100g/以上の
高濃度クロム酸浴を用い鋼板表面に金属クロムを
析出後、同様の助剤を含む低濃度クロム酸浴中で
陰極電解し、主としてクロム水和酸化物皮膜を形
成させる2液法と、フツ素化合物、硫酸などの助
剤を添加したクロム酸100g/以下のクロム酸
浴中で陰極電解し、同時に金属クロム層とクロム
水和酸化物層を形成させた1液法の2つの方法が
知られている。熱アルカリ溶液でクロム水和酸化
物を溶解除去した金属クロム層について、金属ク
ロム量と金属クロム量のポアーからの鋼板表面の
露出率との関係をみると、第1図に示したよう
に、(A)CrO3−弗化物浴(B)CrO3−弗化物−硫酸浴
(C)CrO3−硫酸浴の順にポアーの少ない金属クロ
ム層が得られる。従つて、本発明において、鋼板
上に被覆率の高い金属クロム層を析出させるため
には、フツ素化合物と硫酸を添加したクロム酸
浴、より好ましくはフツ素化合物のみを添加した
クロム酸浴の使用が好ましい。フツ素化合物と硫
酸を添加したクロク酸浴は、被覆率はやや劣る
が、浴中の不純物イオンの影響を受け難いため、
操業性には優れている。 本発明のTFS−CTは溶接缶用材料として提供
されるものであり、必ず塗装して使用される。塗
装の焼付工程の加熱を受けなければ、第2図に示
すように、溶接性の良否の一指標となるRc値は、
金属クロム量の減少と共に低くなる。しかしなが
ら、塗装焼付を想定して210℃で20分の加熱を施
すと、金属クロムが45〜90mg/m2の範囲におい
て、Rc値が小さくなり、溶接性に最適範囲が存
在することが推定される。この理由は、金属クロ
ム量が45mg/m2以下では、第1図に示したよう
に、鉄露出率が金属クロムの減少とともに著しく
増加し、加熱により鋼板表面に導電性の悪い酸化
鉄が生成するためと考えられる。また、金属クロ
ム量が90mg/m2以上では、鋼板の露出面積は減少
するが、電極ロールによる加圧で、厚い金属クロ
ム層に微細な割れを生じにくいため、Rc値が大
きくなるものと考えられる。 第3図は、難溶性のクロム水和酸化物皮膜量が
一定のともで、金属クロム量と210℃で20分加熱
した後のTFS−CTの溶接時の溶接可能電流範囲
の関係を示すものであり、この範囲は溶接時にス
プラツシユが発生しはじめる電流を溶接上限と
し、十分な接合強度が得られはじめる電流を溶接
下限として求めたものである。この溶接範囲が広
いほど溶接性が優れていることを示している。溶
接可能電流範囲の広さとRc値の関係は、第2図
と第3図からわかるように相関関係がある。しか
しながら、金属クロム量の析出形態を変えた場
合、例えば、特開昭63−186894に開示されたよう
な方法で得られた金属クロム層の一部に突起部を
持つTFS−CTのRc値はかなり小さいにもかかわ
らず、溶接可能電流範囲は狭い。この理由は明確
でないが、平滑な金属クロム層を形成したTFS
−CTのみ、Rc値と溶接可能電流範囲とに良い相
関関係が認められる。 以上説明したように、本発明の溶接性に優れた
TFS−CTの金属クロム層は加熱時の露出鋼板表
面の酸化を防ぐとともに、溶接時の電極ロールの
加圧で破壊され易いように、平滑で薄く、かつ被
覆率の高いことを必要とする。 つぎに、本発明のTFS−CTの製造方法におい
て、平滑で被覆率の高い45〜90mg/m2の金属クロ
ム層の上に形成されるクロム水和酸化物は、電解
液に難溶性のものが均一性に優れており、溶接性
に優れているため、電極後の浸漬を必要とする。
電解直後のクロム水和酸化物層は、最表面に助剤
の含有量の多い電解液に易溶性のものと、その下
に助剤の含有量の少ない電解液に難溶性のものと
から構成されている。最表層の易溶性のクロム水
和酸化物は、浴組成、浴温、電流密度などの電解
条件や、液の撹拌状態によつて生成量が変動し易
いため、鋼板の幅方向、長手方向で不均一析出を
生じ易い。これに対して、その下にある難溶性の
クロム水和酸化物の生成量は、電解条件や撹拌状
態によらずほぼ一定であり、更に好都合なこと
に、電気量を多くしてもある一定の厚み以上には
生成しないため、板幅方法、長手方向の均一性に
優れている。また、更に詳細な見方をすると、電
子顕微鏡で観察される鋼の結晶方位ごとの難溶性
クロム水和酸化物の厚みの差は、電解直後のクロ
ム水和酸化物の結晶方位どこの厚みの差に比べて
均一性に優れている。このように、電解直後のク
ロム水和酸化物層は、均一な厚みの難溶性クロム
水和酸化物層の上に、不均一な厚みの易溶性クロ
ム水和酸化物層を形成しているため、全体として
不均一な厚みとなり、溶接時の局部発熱の原因と
なるため好ましくない。従つて、同一量のクロム
水和酸化物量であつても、電解直後のTFS−CT
よりも、電解後、電解液に十分浸漬して易溶性の
クロム水和酸化物を溶解除去したTFS−CTの方
が著しく溶接性に優れており、従来の技術に開示
されているような単なるクロム水和酸化物量の規
定では、安定した溶接性は得られないことがわか
つた。難溶性のクロム水和酸化物を得るために
は、電解後、少なくとも2秒以上、電解液に浸漬
する必要がある。第4図に示したように、易溶性
のクロム水和酸化物は、電解終了後、2秒以内に
大部分が溶解し、難溶性のクロム水和酸化物のみ
となる。易溶性のクロム水和酸化物を溶解させる
溶液は、電解液のほかに、25g/以上のクロム
酸溶液を使用することができる。温度は高い方が
好ましいが、常温でも易溶性のクロム水和酸化物
を溶解できる。易溶性のクロム水和酸化物を除去
する方法には、浸清による方法以外の手段も考え
られるが、陽極電解による溶解方法は、下地の金
属クロム層の溶解をともない、金属クロムの均一
被覆性を低下させるので適当でない。 難溶性クロム水和酸化物量は、溶接性の観点か
らは少ない方が良いが、クロムとして1mg/m2
下に下げることはできない。電解条件を変えた
り、長時間電解しても、10mg/m2を超えて生成す
ることはない。従つて、難溶性のクロム水和酸化
物量は、1〜10mg/m2と規定される。 このように本発明の製造方法により得られた難
溶性のクロム水和酸化物皮膜は、均一性に優れる
ため、溶接電流の分布が均一となり、溶接性が向
上するもとの考えられる。 〔実施例〕 以下、本発明の内容を実施例および比較例で具
体的に説明する。 0.22mm厚の冷延鋼板に通常の脱脂、酸洗を施し
た後、本発明の製造方法により、実施例1〜4に
示すTFS−CTを製造した。同時に先行技術の代
表的な実施例に従つて、比較例1〜4に示す
TFS−CTを製造した。これらのTFS−CTの皮
膜量、溶接性、耐食性などを第1表に示した。第
1表から明らかなように、金属クロム量が45〜90
mg/m2、難溶性クロム水和酸化物量がクロムとし
て1〜10mg/m2の範囲にあり、かつ本発明の製造
方法に従つて作製した実施例1〜4のTFS−CT
は、金属クロム層のポアーからの鉄露出率が低
く、クロム水和酸化物層の均一性に優れているた
め、十分に広い溶接可能電流範囲を有し、溶接
性、耐食性に優れている。 比較例1は、特公昭57−19752の実施例で開示
された製造方法に従つて製造したものである。比
較例2は、特公昭57−36986の実施例で開示され
た製造方法に従つて製造したものである。比較例
3は特開昭61−213398の実施例で開示された製造
方法に従つて製造したものである。比較例4は特
開昭63−186894の実施例で開示された製造方法に
従つて製造したものであつて、金属クロム層の一
部が突起している。これらは、いずれも耐食性の
点では比較例2を除いて実用上問題ないと思われ
るが、十分な溶接範囲を有していない。比較例5
は、実施例2と同じ浴組成、電解条件で製造して
いるが、電解後の浸漬による易溶性のクロム水和
酸化物の溶解除去をしていないため、十分な溶接
範囲を有していない。 次に、実施例、比較例を示した第1表の評価項
目の評価方法について述べる。 (1) 金属クロム層のポアーからの鉄露出率 95℃の7.5N−NaOH溶液中にTFS−CTを5
分間浸漬し、最表層のクロム水和酸化物を完全
に溶解除去する。続いて、試料の30mmφを残し
てテープでシールし、1M−NaH2PO4溶液中
にて125mV/minの分極速度で陽分極した時
の不動態化する直前の電流を読み取る。別に求
めた鉄の露出率と不動態化電流の検量線から、
鉄の露出率を求めた。 (2) 溶接可能電流範囲 TFS−CTを210℃で20分空焼後、実験用切
板溶接機で、周波数60Hz、ラツプ巾0.4mm、速
度5m/分、加圧力50Kg重の条件で溶接を行つ
た後、溶接部の接合状態を評価した。溶接電流
を25Aきざみで上げていつて、スプラツシユが
発生し始める電流を溶接上限とし、溶接電流を
下げていつて、溶接部の接合強度が母材の破断
強度より低くなる直前の電流を溶接下限とし
て、この電流の差を溶接可能電流範囲とした。 (3) 接触電気抵抗(Rc) TFS−CTを20℃で20分空焼後、手製の接触
電気抵抗測定機でRcを測定した。測定方法は、
2つの銅製円盤電極の接触部位に2枚重ねした
試料板を挟み、電極間を50Kg重で加圧したまま
周速5m/分で回転させて、試料板を移動させ
ながら、電極間に5Aの直流電流を流して電極
間の電圧を測定し、Rc値を求めた。 (4) 糸状腐食 TFS−CTにエポキシ・フエノール系塗料を
約60mg/dm2塗布し、210℃で10分間焼付けた
後、クロスカツトを入れ、エリキセン試験機で
