JPH0527689U - Ranging device - Google Patents
Ranging deviceInfo
- Publication number
- JPH0527689U JPH0527689U JP7594891U JP7594891U JPH0527689U JP H0527689 U JPH0527689 U JP H0527689U JP 7594891 U JP7594891 U JP 7594891U JP 7594891 U JP7594891 U JP 7594891U JP H0527689 U JPH0527689 U JP H0527689U
- Authority
- JP
- Japan
- Prior art keywords
- optical axis
- transmitter
- optical
- wedge
- mounting seat
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Optical Radar Systems And Details Thereof (AREA)
Abstract
(57)【要約】
【目的】 送信光軸方向と受信光軸方向の調整機構が簡
単であり、調整および調整状態の維持が容易な測距装置
を提供することを目的とする。
【構成】 送信部2と受信光学系7の間に取り付け座1
0を設け、取り付け座面に対し送信部2を座面内で回転
できるように取り付け、受信光学系7の前面に回転可能
な光学楔12を設けた。
(57) [Abstract] [Purpose] An object of the present invention is to provide a distance measuring device that has a simple adjusting mechanism in the transmitting optical axis direction and the receiving optical axis direction, and is easy to adjust and maintain the adjusted state. [Structure] The mounting seat 1 is provided between the transmitter 2 and the receiving optical system 7.
0 is provided, the transmitter 2 is attached to the attachment seat surface so as to be rotatable within the seat surface, and the rotatable optical wedge 12 is provided on the front surface of the reception optical system 7.
Description
【0001】[0001]
この考案は、目標に向けてレーザ光を発射し、目標からの反射レーザ光を受信 し、レーザ光が測距装置と目標の間を往復する時間を計測することにより、レー ザ測距装置から目標までの距離を測定するレーザ測距装置に関するものである。 This device emits laser light toward a target, receives reflected laser light from the target, and measures the time it takes for the laser light to travel back and forth between the distance measuring device and the target. The present invention relates to a laser distance measuring device that measures a distance to a target.
【0002】[0002]
従来、測距装置には図4に示すものがあった。図において、1は制御部、2は レーザ送信部、3はレーザ発射指令信号、4は送信光軸、5はレーザ発射信号、 6は受信光軸、7は受信光学系、8は光検出器、9はレーザ受信信号、10は受 信光学系に設けた送信部取り付け座、19は取り付け角度調整機構である。 Conventionally, there is a distance measuring device shown in FIG. In the figure, 1 is a control unit, 2 is a laser transmission unit, 3 is a laser emission command signal, 4 is a transmission optical axis, 5 is a laser emission signal, 6 is a reception optical axis, 7 is a reception optical system, and 8 is a photodetector. Reference numeral 9 is a laser reception signal, 10 is a transmitter mounting seat provided in the reception optical system, and 19 is a mounting angle adjusting mechanism.
【0003】 次に、動作について説明する。制御部1からのレーザ発射指令信号3により、 送信部2が動作し、レーザ光を発射すると同時にレーザ発射信号5を制御部1へ 送る。送信光軸4の方向に発射されたレーザ光は、目標物で反射し、受信光軸6 の方向から戻ってくるレーザ光は受信光学系7で集光され、光検出器8で検出さ れる。レーザ光が検出されると、レーザ受信信号9が制御部に送られる。制御部 1では、レーザ発射信号5とレーザ受信信号9の時間間隔から、目標物までの距 離を求める。Next, the operation will be described. The transmitter 2 operates according to the laser emission command signal 3 from the controller 1 and emits a laser beam and at the same time sends a laser emission signal 5 to the controller 1. The laser light emitted in the direction of the transmission optical axis 4 is reflected by the target object, and the laser light returning from the direction of the reception optical axis 6 is condensed by the reception optical system 7 and detected by the photodetector 8. .. When the laser light is detected, the laser reception signal 9 is sent to the control unit. The control unit 1 obtains the distance to the target object from the time interval between the laser emission signal 5 and the laser reception signal 9.
