JPH0527591B2 - - Google Patents

Info

Publication number
JPH0527591B2
JPH0527591B2 JP63055964A JP5596488A JPH0527591B2 JP H0527591 B2 JPH0527591 B2 JP H0527591B2 JP 63055964 A JP63055964 A JP 63055964A JP 5596488 A JP5596488 A JP 5596488A JP H0527591 B2 JPH0527591 B2 JP H0527591B2
Authority
JP
Japan
Prior art keywords
carbon
sic
metal
metal silicide
composite ceramics
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63055964A
Other languages
Japanese (ja)
Other versions
JPH01230476A (en
Inventor
Shigeharu Matsubayashi
Goro Saiki
Hidehiro Endo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP63055964A priority Critical patent/JPH01230476A/en
Publication of JPH01230476A publication Critical patent/JPH01230476A/en
Publication of JPH0527591B2 publication Critical patent/JPH0527591B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • C04B35/573Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide obtained by reaction sintering or recrystallisation

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Products (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

産業上の利用分野 本発明は、SiC−TiC、SiC−ZrCなどの炭化珪
素−金属炭化物複合セラミツクスの製造方法に関
するものであり、より詳しくは、金属珪化物と炭
素および/または炭素化合物、さらに焼結助剤を
出発原料として、より緻密で高強度の、良導電性
を有する、放電加工性が良好な、SiC−金属炭化
物複合セラミツクスの製造方法に関するものであ
る。 従来の技術 SiCは、高温高強度、耐酸化性に優れ、ガスタ
ービンや各種エンジン部品等の高温構造材料とし
て、注目を集めている。しかしながら、一般にセ
ラミツクス材料は脆性材料である。その中でも、
SiC焼結体は、特に破壊靭性値が低く、加工も難
しい。例えば、表面や内部の微小欠陥が存在すれ
ば軽い衝撃によつて容易に破壊してしまう。 そこで、SiCセラミツクスの靭性を向上させ、
導電性を高め放電加工を可能にする目的で複合化
することが行なわれている。例えば特開昭57−
196770号には、この主旨でSiC−TiC、SiC−ZrC
などのSiC−遷移金属炭化物複合セラミツクスが
開示されている。 上記複合セラミツクスの製造方法は、SiC粉末
とTiC、ZrCなどの遷移金属炭化物粉末とを機械
的に混合し焼結するものである。このような方法
では焼結体の強度が結晶粒の大きさ(従来法では
3−50μm)に支配されることにより、十分強度
のあるものが得られておらず、微細な組織を有す
る焼結体が望まれていた。また、従来法では、粒
径のそろつた粒子でプレス成形しても、ブリツジ
ングや異形状粒子による充填の際の異方性、さら
に粒子間の吸着水や静電気力による凝集に起因す
る欠陥やポアが残留し易い問題点があつた。 発明が解決しようとする課題 本発明は、主原料粉末としてTi、Zrなどの金
属珪化物を用い、かつその融点以上で、その構成
元素である金属および珪素のそれぞれと炭素とを
反応焼結させることによつて、原料粉末である一
次粒子の大きさおよび形状にとらわれずに、より
微細かつ緻密な微構造組織を有するSiC−金属珪
化物複合セラミツクス焼結体を得ようとするもの
である。そのことによつて、密度及び機械的性質
の向上とともに、導電性をもより高くし、放電加
工を可能としようとするものである。 課題を解決するための手段・作用 本発明は、TiSi2、ZrSi2などの金属珪化物と該
金属珪化物の金属ならびに珪素のそれぞれを炭化
するために必要な化学当量の1.0〜1.2倍の炭素お
よび/または焼成昇温時に熱分解することによつ
て残炭する化合物と焼結助剤とを配合したセラミ
ツクスの原料粉末を、金属珪化物の融点以上(例
えば、TiSi2の融点は1540℃、ZrSi2は1520℃な
ど)で、常用の方法による焼結を行なうことによ
つて、金属と珪素とをそれぞれ炭化し、焼結さ
せ、高導電性を有する緻密なSiC−金属炭化物複
合セラミツクスを製造するものである。 本発明をより詳しく説明すれば、金属珪化物は
遷移金属炭化物またはMg、Ceの珪化物であり、
代表的には、TiSi、TiSi2、ZrSi2、NbSi2
MoSi、MoSi2、TaSi2、HfSi2、WSi、WSi2
VSi2、MgSi2、CeSi2の少なくとも1種から成
り、炭素および/または焼成昇温時に熱分解する
ことによつて残炭する化合物が、カーボンブラツ
ク、アセチレンブラツク、フエノール樹脂、ポリ
ビニルアルコール、コンスターチ、糖類、コール
タールビツチ、ポリカルボシランなどの1種もし
くは2種以上を組み合わせたものからなり、焼結
助剤が、SiCの焼結助剤として、公知の硼素ある
いは硼素化合物、アルミニウムあるいはアルミニ
ウム化合物、酸化ジルコニウム、酸化イツトリウ
ムなどから選ばれる1種以上からなる原料を用
い、配合した金属珪化物の融点以上で焼成する
SiC−金属炭化物複合セラミツクスの製造方法で
ある。 炭素の量としては、化学当量の1.2倍を超える
と、残炭する量が多くなることによつて、機械的
強度が著しく劣化するが、1.0〜1.2倍当量の範囲
であれば、珪化物表面の酸化物層を除去でき、未
反応の珪化物を残さず、機械的強度も高い。ま
た、この量が1.0当量未満では、未反応の珪化物
が残留し、機械的性質を劣化させる。 常用の焼結方法としては、常圧焼結、雰囲気加
圧(熱間静水圧加圧焼結:HIP法を含む)、また
はホツトプレス法がある。 又、焼結助剤の量が生成するSiCの重量に対し
て、0.1wt%未満では焼結を促進する効果が少な
く、5wt%を超えると、焼結体の材質劣化をきた
すので好ましくない。 作 用 本発明によれば、主原料粉末である金属珪化物
をその融点以上で、その構成元素である金属およ
び珪素のそれぞれと炭素とを反応焼結させるの
で、原料粉末の一次粒子の大きさおよび形状にと
らわれなく、より微細かつ緻密な構造を付与する
ことが出来、高密度、高導電率のSiC−金属炭化
物複合セラミツクスが得られる。 この複合セラミツクスについては、X線回折に
よつて調べたところ、完全に炭化反応が起こつて
おり、SiCと金属炭化物のピークのみであつた。
また、焼結体をTEM観察により、従来のSiCと
金属炭化物の機械的混合によるSiC−金属炭化物
複合セラミツクスより細かい組織より成つている
ことを確認した。 実施例 TiSi2粉末(平均粒径2.5μm、純度99.0%以上)
などの遷移金属珪化物に、カーボンブラツクを化
学量論比に見あう重量(TiSi2 1molに対し3mol
当量)、反応により生成するSiCに対し、焼結助
剤として0.5重量比の炭化硼素(B4C)、バインダ
ーとして1.0重量比のフエノール樹脂を公知の有
機溶媒中でボールミルにより混練し、乾燥・造粒
後得られた粉末を2200℃、40MPa、Ar不活性雰
囲気中、2時間ホツトプレス焼結、または、粉末
をプレス成形後、Arガス流通中の常圧焼結を行
なつた。 焼結体は、JIS−R1601に準拠し3mm×4mm×
40mmの試験片に加工し、アルキメデス法により密
度を測定した後、常温及び1500℃での抗折強度を
調べた。また、焼結体の破壊靭性値及び比抵抗値
は、それぞれSEPB法、直流四端子法(端子間距
離5mm)によつて測定した。 この結果を、第1表に示す。また、比較例とし