5mm張り出す。サンプルを3%NaClに浸漬し
た後、サンプル台に立てて、温度45℃、湿度85
%の雰囲気中に10日間放置して、錆の発生状態
を観察した。 (5) 塩水噴霧試験 TFS−CTを210℃で10分間加熱した後、液
水噴霧試験器に入れる。35℃の3%NaCl溶液
を1時間噴霧した時の錆の発生状態を評価し
た。 (6) 塗膜下腐食 糸状腐食試験と同様の方法で得た塗装板に、
巾10μm、深さ15μmのクロスカツトを入れ、
クエン酸1.5%、食塩1.5%からなる腐食液に38
℃で2週間浸漬し、カツト部の腐食状態を評価
した。
[Industrial Field of Application] The present invention is applicable to the production of electrolytic chromic acid treated steel sheets for welded cans used in the fields of food cans such as beverage cans and food cans, and miscellaneous cans such as 18 cans and art cans. Regarding the method. [Prior art] Electrolytic chromic acid treated steel sheets (hereinafter referred to as TFS-CT), which have a two-layer film of a metallic chromium layer and a chromium hydrated oxide layer on the steel sheet surface, are used for beverage cans, food cans, art cans, 18 cans, etc. In recent years, it has been increasingly used as a substitute for tinplate in the field. this is,
TFS-CT is cheaper than tinplate, and
This is because it has an excellent function as a steel plate for painting base. However, when this TFS-CT is used as a material for welded cans, it is necessary to remove the film consisting of metallic chromium and chromium hydrated oxide by mechanical grinding or the like immediately before welding.
Removing the film before welding poses problems in terms of manufacturing cost, quality, and hygiene. Various methods have been proposed for weldable TFS-CT and its manufacturing method without removing the chromium hydrated oxide film by polishing. For example, Tokuko Sho 57-19752, Tokuko Sho 5-
36986, JP-A-61-213398, and JP-A-63-186894 are already known. Tokuko Sho 57-19752, 3 to 40 mg/m 2 on the steel plate surface.
2 to 15 as a metallic chromium layer and chromium on top of it
It consists of a non-metallic chromium layer mainly composed of mg/m 2 of chromium oxide, and is characterized by making the metallic chromium layer porous. However, if the amount of metallic chromium is simply reduced in this way and the metallic chromium layer is made porous, corrosion resistance decreases. In addition, the heating applied to cure the paint applied to the surface oxidizes the surface of the steel sheet exposed through the pores of the metal chromium layer, so the intentionally exposed surface of the steel sheet does not contribute to improving weldability. There are drawbacks. Special Publication No. 57-36986 is for sulfate ions, nitrate ions,
In an aqueous solution containing chromic acid, dichromic acid, etc. as the main ingredients without intentionally adding anions such as chlorine ions, 0.5 to 30 mg/ m2 of metallic chromium and 2 to 50 mg/m2 of chromium are added to the surface of the steel sheet. paintability, weldability, characterized by the production of m2 of chromium hydrated oxide,
The present invention relates to a method for manufacturing TFS-CT with excellent processability. This reduces the amount of metallic chromium in order to improve weldability and workability, and compensates for the resulting decrease in corrosion resistance by modifying the non-metallic chromium layer, which is mainly composed of hydrated chromium oxide. . However, from the viewpoint of weldability, the aforementioned
-Like 19572, there are many pores in the metal chromium layer,
Heating to cure the paint may oxidize the exposed surface of the steel plate, reducing weldability. JP-A No. 61-213398 discloses 10 to 40 mg/m 2 on the steel plate surface.
The present invention relates to TFS-CT for welded cans, which has a smooth metallic chromium layer and a chromium hydrated oxide layer with a uniform thickness of 3 to 30 mg/m 2 and has excellent paint corrosion resistance. The manufacturing method is characterized by dissolving a part of the deposited metal chromium layer by anodizing. However, using a known chromic acid bath, it is extremely difficult to coat the surface of a steel plate continuously, rather than in a porous manner, with 10 to 40 mg/m 2 of metallic chromium precipitated, and once precipitated metallic chromium is anodized. The method of dissolving the metal chromium layer instead increases the number of pores in the metal chromium layer and increases the exposure rate of the steel sheet surface. In JP-A-63-186984, 50 to 150mg/