【0004】 測距装置において高い測距能力を得るには、目標からの反射光を効率的に受信 する必要がある。送信部2は、受信光学系7に設けた取り付け座10に対し、角 度調整機構19を介して取り付けられており、角度調整機構19を調整すること により、送信光軸4の方向と受信光軸6の方向を一致することができる。In order to obtain a high distance measuring ability in the distance measuring device, it is necessary to efficiently receive the reflected light from the target. The transmitter 2 is attached to the mounting seat 10 provided in the receiving optical system 7 via the angle adjusting mechanism 19. By adjusting the angle adjusting mechanism 19, the direction of the transmitting optical axis 4 and the receiving optical axis 4 are adjusted. The directions of axis 6 can be matched.
【0005】[0005]
従来の測距装置は以上のように構成されているので、送信光軸と受信光軸の方 向を一致させるために角度調整機構を設けているが、光軸を三次元的に同方向に するには、あおり機構と回転機構を組み合わせた直交する二方向の角度調整機構 を設ける等複雑な角度調整機構を設ける必要があった。調整機構が複雑であると 、コストが高くなる、調整が面倒である、調整状態の維持が困難であるなどの問 題があった。 Since the conventional distance measuring device is configured as described above, an angle adjusting mechanism is provided to match the directions of the transmitting optical axis and the receiving optical axis. To do so, it was necessary to provide a complicated angle adjustment mechanism such as an angle adjustment mechanism in two orthogonal directions that combines a tilt mechanism and a rotation mechanism. If the adjustment mechanism is complicated, there are problems such as high cost, troublesome adjustment, and difficulty in maintaining the adjustment state.
【0006】 この考案は上記のような問題点を解消するためになされたもので、送信光軸と 受信光軸を一致させる機構が簡単であり、調整および調整状態の維持の容易な測 距装置を提供することを目的とする。The present invention has been made in order to solve the above-mentioned problems, and has a simple mechanism for aligning the transmission optical axis and the reception optical axis, and it is easy to perform adjustment and maintenance of the adjustment state. The purpose is to provide.
【0007】[0007]
この考案による測距装置では、取り付け座面に対し送信部を座面内で回転でき るように取り付け、送信部または受信光学系の前面に回転可能な光学楔を設けた ものである。 In the distance measuring device according to the present invention, the transmitter is attached to the mounting seat so as to be rotatable within the seat, and a rotatable optical wedge is provided on the front of the transmitter or the receiving optical system.
【0008】 また、送信窓または受信窓の一方を平行平板とし、他方を光学系としたもので ある。Further, one of the transmission window and the reception window is a parallel plate and the other is an optical system.
【0009】[0009]
この考案による測距装置は、取り付け座面に対し送信部を座面内で回転を調整 して取り付け、送信部または受信光学系の前面に設けた回転可能な光学楔により 、送信光軸または受信光軸を前方正面から一定の角度を成すよう円錐状に回転さ せることができる。取り付け座に対する送信部の回転角および光学楔の回転角を 調整することにより、送信光軸方向と受信光軸方向を一致させることができる。 In the distance measuring device according to the present invention, the transmitter is mounted on the mounting seat by adjusting the rotation within the seat and the rotatable optical wedge provided on the front of the transmitter or the receiving optical system is used to transmit the optical axis or receive the light. The optical axis can be rotated in a conical shape so as to form a certain angle from the front side. By adjusting the rotation angle of the transmitter and the rotation angle of the optical wedge with respect to the mounting seat, it is possible to match the transmission optical axis direction and the reception optical axis direction.
【0010】 また、光学楔は送信窓または受信窓の機能を有している。Further, the optical wedge has a function of a transmission window or a reception window.
【0011】[0011]
実施例1. 以下、この考案の実施例を図について説明する。図1は測距装置の構成を示す 図であり、図1において、1は制御部、2はレーザ送信部、3はレーザ発射指令 信号、4は送信光軸、5はレーザ発射信号、6は受信光軸、7は受信光学系、8 は光検出器、9はレーザ受信信号、10は受信光学系に設けた送信部取り付け座 、11は光学楔保持機構、12は光学楔である。 Example 1. An embodiment of this invention will be described below with reference to the drawings. FIG. 1 is a diagram showing the configuration of a distance measuring device. In FIG. 1, 1 is a control unit, 2 is a laser transmission unit, 3 is a laser emission command signal, 4 is a transmission optical axis, 5 is a laser emission signal, and 6 is A receiving optical axis, 7 is a receiving optical system, 8 is a photodetector, 9 is a laser receiving signal, 10 is a transmitter mounting seat provided in the receiving optical system, 11 is an optical wedge holding mechanism, and 12 is an optical wedge.