て示した2SiC−TiC系は、SiCが0.3μm、TiCが
3μmの平均粒子径をもつ原料粉末を用い、ホツ
トプレス法による焼結を行なつた例である。 第1表には、各種金属珪化物のそれぞれの成分
での焼結例を示した。
INDUSTRIAL APPLICATION FIELD The present invention relates to a method for manufacturing silicon carbide-metal carbide composite ceramics such as SiC-TiC and SiC-ZrC. The present invention relates to a method for producing SiC-metal carbide composite ceramics using a binder as a starting material, which is denser, has higher strength, has good electrical conductivity, and has good electrical discharge machinability. Conventional technology SiC has high strength at high temperatures and excellent oxidation resistance, and is attracting attention as a high-temperature structural material for gas turbines and various engine parts. However, ceramic materials are generally brittle materials. Among them,
SiC sintered bodies have particularly low fracture toughness values and are difficult to process. For example, if there are minute defects on the surface or inside, it will be easily destroyed by a light impact. Therefore, we improved the toughness of SiC ceramics,
Composite materials are being used for the purpose of increasing conductivity and making electrical discharge machining possible. For example, JP-A-57-
In No. 196770, SiC-TiC, SiC-ZrC
SiC-transition metal carbide composite ceramics have been disclosed. The method for manufacturing composite ceramics described above involves mechanically mixing SiC powder and transition metal carbide powder such as TiC or ZrC and sintering the mixture. In this method, the strength of the sintered body is controlled by the size of the crystal grains (3-50 μm in the conventional method), so it is not possible to obtain a sintered body with sufficient strength. My body was desired. In addition, in the conventional method, even if particles of uniform size are press-formed, there are problems such as bridging and anisotropy during filling with irregularly shaped particles, as well as defects and pores caused by adsorbed water between particles and agglomeration due to electrostatic force. There was a problem that it was easy for the residue to remain. Problems to be Solved by the Invention The present invention uses a metal silicide such as Ti or Zr as the main raw material powder, and reacts and sinters each of its constituent elements, metal and silicon, with carbon at a temperature above its melting point. In particular, the present invention aims to obtain a SiC-metal silicide composite ceramic sintered body having a finer and denser microstructure without being limited by the size and shape of the primary particles that are the raw material powder. By doing so, it is intended to improve the density and mechanical properties, as well as to increase the electrical conductivity and enable electric discharge machining. Means/Action for Solving the Problems The present invention provides carbon in an amount of 1.0 to 1.2 times the chemical equivalent required for carbonizing a metal silicide such as TiSi 2 or ZrSi 2 and the metal and silicon of the metal silicide. And/or ceramic raw material powder containing a sintering aid and a compound that thermally decomposes when the temperature is increased during firing is heated to a temperature higher than the melting point of the metal silicide (for example, the melting point of TiSi 2 is 1540°C, Metal and silicon are each carbonized and sintered by sintering using a conventional method at a temperature of 1520°C (for ZrSi 2, etc.) to produce dense SiC-metal carbide composite ceramics with high conductivity. It is something to do. To explain the present invention in more detail, the metal silicide is a transition metal carbide or a silicide of Mg or Ce,
Typically, TiSi, TiSi 2 , ZrSi 2 , NbSi 2 ,
MoSi, MoSi 2 , TaSi 2 , HfSi 2 , WSi, WSi 2 ,