m 2 of metallic chromium layer and 5-20 mg/m 2 as chromium
TFS for welded cans, which has a chromium oxide film and has protrusions on a part of the metal chromium.
- Concerning CT. This was discovered based on the idea that if the metal chromium layer has protrusions, the contact electrical resistance value (hereinafter referred to as Rc value) will decrease, resulting in improved weldability.
Including cases where the precipitation form of metallic chromium is different, such as smooth or protruding, it cannot be said that there is a correlation between the Rc value and weldability. Furthermore, the metallic chromium layer is extremely thick in the protruding parts, and extremely thin in the non-protruding parts, so iron exposure is high in the thin metallic chromium parts. Although a method for manufacturing TFS-CT for welded cans has been disclosed, the fact that it has not yet been put into practical use suggests that there are various problems as a material for welded cans. Conventional technology improves weldability by reducing metallic chromium, and at the same time improves corrosion resistance, paint corrosion resistance, and paint adhesion by modifying chromium hydrated oxide, so factors that affect weldability It is thought that no detailed consideration was given to this. In addition, weldability should be evaluated based on the width of the weldable current range, which is the difference between the current at which splashes begin to appear and the appearance deteriorates, and the current at which sufficient joint strength begins to be obtained. but,
All of the weldability evaluation methods described in the examples of the prior art, except for JP-A-63-186894, differ from this evaluation method and may not necessarily evaluate weldability correctly. [Problems to be Solved by the Invention] As mentioned above, various efforts have been made to put TFS-CT for welded cans into practical use, but nothing satisfactory has been achieved. The reason for this is that the TFS-CT disclosed in the prior art did not have a sufficiently wide weldable current range to be put to practical use as a material for welding cans. The object of the present invention is to determine the optimal coating structure for obtaining a sufficiently wide weldable current range, and to provide a stable and economical manufacturing method thereof. [Means for Solving the Problems] In order to achieve the above object, the present invention forms a smooth metal chromium layer with a high coverage of 45 to 90 mg/m 2 on a steel plate, and then 1 as chromium by dissolving soluble chromium hydrate oxide
It forms a uniform, hardly soluble chromium hydrated oxide layer of ~10 mg/m 2 . The present invention will be explained in detail below. The manufacturing method for TFS-CT is to deposit metallic chromium on the steel plate surface using a high concentration chromic acid bath containing 100 g or more of chromic acid containing auxiliary agents such as fluorine compounds and sulfuric acid, and then use a low concentration chromium bath containing the same auxiliary agents. The two-component method involves cathodic electrolysis in a chromic acid bath to mainly form a chromium hydrated oxide film, and the cathodic electrolysis in a chromic acid bath containing up to 100 g of chromic acid with auxiliary agents such as fluorine compounds and sulfuric acid added. Two one-component methods are known in which a metallic chromium layer and a chromium hydrated oxide layer are formed simultaneously. Looking at the relationship between the amount of metal chromium and the rate of exposure of the metal chromium from the pores on the surface of the steel sheet from the pores of the metal chromium layer in which the hydrated chromium oxide was dissolved and removed using a hot alkaline solution, as shown in Figure 1, (A) CrO 3 - fluoride bath (B) CrO 3 - fluoride - sulfuric acid bath