【0012】 図2は測距装置の正面から見た、送信光軸および受信光軸の方向を示す図であ り、図2において、13は取り付け座に対し送信部の取り付け角度を調整したと きの送信光軸方向の軌跡、14は光学楔を回転したときの受信光軸方向の軌跡で ある。FIG. 2 is a view showing the directions of the transmission optical axis and the reception optical axis as seen from the front of the distance measuring device. In FIG. 2, reference numeral 13 indicates that the mounting angle of the transmitter is adjusted with respect to the mounting seat. Is a locus in the direction of the transmission optical axis, and 14 is a locus in the direction of the reception optical axis when the optical wedge is rotated.
【0013】 次に動作について説明する。測距装置としての動作は従来技術と同様である。 取り付け座10と送信部2の結合方法としては、取り付け座10側にねじ穴H1 を設け、送信部2側にばか穴H2 を設け、取り付け座面10面内での送信部2の 取り付け角度を調整しながらねじNでねじ止めする。取り付け角度を調整するこ とにより、送信光軸4は図1の紙面に垂直方向に動く。図2において、送信光軸 方向は、標準位置Tを挟んで軌跡13に示すように直線状動く。Next, the operation will be described. The operation as the distance measuring device is similar to that of the conventional technique. As a method of connecting the mounting seat 10 and the transmitting unit 2, a screw hole H 1 is provided on the mounting seat 10 side and a fool hole H 2 is provided on the transmitting unit 2 side, and the transmitting unit 2 is mounted within the surface of the mounting seat surface 10. Screw with screw N while adjusting the angle. By adjusting the mounting angle, the transmission optical axis 4 moves in the direction perpendicular to the paper surface of FIG. In FIG. 2, the transmission optical axis direction linearly moves across the standard position T as shown by a locus 13.
【0014】 図1において、光学楔12は受信光軸6を中心に回転する光学楔保持機構11 に取り付けられており、光学楔12は受信光軸6を中心に回転する。光学楔12 を回転させると、受信光軸は前方正面から一定の角度をなして回転する。図2に おいて、受信光軸方向は、標準位置Rを中心とし軌跡14に示すように円状に動 く。In FIG. 1, the optical wedge 12 is attached to an optical wedge holding mechanism 11 that rotates about the reception optical axis 6, and the optical wedge 12 rotates about the reception optical axis 6. When the optical wedge 12 is rotated, the reception optical axis rotates at a constant angle from the front front. In FIG. 2, the receiving optical axis direction moves in a circle around the standard position R as shown by a locus 14.
【0015】 図2において、送信光軸と受信光軸がそれぞれ軌跡13と軌跡14の交点Sの 方向になるよう調整することにより、図1の送信光軸4の方向と受信光軸6の方 向を一致させることができる。In FIG. 2, the transmission optical axis and the reception optical axis are adjusted so as to be in the directions of the intersections S of the trajectories 13 and 14, respectively, so that the directions of the transmission optical axis 4 and the reception optical axis 6 in FIG. You can match the direction.
【0016】 実施例2. 図3はこの考案の実施例2を示す図で、2は送信部、7は受信光学系、10は 取り付け座、12は光学楔、13はOリング、14は押え環、15は平行平板、 16はOリング、17は押え環、18は測距装置ケースである。Example 2. 3 shows a second embodiment of the present invention, in which 2 is a transmitter, 7 is a receiving optical system, 10 is a mounting seat, 12 is an optical wedge, 13 is an O-ring, 14 is a holding ring, and 15 is a parallel plate. Reference numeral 16 is an O-ring, 17 is a holding ring, and 18 is a distance measuring device case.