Carbon black , acetylene black , phenolic resin, polyvinyl alcohol, cornstarch, carbon black, acetylene black, phenolic resin, polyvinyl alcohol, cornstarch , It is made of one or a combination of two or more of sugars, coal tar, polycarbosilane, etc., and the sintering aid is a known boron or boron compound, aluminum or an aluminum compound, as a sintering aid for SiC. Using a raw material consisting of one or more types selected from zirconium oxide, yttrium oxide, etc., it is fired at a temperature higher than the melting point of the mixed metal silicide.
This is a method for manufacturing SiC-metal carbide composite ceramics. If the amount of carbon exceeds 1.2 times the chemical equivalent, the mechanical strength will deteriorate significantly due to the large amount of residual carbon, but if the amount is in the range of 1.0 to 1.2 times the chemical equivalent, the silicide surface will deteriorate. It can remove the oxide layer, leaves no unreacted silicide, and has high mechanical strength. Moreover, if this amount is less than 1.0 equivalent, unreacted silicide remains and deteriorates mechanical properties. Commonly used sintering methods include pressureless sintering, atmospheric pressure (including hot isostatic pressure sintering: HIP method), and hot pressing. Furthermore, if the amount of the sintering aid is less than 0.1 wt% with respect to the weight of SiC to be produced, the effect of promoting sintering will be small, and if it exceeds 5 wt%, the material quality of the sintered body will deteriorate, which is not preferable. Effect According to the present invention, since the metal silicide, which is the main raw material powder, is reacted and sintered with each of its constituent elements, metal and silicon, and carbon at a temperature above its melting point, the size of the primary particles of the raw material powder is reduced. Moreover, it is possible to impart a finer and denser structure to SiC-metal carbide composite ceramics with high density and high conductivity regardless of the shape. When this composite ceramic was examined by X-ray diffraction, it was found that the carbonization reaction had completely occurred, with only SiC and metal carbide peaks.
In addition, TEM observation of the sintered body confirmed that it has a finer structure than conventional SiC-metal carbide composite ceramics made by mechanically mixing SiC and metal carbide. Example TiSi 2 powder (average particle size 2.5 μm, purity 99.0% or more)
Add carbon black to transition metal silicides such as
0.5 weight ratio of boron carbide (B 4 C) as a sintering aid and 1.0 weight ratio of phenol resin as a binder are kneaded with a ball mill in a known organic solvent to the SiC produced by the reaction. The powder obtained after granulation was hot-press sintered at 2200° C. and 40 MPa in an Ar inert atmosphere for 2 hours, or the powder was press-molded and then subjected to atmospheric pressure sintering in Ar gas flow. The sintered body is 3mm x 4mm x in accordance with JIS-R1601.
After processing into a 40 mm test piece and measuring the density using the Archimedes method, the bending strength was examined at room temperature and 1500°C. Further, the fracture toughness value and specific resistance value of the sintered body were measured by the SEPB method and the DC four-terminal method (distance between terminals: 5 mm), respectively. The results are shown in Table 1. In addition, in the 2SiC-TiC system shown as a comparative example, SiC is 0.3 μm and TiC is
This is an example of sintering using a hot press method using raw material powder with an average particle size of 3 μm. Table 1 shows examples of sintering of various metal silicides with respective components.

【表】【table】

【表】 発明の効果 本発明のように、金属珪化物と炭素および/ま
たは熱処理によつて残炭する化合物と焼結助剤と
を混合したセラミツクスの原料粉末を、金属珪化
物の融点以上で、常圧、雰囲気加圧、並びに、ホ
ツトプレス法による焼結を行なうことによつて、
金属と珪素とがそれぞれ炭化し、反応焼結する
SiC−金属炭化物複合セラミツクスが得られるた
め、高密度で、微細かつ緻密な高強度、高導電性
の材料が製造できる。 これによつて、これまで加工が困難とされてき
たセラミツクスが容易に放電加工法により形状の
付与ができるようになつた。
[Table] Effects of the Invention As in the present invention, ceramic raw material powder, which is a mixture of metal silicide, carbon, and/or a compound that leaves carbon after heat treatment, and a sintering aid, is heated at a temperature higher than the melting point of the metal silicide. By performing sintering using normal pressure, atmospheric pressure, and hot pressing,
Metal and silicon are carbonized and reacted to sinter.
Since SiC-metal carbide composite ceramics can be obtained, it is possible to produce high-density, fine and precise materials with high strength and high conductivity. As a result, ceramics, which had been considered difficult to machine, can now be easily shaped by electrical discharge machining.

Claims (1)

【特許請求の範囲】 1 金属珪化物と、該金属珪化物の金属ならびに
珪素のそれぞれを炭化するために必要な化学当量
の1.0〜1.2倍の炭素および/または焼成昇温時に
熱分解することによつて残炭する含炭素化合物と
を配合した原料粉末を、該金属珪化物の融点以上
で、常用の方法によつて焼結させることを特徴と
するSiC−金属炭化物複合セラミツクスの製造方
法。 2 金属珪化物と、該金属珪化物の金属ならびに
珪素のそれぞれを炭化するために必要な化学当量
の1.0〜1.2倍の炭素および/または焼成昇温時に
熱分解することによつて残炭する含炭素化合物
と、生成するSiCに対して0.1〜5wt%の焼結助剤
とを配合した原料粉末を、該金属珪化物の融点以
上で、常用の方法によつて焼結させることを特徴
とするSiC−金属炭化物複合セラミツクスの製造
方法。 3 焼結助剤として、硼素あるいは硼素化合物、
アルミニウムあるいはアルミニウム化合物、酸化
ジルコニウム、酸化イツトリウムから選ばれる1
種以上、を用いる請求項1記載のSiC−金属炭化
物複合セラミツクスの製造方法。
[Scope of Claims] 1. A metal silicide, and 1.0 to 1.2 times the chemical equivalent of carbon and/or carbon that thermally decomposes when the temperature is increased during firing. 1. A method for producing SiC-metal carbide composite ceramics, which comprises sintering a raw material powder blended with a carbon-containing compound that leaves residual carbon by a conventional method at a temperature higher than the melting point of the metal silicide. 2 Metal silicide and carbon in an amount of 1.0 to 1.2 times the chemical equivalent required for carbonizing each of the metal and silicon of the metal silicide, and/or carbon that remains due to thermal decomposition during firing and heating. A raw material powder containing a carbon compound and a sintering aid of 0.1 to 5 wt% based on the SiC to be produced is sintered by a conventional method at a temperature equal to or higher than the melting point of the metal silicide. A method for producing SiC-metal carbide composite ceramics. 3 As a sintering aid, boron or a boron compound,
1 selected from aluminum or aluminum compounds, zirconium oxide, and yttrium oxide
2. The method for producing SiC-metal carbide composite ceramics according to claim 1, wherein at least one of the following types of SiC-metal carbide composite ceramics is used.
JP63055964A 1988-03-11 1988-03-11 Production of composite ceramics of sic and metal carbide Granted JPH01230476A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63055964A JPH01230476A (en) 1988-03-11 1988-03-11 Production of composite ceramics of sic and metal carbide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63055964A JPH01230476A (en) 1988-03-11 1988-03-11 Production of composite ceramics of sic and metal carbide

Publications (2)

Publication Number Publication Date
JPH01230476A JPH01230476A (en) 1989-09-13
JPH0527591B2 true JPH0527591B2 (en) 1993-04-21

Family

ID=13013765

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63055964A Granted JPH01230476A (en) 1988-03-11 1988-03-11 Production of composite ceramics of sic and metal carbide

Country Status (1)

Country Link
JP (1) JPH01230476A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2812905C1 (en) * 2023-06-06 2024-02-05 Федеральное государственное бюджетное учреждение науки Институт физики твердого тела имени Ю.А. Осипьяна Российской академии наук (ИФТТ РАН) High-temperature reaction-bound layered composite based on sic ceramics, refractory metal and its silicides and method for its preparation

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2812905C1 (en) * 2023-06-06 2024-02-05 Федеральное государственное бюджетное учреждение науки Институт физики твердого тела имени Ю.А. Осипьяна Российской академии наук (ИФТТ РАН) High-temperature reaction-bound layered composite based on sic ceramics, refractory metal and its silicides and method for its preparation

Also Published As

Publication number Publication date
JPH01230476A (en) 1989-09-13

Similar Documents

Publication Publication Date Title
US11180419B2 (en) Method for preparation of dense HfC(Si)—HfB2 composite ceramic
JPS6313955B2 (en)
JPS6228109B2 (en)
JPH0662338B2 (en) Silicon carbide / Graphite / Carbon composite ceramic body
US4332755A (en) Sintered silicon carbide - aluminum nitride articles and method of making such articles
KR20190048811A (en) Method for manufacturing silicon carbide dense bodies having excellent thermal conductivity and thermal durability
CA1139791A (en) Sintered silicon carbide-aluminum nitride articles and method of making such articles
CA2154218A1 (en) Preparation of high density titanium carbide ceramics with preceramic polymer binders
JPH09268072A (en) Production of silicon nitride sintered compact
CN101186506B (en) Method for preparing boron nitride/sialon ceramic composite material by using boron-rich slag
EP0178753A1 (en) Process for producing a sintered silicon carbide/carbon composite ceramic body having ultrafine grain microstructure
JPS632913B2 (en)
JPH0527591B2 (en)
JP3297547B2 (en) Method for producing silicon carbide sintered body
CA2154216A1 (en) Preparation of high density zirconium carbide ceramics with preceramic polymer binders
US6300265B1 (en) Molybdenum disilicide composites
JPS63392B2 (en)
JPH025711B2 (en)
JPS60255672A (en) Manufacture of silicon carbide sintered body
JPH05286765A (en) Silicon carbide-based composite material and its production
JPS6357389B2 (en)
JP2652938B2 (en) Titanium carbide-carbon composite ceramic fired body and manufacturing method
JPH0826827A (en) Electrically conductive reactional silicon carbide sintered compact, its production and use
JP2881189B2 (en) Method for producing silicon nitride-silicon carbide composite ceramics
JP3241215B2 (en) Method for producing silicon nitride based sintered body