(C) A metallic chromium layer with fewer pores is obtained in the order of CrO 3 -sulfuric acid bath. Therefore, in the present invention, in order to deposit a metallic chromium layer with a high coverage on a steel plate, a chromic acid bath containing a fluorine compound and sulfuric acid, more preferably a chromic acid bath containing only a fluorine compound, is used. Use is preferred. Although the chromic acid bath containing fluorine compounds and sulfuric acid has a slightly inferior coverage, it is not easily affected by impurity ions in the bath.
It has excellent operability. The TFS-CT of the present invention is provided as a material for welded cans, and is always used after being painted. As shown in Figure 2, if the paint is not heated during the baking process, the Rc value, which is an indicator of the quality of weldability, will be:
It becomes lower as the amount of metallic chromium decreases. However, when heating is performed at 210℃ for 20 minutes assuming paint baking, the Rc value decreases in the range of 45 to 90mg/ m2 of metallic chromium, and it is estimated that there is an optimal range for weldability. Ru. The reason for this is that when the amount of metallic chromium is below 45mg/ m2 , as shown in Figure 1, the iron exposure rate increases significantly as the metallic chromium decreases, and iron oxide with poor conductivity is formed on the steel plate surface due to heating. This is thought to be for the purpose of In addition, when the amount of metallic chromium is 90 mg/m2 or more, the exposed area of the steel plate decreases, but it is thought that the Rc value increases because the thick metallic chromium layer is less likely to cause minute cracks due to the pressure applied by the electrode roll. It will be done. Figure 3 shows the relationship between the amount of metallic chromium and the weldable current range during welding of TFS-CT after heating at 210℃ for 20 minutes, with the amount of hardly soluble chromium hydrated oxide film being constant. This range is determined by setting the current at which splash begins to occur during welding as the welding upper limit, and the welding current at which sufficient joint strength begins to be obtained as the welding lower limit. This indicates that the wider the welding range, the better the weldability. As can be seen from FIGS. 2 and 3, there is a correlation between the width of the weldable current range and the Rc value. However, when the precipitation form of the amount of metallic chromium is changed, for example, the Rc value of TFS-CT with protrusions on a part of the metallic chromium layer obtained by the method disclosed in JP-A-63-186894 is Although it is quite small, the weldable current range is narrow. The reason for this is not clear, but TFS with a smooth metallic chromium layer
Only in -CT, a good correlation is observed between the Rc value and the weldable current range. As explained above, the present invention has excellent weldability.
The metallic chromium layer of TFS-CT needs to be smooth, thin, and have a high coverage so that it prevents oxidation of the exposed steel plate surface during heating and is easily destroyed by the pressure of the electrode roll during welding. Next, in the TFS-CT manufacturing method of the present invention, the chromium hydrated oxide formed on the smooth metal chromium layer with a high coverage of 45 to 90 mg/ m2 is a chromium hydrated oxide that is poorly soluble in the electrolyte. Because it has excellent uniformity and excellent weldability, it requires dipping after the electrode.