【0017】 次に動作について説明する。測距装置ケース18の送信部2の前方に平行平板 15がOリング16と押え環17で取り付けられている。平行平板15は送信部 から出るレーザ光を方向を変えずに透過する。また、平行平板15と測距装置ケ ース18の間にはOリング16があるので気密を維持できる。測距装置ケース1 8の受信光学系7の前方に光学楔12がOリング13と押え環14で取り付けら れている。光学楔12は楔角の大きさと楔の方向により受信光軸方向を変化させ る。また、光学楔12と測距装置ケース18の間にはOリング13があるので気 密を維持できる。光学楔12は押え環14を緩めることにより受信光軸を中心に 回転することができ、取り付け座10に対する送信部2の取り付け角度の調整と 、光学楔12の回転角度調整により、実施例1と同様に送信光軸方向と受信光軸 方向を一致させることができる。光学楔12の楔角は、通常1分程度で十分であ るので、平行平板と同様の固定が可能であり、気密保持も可能である。Next, the operation will be described. A parallel plate 15 is attached to the front of the transmitter 2 of the range finder case 18 by an O-ring 16 and a press ring 17. The parallel plate 15 transmits the laser light emitted from the transmitter without changing the direction. Further, since the O-ring 16 is provided between the parallel flat plate 15 and the distance measuring device case 18, airtightness can be maintained. An optical wedge 12 is attached by an O-ring 13 and a holding ring 14 in front of the receiving optical system 7 of the distance measuring device case 18. The optical wedge 12 changes the receiving optical axis direction according to the size of the wedge angle and the direction of the wedge. Further, since the O-ring 13 is provided between the optical wedge 12 and the distance measuring device case 18, airtightness can be maintained. The optical wedge 12 can be rotated about the reception optical axis by loosening the pressing ring 14, and the mounting angle of the transmitter 2 with respect to the mounting seat 10 is adjusted, and the rotation angle of the optical wedge 12 is adjusted, so that the optical wedge 12 of the first embodiment can be obtained. Similarly, the transmitting optical axis direction and the receiving optical axis direction can be matched. Since the wedge angle of the optical wedge 12 is usually about 1 minute, it can be fixed in the same manner as a parallel plate and can be kept airtight.
【0018】 なお、上記実施例1では光学楔12を受信光学系側に設けたが、送信部2側に 設けても良い。また、実施例2も同様に平行平板15を受信光学系7に光学楔1 2を送信部2側に設けても良い。Although the optical wedge 12 is provided on the receiving optical system side in the first embodiment, it may be provided on the transmitting unit 2 side. Similarly, in the second embodiment, the parallel plate 15 may be provided in the receiving optical system 7 and the optical wedge 12 may be provided in the transmitting unit 2 side.
【0019】[0019]
異常のように、この考案によれば、受信光学系取り付け座10に対する送信部 2の取り付け角度調整と、光学楔12の回転角度調整により光軸整合を行うので 、複雑な角度調整機構が不要となる。また、複雑な角度調整機構を使わないので 光軸整合および整合状態の維持が容易となる。 Like the anomaly, according to the present invention, since the optical axis alignment is performed by adjusting the mounting angle of the transmitting unit 2 with respect to the receiving optical system mounting seat 10 and adjusting the rotation angle of the optical wedge 12, a complicated angle adjusting mechanism is unnecessary. Become. Moreover, since a complicated angle adjusting mechanism is not used, it is easy to maintain the optical axis alignment and alignment.
【0020】 さらに、窓に光学楔を取り付けるので、新たに光学楔の保持機構を設ける必要 がない。Furthermore, since the optical wedge is attached to the window, it is not necessary to newly provide an optical wedge holding mechanism.
【図1】この考案の実施例1による測距装置の構成を示
す図である。FIG. 1 is a diagram showing a configuration of a distance measuring device according to a first embodiment of the present invention.
【図2】この考案の実施例1による測距装置の送信光軸
および受信光軸の、調整時の軌跡を示す図である。FIG. 2 is a diagram showing trajectories of the transmission optical axis and the reception optical axis of the distance measuring apparatus according to the first embodiment of the present invention during adjustment.
【図3】この考案の実施例2による測距装置の窓の構造
を示す図である。FIG. 3 is a view showing a window structure of a distance measuring device according to a second embodiment of the present invention.
【図4】従来の測距装置の構成を示す図である。FIG. 4 is a diagram showing a configuration of a conventional distance measuring device.