Immediately after electrolysis, the chromium hydrated oxide layer consists of a layer on the outermost surface that is easily soluble in an electrolytic solution with a high content of auxiliary agents, and a layer below that that is hardly soluble in an electrolytic solution with a low content of auxiliary agents. has been done. The amount of easily soluble hydrated chromium oxide in the outermost layer fluctuates depending on the electrolytic conditions such as bath composition, bath temperature, and current density, as well as the stirring state of the liquid. Easily causes non-uniform precipitation. On the other hand, the amount of poorly soluble chromium hydrated oxide underneath is almost constant regardless of electrolytic conditions or stirring conditions, and even more conveniently, even if the amount of electricity is increased, it remains constant. Because it does not form in a thickness greater than , it has excellent uniformity in the width and length directions. In addition, from a more detailed perspective, the difference in thickness of poorly soluble hydrated chromium oxide depending on the crystal orientation of steel observed with an electron microscope is the difference in thickness depending on the crystal orientation of hydrated chromium oxide immediately after electrolysis. It has superior uniformity compared to . In this way, the chromium hydrated oxide layer immediately after electrolysis forms a readily soluble chromium hydrated oxide layer with a non-uniform thickness on a slightly soluble chromium hydrated oxide layer with a uniform thickness. This is not preferable because it results in a non-uniform thickness as a whole and causes local heat generation during welding. Therefore, even with the same amount of chromium hydrated oxide, TFS-CT immediately after electrolysis
TFS-CT, which is sufficiently immersed in an electrolytic solution after electrolysis to dissolve and remove easily soluble chromium hydrated oxide, has significantly better weldability than the conventional technology. It was found that stable weldability could not be obtained by specifying the amount of chromium hydrated oxide. In order to obtain a hardly soluble chromium hydrated oxide, it is necessary to immerse the material in the electrolytic solution for at least 2 seconds or more after electrolysis. As shown in FIG. 4, most of the easily soluble hydrated chromium oxide dissolves within 2 seconds after the end of electrolysis, leaving only the slightly soluble hydrated chromium oxide. In addition to the electrolytic solution, a chromic acid solution containing 25 g or more can be used as the solution for dissolving the easily soluble hydrated chromium oxide. Although a higher temperature is preferable, easily soluble chromium hydrated oxide can be dissolved even at room temperature. Methods other than immersion can be considered to remove easily soluble chromium hydrated oxides, but the dissolution method using anodic electrolysis dissolves the underlying metallic chromium layer and improves the uniform coverage of metallic chromium. It is not appropriate because it lowers the From the viewpoint of weldability, it is better to have a smaller amount of poorly soluble chromium hydrated oxide, but it cannot be lowered to less than 1 mg/m 2 of chromium. Even if the electrolysis conditions are changed or the electrolysis is carried out for a long time, the amount will not exceed 10 mg/m 2 . Therefore, the amount of poorly soluble chromium hydrated oxide is defined as 1 to 10 mg/m 2 . As described above, since the hardly soluble chromium hydrated oxide film obtained by the manufacturing method of the present invention has excellent uniformity, it is thought that the welding current distribution becomes uniform and weldability is improved. [Examples] The contents of the present invention will be specifically explained below using Examples and Comparative Examples. After subjecting a 0.22 mm thick cold-rolled steel plate to normal degreasing and pickling, TFS-CTs shown in Examples 1 to 4 were manufactured by the manufacturing method of the present invention. At the same time, according to representative examples of the prior art, as shown in Comparative Examples 1 to 4
TFS-CT was manufactured. Table 1 shows the coating amount, weldability, corrosion resistance, etc. of these TFS-CTs. As is clear from Table 1, the amount of metallic chromium is 45 to 90
mg/m 2 , the amount of hardly soluble chromium hydrated oxide is in the range of 1 to 10 mg/m 2 as chromium, and the TFS-CTs of Examples 1 to 4 were produced according to the production method of the present invention.
has a low iron exposure rate through the pores of the metal chromium layer and excellent uniformity of the chromium hydrated oxide layer, so it has a sufficiently wide weldable current range and has excellent weldability and corrosion resistance. Comparative Example 1 was manufactured according to the manufacturing method disclosed in the Examples of Japanese Patent Publication No. 57-19752. Comparative Example 2 was produced according to the production method disclosed in the Examples of Japanese Patent Publication No. 57-36986. Comparative Example 3 was manufactured according to the manufacturing method disclosed in the examples of JP-A No. 61-213398. Comparative Example 4 was manufactured according to the manufacturing method disclosed in the example of JP-A-63-186894, and a portion of the metal chromium layer was protruded. All of these seem to have no practical problems in terms of corrosion resistance, except for Comparative Example 2, but do not have a sufficient welding range. Comparative example 5
was manufactured using the same bath composition and electrolytic conditions as Example 2, but did not have a sufficient welding range because easily soluble chromium hydrated oxide was not dissolved and removed by immersion after electrolysis. . Next, the evaluation method for the evaluation items in Table 1 showing Examples and Comparative Examples will be described. (1) Iron exposure rate from the pores of the metallic chromium layer
Soak for a minute to completely dissolve and remove the outermost layer of chromium hydrate. Subsequently, the sample was sealed with tape, leaving 30 mmφ of the sample, and the current immediately before passivation was read when the sample was anodically polarized in a 1M-NaH 2 PO 4 solution at a polarization rate of 125 mV/min. From the calibration curve of iron exposure rate and passivation current obtained separately,
The iron exposure rate was determined. (2) Weldable current range After baking the TFS-CT at 210℃ for 20 minutes, weld it using an experimental plate welding machine at a frequency of 60Hz, a lap width of 0.4mm, a speed of 5m/min, and a pressure of 50kg. After that, the joint condition of the welded part was evaluated. Increase the welding current in 25A increments, and set the current at which splash begins to occur as the welding upper limit, and lower the welding current, and set the welding lower limit as the current just before the welding strength becomes lower than the breaking strength of the base metal. This difference in current was defined as the weldable current range. (3) Contact electrical resistance (Rc) After baking TFS-CT at 20°C for 20 minutes, Rc was measured using a hand-made contact electrical resistance measuring device. The measurement method is
Two stacked sample plates are sandwiched between the contact areas of two copper disc electrodes, and while the electrodes are being pressurized with 50 kg, the sample plate is rotated at a circumferential speed of 5 m/min. A DC current was applied to measure the voltage between the electrodes, and the Rc value was determined. (4) Filiform corrosion Approximately 60 mg/dm 2 of epoxy/phenol paint is applied to TFS-CT, baked at 210℃ for 10 minutes, a cross cut is inserted, and an Erichsen tester is used to extend it 5 mm. After immersing the sample in 3% NaCl, stand it on a sample stand and keep it at a temperature of 45℃ and a humidity of 85℃.
% atmosphere for 10 days, and the state of rust formation was observed. (5) Salt water spray test After heating TFS-CT at 210℃ for 10 minutes, place it in a liquid water spray tester. The state of rust generation was evaluated when a 3% NaCl solution at 35°C was sprayed for 1 hour. (6) Corrosion under the paint film On a painted board obtained using the same method as the filamentous corrosion test,
Insert a cross cut with a width of 10 μm and a depth of 15 μm,
38 in a corrosive liquid consisting of 1.5% citric acid and 1.5% salt.
It was immersed at ℃ for 2 weeks and the corrosion state of the cut portion was evaluated.