2 送信部 7 受信光学系 10 取り付け座 12 光学楔 15 平行平板 18 ケース 2 transmitter 7 receiving optical system 10 mounting seat 12 optical wedge 15 parallel plate 18 case
Claims (2)
り付け座面に対し、上記送信部を座面内で回転できるよ
うに取り付けた取付け座と、上記送信部または受信光学
系の前面に回転可能な光学楔とを有し、送信光軸と受信
光軸が、上記光学楔の回転による円状の光軸軌跡と送信
部の回転による直線状の光軸軌跡の交点の方向になるよ
う調整する調整機構を具備したことを特徴とする測距装
置。1. A mounting seat which is provided between a transmitter and a receiving optical system and which is mounted on a mounting seat surface so that the transmitter can be rotated within the seat surface, and a front surface of the transmitter or the receiving optical system. Has a rotatable optical wedge, and the transmission optical axis and the reception optical axis are in the direction of the intersection of the circular optical axis trajectory due to the rotation of the optical wedge and the linear optical axis trajectory due to the rotation of the transmitter. A distance measuring device having an adjusting mechanism for adjusting
け、どちらか一方を平行平板、他方を光軸に対し回転可
能な光学楔とし、送信部と受信光学系の間に、上記送信
部を取り付け座面に対し、座面内で回転できるようにし
た取り付け座を設け、上記取り付け座に対する送信部の
取付け角度と、上記光学楔の回転角度を送信方向と受信
光軸方向が一致するように調整することを特徴とする測
距装置。2. A transmission window and a reception window are provided in a range finder case, one of which is a parallel plate and the other is an optical wedge which is rotatable with respect to an optical axis, and the transmission is provided between a transmission section and a reception optical system. The mounting seat is provided so that it can rotate within the seating surface, and the mounting angle of the transmitting part with respect to the mounting seat and the rotation angle of the optical wedge are in the transmitting direction and the receiving optical axis direction. Distance measuring device characterized by the following adjustments.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7594891U JPH0527689U (en) | 1991-09-20 | 1991-09-20 | Ranging device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7594891U JPH0527689U (en) | 1991-09-20 | 1991-09-20 | Ranging device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0527689U true JPH0527689U (en) | 1993-04-09 |
Family
ID=13590958
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP7594891U Pending JPH0527689U (en) | 1991-09-20 | 1991-09-20 | Ranging device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0527689U (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013238440A (en) * | 2012-05-14 | 2013-11-28 | Mitsubishi Electric Corp | Beam scan type object detector |
-
1991
- 1991-09-20 JP JP7594891U patent/JPH0527689U/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013238440A (en) * | 2012-05-14 | 2013-11-28 | Mitsubishi Electric Corp | Beam scan type object detector |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10859677B2 (en) | Laser scanner for motor vehicles | |
WO2020001535A1 (en) | Laser radar | |
US6418775B1 (en) | Method and apparatus for aligning a beam path for a beam-emitting sensor | |
CN112713935B (en) | Free space optical communication scanning tracking method, system, device and medium | |
GB2151872A (en) | Detecting road surface condtion | |
GB2121166A (en) | Laser alignment | |
CN102066036B (en) | Eliminating head-to-head offsets along common chuck travel direction in multi-head laser machining systems | |
KR102182719B1 (en) | Lidar scanning device | |
US20010008446A1 (en) | Method of aligning an ACC-sensor on a vehicle | |
CA2232691A1 (en) | Construction machine with laser measuring instrument | |
CN112162258B (en) | Portable multi-elevation detection radar optical device and self-adaptive scanning method thereof | |
KR20170065061A (en) | Three dimensional scanning system | |
US11614520B2 (en) | Kinematic mount for active galvo mirror alignment with multi-degree-of-freedom | |
JP2007010376A (en) | Photodetector for laser marking apparatus | |
JPH0527689U (en) | Ranging device | |
EP4071505A2 (en) | Plate mirror scanning lidar with multiple fields of view | |
EP1111714B1 (en) | System for determining alignment of a directional radar antenna | |
JP2018170647A (en) | Spatial optical transmission device | |
JPH08204640A (en) | Optical space transmitter | |
JPH10261996A (en) | Optical axis adjustment method and optical signal transmission system using the method | |
JP2597342Y2 (en) | Optical scanning unit | |
JPS6067812A (en) | Inclination angle detecting system of moving body | |
CN112994884A (en) | Transmitting end, receiving end and system for quantum communication | |
JPH062088Y2 (en) | Road height measuring device | |
JPH04295739A (en) | Optical-axis aligning method for beam sensor |