【表】【table】

【表】 備考:評点 ◎ 非常に優れている ○ 優れている
△ 普通 × 劣る
〔発明の効果〕 本発明の製造方法により製造したTFSは、金
属クロムの被覆性に優れ、クロム水和酸化物皮膜
の均一性に優れており、非常に優れた溶接性を有
するため、ブリキより安価な溶接缶用材料として
広範囲の用途に適用することを可能にし、産業上
の効果は極めて大きい。
[Table] Notes: Ratings ◎ Excellent ○ Excellent △ Average × Poor [Effects of the invention] The TFS produced by the production method of the present invention has excellent coverage of metallic chromium and has a chromium hydrated oxide film. Because it has excellent uniformity and excellent weldability, it can be used in a wide range of applications as a material for welded cans, which is cheaper than tinplate, and has an extremely large industrial effect.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、TFS−CTの表層のクロム水和酸化
物皮膜を加熱したアルカリ溶液で溶解除去後の金
属クロム層のポアーからの鉄露出率と、金属クロ
ム量の関係を示す図、第2図は、210℃で20分加
熱前後の接触電気抵抗(Rc)値と金属クロム量
の関係を示す図、第3図は難溶性クロム水和酸化
物量を一定にしたTFS−CTについて、210℃で
20分加熱後の溶接可能電流範囲と金属クロム量の
関係を示す図、第4図は、電解後のクロム水和酸
化物皮膜の電解液中への溶解速度の例を示す図で
ある。
Figure 1 shows the relationship between the iron exposure rate from the pores of the metallic chromium layer and the amount of metallic chromium after the chromium hydrated oxide film on the surface of TFS-CT is dissolved and removed with a heated alkaline solution. The figure shows the relationship between the contact electrical resistance (Rc) value and the amount of metallic chromium before and after heating at 210℃ for 20 minutes. in
FIG. 4 is a diagram showing the relationship between the weldable current range and the amount of metallic chromium after heating for 20 minutes, and FIG. 4 is a diagram showing an example of the rate of dissolution of the chromium hydrated oxide film into the electrolytic solution after electrolysis.

Claims (1)

【特許請求の範囲】[Claims] 1 鋼板を脱脂、酸洗後、フツ素化合物のみを添
加したクロム酸浴中で陰極電解した後、引き続き
2秒以上、25g/以上のクロム酸を含有する溶
液中に浸漬して、易溶性のクロム水和酸化物を溶
解させることにより、鋼板表面に45〜90mg/m2
平滑に析出させた金属クロム層と、クロムとし
て、1〜10mg/m2の難溶性のクロム水和酸化物層
を形成させることを特徴とする溶接性に優れた電
解クロム酸処理鋼板の製造方法。
1 After degreasing and pickling, the steel plate is subjected to cathodic electrolysis in a chromic acid bath containing only fluorine compounds, and then immersed in a solution containing 25 g/or more of chromic acid for at least 2 seconds to remove easily soluble chromic acid. By dissolving chromium hydrated oxide, a smooth metallic chromium layer of 45 to 90 mg/m 2 is precipitated on the steel sheet surface, and a hardly soluble chromium hydrated oxide layer of 1 to 10 mg/m 2 of chromium. A method for manufacturing an electrolytically chromic acid treated steel sheet with excellent weldability, characterized by forming a chromic acid-treated steel sheet.
JP26144088A 1988-10-19 1988-10-19 Production of electrolytically chromated steel sheet having excellent weldability Granted JPH02111899A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26144088A JPH02111899A (en) 1988-10-19 1988-10-19 Production of electrolytically chromated steel sheet having excellent weldability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26144088A JPH02111899A (en) 1988-10-19 1988-10-19 Production of electrolytically chromated steel sheet having excellent weldability

Publications (2)

Publication Number Publication Date
JPH02111899A JPH02111899A (en) 1990-04-24
JPH0527720B2 true JPH0527720B2 (en) 1993-04-22

Family

ID=17361922

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26144088A Granted JPH02111899A (en) 1988-10-19 1988-10-19 Production of electrolytically chromated steel sheet having excellent weldability

Country Status (1)

Country Link
JP (1) JPH02111899A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2610979B2 (en) * 1988-12-29 1997-05-14 日本鋼管株式会社 Method for producing electrolytic chromated steel sheet having excellent corrosion resistance, surface color and weldability
JP2014101572A (en) * 2012-10-26 2014-06-05 Jfe Steel Corp Method for manufacturing electrolytic chromate treated steel plate which is weldable without being polished

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55107798A (en) * 1979-01-12 1980-08-19 Nippon Kokan Kk <Nkk> Preparation of electrolytic chromate treated steel sheet
JPS5757893A (en) * 1980-09-24 1982-04-07 Nippon Steel Corp Manufacture of electrolytically chromate treated steel plate causing less deterioration in bonding strength due to aging

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55107798A (en) * 1979-01-12 1980-08-19 Nippon Kokan Kk <Nkk> Preparation of electrolytic chromate treated steel sheet
JPS5757893A (en) * 1980-09-24 1982-04-07 Nippon Steel Corp Manufacture of electrolytically chromate treated steel plate causing less deterioration in bonding strength due to aging

Also Published As

Publication number Publication date
JPH02111899A (en) 1990-04-24

Similar Documents

Publication Publication Date Title
US4511631A (en) Metallic chromium-nickel-hydrated chromium oxide-coated tin free steel and process for the production thereof
KR102313040B1 (en) Steel plate for cans and manufacturing method thereof
JPS62124296A (en) Surface treated steel sheet having excellent seam weldability and paint adhesiveness and its production
JPH04247897A (en) Production of surface treated steel sheet excellent in weldability and adhesion property with coating material
JPH0527720B2 (en)
US4713301A (en) Sn-based multilayer coated steel strip having improved corrosion resistance, weldability and lacquerability
US5168015A (en) Composition and method for weldable tin-free steel having a chromium bilayer
JPH0366397B2 (en)
JPS6144158B2 (en)
JPS634635B2 (en)
JPS5941495A (en) Surface treated steel plate for welded can
KR930004995B1 (en) Welded can body
EP0492319B1 (en) Surface treated steel sheet for welded cans
KR930010342B1 (en) Weldable tin free steel sheet having a chromium bilayer and method for producing the same
JPS6013098A (en) Production of surface treated steel sheet for seam welded can
JPH0637714B2 (en) Electrolytic chromic acid treated steel plate for welding can
JPH11197704A (en) Plating steel plate having excellent color tone, adhesion and weldability and its manufacture
JPS5946320B2 (en) Chromate-coated steel sheet for containers with excellent weldability and corrosion resistance after painting and its manufacturing method
JPS60190597A (en) Surface treated steel sheet for welded can and its production
JPH0210879B2 (en)
JP3224457B2 (en) Material for welding cans with excellent high-speed seam weldability, corrosion resistance, heat resistance and paint adhesion
JPH0331793B2 (en)
JPS6353288A (en) Low-cost surface treated steel sheet having superior weldability
JP2610979B2 (en) Method for producing electrolytic chromated steel sheet having excellent corrosion resistance, surface color and weldability
JPS60211099A (en) Tin-free steel for welded can and production thereof

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees