JPH05275783A - Optical waveguide type variable-wavelength laser oscillator - Google Patents

Optical waveguide type variable-wavelength laser oscillator

Info

Publication number
JPH05275783A
JPH05275783A JP9747192A JP9747192A JPH05275783A JP H05275783 A JPH05275783 A JP H05275783A JP 9747192 A JP9747192 A JP 9747192A JP 9747192 A JP9747192 A JP 9747192A JP H05275783 A JPH05275783 A JP H05275783A
Authority
JP
Japan
Prior art keywords
titanium
optical waveguide
single crystal
sapphire single
waveguide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9747192A
Other languages
Japanese (ja)
Inventor
Nobuhiro Kodama
展宏 小玉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP9747192A priority Critical patent/JPH05275783A/en
Publication of JPH05275783A publication Critical patent/JPH05275783A/en
Pending legal-status Critical Current

Links

Landscapes

  • Lasers (AREA)

Abstract

PURPOSE:To improve an exciting light density when an exciting light is incident from an end face of an optical waveguide and to enhance a conversion efficiency from the exciting light to an oscillation light by using a titanium-doped sapphire single crystal as a board and forming a channel type or flat surface type optical waveguide on a surface of the board. CONSTITUTION:A titanium-doped sapphire single crystal 1 formed on a surface with a channel type or flat surface type optical waveguide 2 is used as an oscillation medium. A titanium-doped sapphire single crystal 1 is formed in an ordinary plate state. A method for forming the waveguide 2 on the crystal 1 has the steps of forming a mask pattern to become an object shape on the surface of the crystal 2 for forming the waveguide 1, vapor-depositing titanium, heating or electric field-diffusing it while holding the deposited titanium at an oxygen partial pressure sufficient to form titanium oxide from the deposited titanium, and then ion beam etching the masked part.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、コヒ−レント光を利用
する光応用計測、光通信、光情報処理、光プロセッシン
グ等の分野に使用される波長可変の固体レ−ザ−発振装
置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a wavelength tunable solid-state laser oscillating device used in the fields of optical measurement using coherent light, optical communication, optical information processing, optical processing and the like. Is.

【0002】[0002]

【従来の技術】従来から、光導波路を利用したレーザー
としては半導体レーザーが知られている。又、非半導
体、例えば金属酸化物をレーザー発振体としたものは、
エルビウムを添加したシリカガラスファイバーレーザ
ー、ネオジムを添加したリン酸ガラスレーザー、更にチ
タンを添加したサファイアを母体としたファイバーレー
ザー等が知られている。しかし、チタン添加サファイア
単結晶を基板としたものは現在知られていない。
2. Description of the Related Art Conventionally, a semiconductor laser has been known as a laser using an optical waveguide. In addition, non-semiconductors, such as those using a metal oxide laser oscillator,
Known are silica glass fiber lasers containing erbium, phosphate glass lasers containing neodymium, and fiber lasers containing sapphire as a base material containing titanium. However, a substrate using a titanium-doped sapphire single crystal as a substrate is not currently known.

【0003】チタン添加サファイア単結晶を用いた波長
可変の固体レ−ザ−のレ−ザ−発振のための励起光源と
しては、従来アルゴンレ−ザ−、フラッシュランプ励起
によるYAGレ−ザ−の第二高調波、半導体レ−ザ−励
起のYLFレ−ザ−の第二高調波、銅蒸気レ−ザ−、フ
ラッシュランプなどが主に用いられている。これらは、
励起源がガスレ−ザ−あるいはランプであるため、必然
的にレ−ザ−装置が大型化する欠点がある。又、レ−ザ
−装置がランプの寿命に左右されるのみならず保守も容
易でない。更にレ−ザ−発振効率も必ずしも高いものと
は言えない。
As an excitation light source for laser oscillation of a wavelength-tunable solid-state laser using a titanium-doped sapphire single crystal, a conventional argon laser and a YAG laser by flash lamp excitation have been used. Mainly used are second harmonics, second harmonics of semiconductor laser-excited YLF lasers, copper vapor lasers, and flash lamps. They are,
Since the excitation source is a gas laser or a lamp, there is a drawback that the laser device is inevitably increased in size. Further, the laser device is not only affected by the life of the lamp, but also is not easy to maintain. Further, the laser oscillation efficiency is not necessarily high.

【0004】半導体レ−ザ−励起のYLFレ−ザ−の第
二高調波、あるいは半導体レ−ザ−励起のYAGレ−ザ
−の第二高調波でチタン添加サファイア単結晶を端面励
起し、パルスレ−ザ−発振を行う方法も提案されている
が、これらの方法での出力は、たかだか数百μJと低
く、又、発振しきい値が高い。従って、高出力の半導体
レーザーの使用や、複数の半導体レーザーを使用するこ
とが考えられている。
A titanium-doped sapphire single crystal is end-face excited with a second harmonic of a semiconductor laser-excited YLF laser or a semiconductor laser-excited YAG laser. Although methods of performing pulse laser oscillation have been proposed, the output by these methods is as low as several hundred μJ and the oscillation threshold is high. Therefore, it is considered to use a high output semiconductor laser or to use a plurality of semiconductor lasers.

【0005】又、単一モード発振を安定に得ることが容
易でない。更に、単結晶ファイバーレーザーの場合は、
基板の表面に形成する光導波路に比較して導波路の断面
積が相対的に大きく、かつファイバーの径を一定とする
ことが困難である。
Further, it is not easy to stably obtain single mode oscillation. Furthermore, in the case of a single crystal fiber laser,
The cross-sectional area of the waveguide is relatively large as compared with the optical waveguide formed on the surface of the substrate, and it is difficult to make the diameter of the fiber constant.

【0006】[0006]

【発明が解決しようとする問題点】本発明は前記したよ
うな問題点のない、光の変換効率が高く、比較的小型で
且つ保守も容易な波長可変のレ−ザ−発振装置を提供す
ることを目的とするものである。
SUMMARY OF THE INVENTION The present invention provides a wavelength tunable laser oscillating device which is free from the above-mentioned problems, has a high light conversion efficiency, is relatively small and is easy to maintain. The purpose is that.

【0007】[0007]

【問題点を解決するための手段】即ち本発明は、チタン
添加のサファイア単結晶を基板として用い、その基板表
面にチャンネル型又は平面型の光導波路を形成して用い
る波長可変レ−ザ−発振装置に関するものである。この
ような構成とすることにより、導波路の端面から励起光
を入射した際の励起光密度を向上させ、励起光から発振
光への変換効率を高めることができる。更に、光導波路
の上部に回折格子を設け光波を帰還させることにより単
一モード発振を安定に得ることを見出した。次に本発明
を詳細に説明する。
That is, the present invention is directed to a wavelength tunable laser oscillation in which a titanium-doped sapphire single crystal is used as a substrate and a channel-type or planar-type optical waveguide is formed on the substrate surface. It relates to the device. With such a configuration, the excitation light density when the excitation light is incident from the end face of the waveguide can be improved, and the conversion efficiency from the excitation light to the oscillation light can be increased. Furthermore, it was found that a single mode oscillation can be stably obtained by providing a diffraction grating on the upper part of the optical waveguide and returning the light wave. Next, the present invention will be described in detail.

【0008】本発明で用いるチタン添加のサファイア単
結晶は、チタンを0.01〜1atm%添加したいわゆ
るチタンドープサファイア単結晶で、その形状は通常板
状で、大きさは、厚さ1mm〜10mm、2〜100m
m×1〜10mm程度である。
The titanium-added sapphire single crystal used in the present invention is a so-called titanium-doped sapphire single crystal in which titanium is added in an amount of 0.01 to 1 atm%, and its shape is usually plate-like, and its size is 1 mm to 10 mm in thickness. , 2-100m
It is about m × 1 to 10 mm.

【0009】このサファイア単結晶に光導波路を形成す
る方法は例えば次の方法がある。まず光導波路を形成す
るサファイア単結晶の表面に目的の形状となるマスクパ
ターンを形成し、チタンを蒸着させ、蒸着したチタンを
酸化チタン(Ti)とするに充分な酸素分圧を保
ちながら、加熱又は電界拡散させ、次いでマスクした部
分をイオンビームエッチングを行う方法、即ち導波路の
屈折率を基板のそれより大とする方法である。
The method of forming an optical waveguide in this sapphire single crystal is, for example, as follows. First, a mask pattern having a desired shape is formed on the surface of the sapphire single crystal forming the optical waveguide, titanium is vapor-deposited, and the oxygen partial pressure is kept sufficient to turn the vapor-deposited titanium into titanium oxide (Ti 2 O 3 ). However, this is a method in which heating or electric field diffusion is performed, and then the masked portion is subjected to ion beam etching, that is, the refractive index of the waveguide is made higher than that of the substrate.

【0010】又、上記酸素分圧を制御して加熱しアルミ
ニウムの酸化も物を単結晶基板の外部に放出させイオン
ビームエッチングを行う方法、即ち導波路の屈折率を基
板のそれより小とする方法もある。更に、例えばヘリウ
ムイオンを結晶の表面からイオン注入し表面から約0.
5μm以上の深さの部分を非晶質化し、その部分の屈折
率を、その上部結晶層より小とすることによって平面型
導波路とする方法である。
A method of controlling the oxygen partial pressure to heat the aluminum oxide to release the oxide of aluminum to the outside of the single crystal substrate and perform ion beam etching, that is, to make the refractive index of the waveguide smaller than that of the substrate. There is also a method. Further, for example, helium ions are ion-implanted from the surface of the crystal, and about 0.
This is a method in which a portion having a depth of 5 μm or more is made amorphous and the refractive index of the portion is made smaller than that of the upper crystal layer to form a planar waveguide.

【0011】このような方法で形成された光導波路の形
状は、使用目的によっても異なるが、例えばチャンネル
型のものは、通常は、幅厚さとも0.5〜10μmであ
る。又平面型導波路では厚さが0.5〜10μmであ
る。
The shape of the optical waveguide formed by such a method varies depending on the purpose of use, but for example, the channel type usually has a width and a thickness of 0.5 to 10 μm. The thickness of the planar waveguide is 0.5 to 10 μm.

【0012】本発明の一実施態様に用いる光導波路を形
成したサファイア単結晶基板を図1、2及び3に示す。
図中1がサファイア単結晶、2が光導波路である。
A sapphire single crystal substrate having an optical waveguide used in one embodiment of the present invention is shown in FIGS.
In the figure, 1 is a sapphire single crystal and 2 is an optical waveguide.

【0013】又、本発明で光導波路の上部に回折格子を
設ける方法は、光波干渉法、ホログラフィック露光法、
電子ビーム露光法等が利用でき、回折格子の周期に対応
して波長は変化する。
The method of providing the diffraction grating on the upper portion of the optical waveguide in the present invention includes a light wave interference method, a holographic exposure method,
An electron beam exposure method or the like can be used, and the wavelength changes according to the period of the diffraction grating.

【0014】回折格子を設けたサファイア単結晶基板を
図4、5に示す。図中1がサファイア単結晶、2が光導
波路、3が回折格子である。
A sapphire single crystal substrate provided with a diffraction grating is shown in FIGS. In the figure, 1 is a sapphire single crystal, 2 is an optical waveguide, and 3 is a diffraction grating.

【0015】本発明の構成は、基本的には、励起光源
部、波長変換部、レ−ザ−発振部からなり、反射ミラ
ー、レンズ、複屈折フィルター、プリズム、回折格子等
を適宜組み合わせて構成される。本発明の励起光源部
は、例えば、半導体レ−ザ−を単独又は複数個用い、放
出された励起光は集光レンズなどで集光して次の波長変
換部に送られる。波長変換部の構成は、非線形光学結晶
からなる波長変換素子、例えばKTiOPO、β−B
aB、LiNbO、KNbOなどである。
又、半導体レ−ザ−と非線形光学結晶との間に、例えば
希土類イオンを添加した固体レ−ザ−結晶を介在させて
もよい。この固体レ−ザ−結晶の介在は、発振スペクト
ル、ビ−ムの拡がり特性等に好影響を与える。
The structure of the present invention is basically composed of an excitation light source section, a wavelength conversion section, and a laser oscillation section, and is formed by appropriately combining a reflection mirror, a lens, a birefringent filter, a prism, a diffraction grating and the like. To be done. The excitation light source section of the present invention uses, for example, a single semiconductor laser or a plurality of semiconductor lasers, and the emitted excitation light is condensed by a condenser lens or the like and sent to the next wavelength conversion section. The configuration of the wavelength conversion unit includes a wavelength conversion element made of a nonlinear optical crystal, such as KTiOPO 4 , β-B.
Examples thereof include aB 2 O 4 , LiNbO 3 , and KNbO 3 .
Further, a solid-state laser crystal to which rare earth ions are added may be interposed between the semiconductor laser and the nonlinear optical crystal. The interposition of the solid-state laser crystal has a favorable effect on the oscillation spectrum, beam spreading characteristics and the like.

【0016】本発明で用いるこの希土類イオンを添加し
た固体レ−ザ−結晶は、ネオジムを含む酸化物又は同じ
くフッ化物で、例えばネオジム含有イットリウムアルミ
ネ−ト、同イットリウムバナデイト、ネオジム含有フッ
化ランタンなどである。
The rare earth ion-added solid laser crystal used in the present invention is an oxide or a fluoride containing neodymium, such as neodymium-containing yttrium aluminate, yttrium vanadate, or neodymium-containing lanthanum fluoride. And so on.

【0017】次に図面により本発明の構成の一例を説明
する。図6は、励起光源として一個の半導体レ−ザ−を
用いた例である。励起光源(図中4)を発射した光(波
長0.8μm)は集光レンズ(図中5)及びネオジムを
添加した酸化物あるいはフッ化物から成る固体レーザー
結晶(図中6)を通り、波長変換素子(図中7)にて波
長変換(波長0.532〜0.5395μm)される。
次いで通常のミラ−、レンズを通過した光は、チャンネ
ル型導波路(幅1μm)を形成したチタン添加サファイ
ア単結晶(チタン0.05atm%含有、幅5mm、長
さ10mm、厚さ3mm、図中8)に入射、励起され複
屈折フィルター(図中10)反射ミラー(図中9)を経
てレーザー光(波長0.7〜1.1μm)として発振さ
れる。
Next, an example of the configuration of the present invention will be described with reference to the drawings. FIG. 6 shows an example in which one semiconductor laser is used as the excitation light source. The light (wavelength 0.8 μm) emitted from the excitation light source (4 in the figure) passes through the condenser lens (5 in the figure) and the solid laser crystal (6 in the figure) made of neodymium-added oxide or fluoride Wavelength conversion (wavelength 0.532 to 0.5395 μm) is performed by the conversion element (7 in the figure).
Then, the light that has passed through the ordinary mirror and lens is a titanium-doped sapphire single crystal (containing 0.05 atm% titanium, width 5 mm, length 10 mm, thickness 3 mm) in which a channel type waveguide (width 1 μm) is formed. 8) is incident on and excited by the birefringent filter (10 in the figure) and a reflection mirror (9 in the figure) to oscillate as laser light (wavelength 0.7 to 1.1 μm).

【0018】上記例は単独の半導体レ−ザ−を励起光源
として用いた例であるが、複数個の半導体レ−ザ−を励
起光源として用い集光レンズで集光する構造とすること
も可能である。
The above example is an example in which a single semiconductor laser is used as an excitation light source, but it is also possible to employ a structure in which a plurality of semiconductor lasers are used as excitation light sources and light is condensed by a condenser lens. Is.

【0019】図7はファイバー(図中11)を用いた例
であり、図8は光導波路の上部に回折格子(図中12)
を設けたチタン添加サファイア単結晶を用いた例であ
る。
FIG. 7 shows an example using a fiber (11 in the figure), and FIG. 8 shows a diffraction grating (12 in the figure) on the optical waveguide.
It is an example using a titanium-added sapphire single crystal provided with.

【0020】[0020]

【発明の効果】本発明の構成とすることにより、光変換
効率が大であり、又、装置が比較的小型にできるので保
守も容易となる。
With the structure of the present invention, the light conversion efficiency is high, and since the device can be made relatively small, maintenance is easy.

【図面の簡単な説明】[Brief description of drawings]

【図1】チャンネル型光導波路を形成したサファイア単
結晶基板の概略図
FIG. 1 is a schematic view of a sapphire single crystal substrate on which a channel type optical waveguide is formed.

【図2】同光導波路を形成したサファイア単結晶基板の
断面図
FIG. 2 is a sectional view of a sapphire single crystal substrate on which the optical waveguide is formed.

【図3】平板型光導波路を形成したサファイア単結晶基
板の概略図
FIG. 3 is a schematic view of a sapphire single crystal substrate on which a flat optical waveguide is formed.

【図4】回折格子を設けたサファイア単結晶基板の概略
FIG. 4 is a schematic view of a sapphire single crystal substrate provided with a diffraction grating.

【図5】回折格子を設けたサファイア単結晶基板の側面
FIG. 5 is a side view of a sapphire single crystal substrate provided with a diffraction grating.

【図6】励起光源として一個の半導体レ−ザ−を用いた
例の構成図
FIG. 6 is a block diagram of an example using one semiconductor laser as an excitation light source.

【図7】光ファイバーを用いた例の構成図FIG. 7 is a block diagram of an example using an optical fiber.

【図8】光導波路の上部に回折格子を設けたチタン添加
サファイア単結晶を用いた例の構成図
FIG. 8 is a configuration diagram of an example using a titanium-doped sapphire single crystal in which a diffraction grating is provided on an upper portion of an optical waveguide.

【符号の説明】[Explanation of symbols]

1:サファイア単結晶 2:光導波路 3:回折格子 4:励起光源 5:集光レンズ 6:固体レーザー 7:波長変換素子 8:チタン添加サファイア単結晶 9:反射ミラー 10:複屈折フィルター 11:ファイバー 12:回折格子 1: Sapphire single crystal 2: Optical waveguide 3: Diffraction grating 4: Excitation light source 5: Condenser lens 6: Solid-state laser 7: Wavelength conversion element 8: Titanium-added sapphire single crystal 9: Reflection mirror 10: Birefringence filter 11: Fiber 12: Diffraction grating

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】表面にチャンネル型又は平面型の光導波路
を形成した、チタン添加のサファイア単結晶を発振媒体
として用いた波長可変レ−ザ−発振装置。
1. A wavelength tunable laser oscillator using a titanium-doped sapphire single crystal as an oscillation medium, on the surface of which a channel-type or planar-type optical waveguide is formed.
【請求項2】光導波路の上部に回折格子を設けた請求項
1記載の波長可変レ−ザ−発振装置。
2. A wavelength tunable laser oscillator according to claim 1, wherein a diffraction grating is provided above the optical waveguide.
JP9747192A 1992-03-25 1992-03-25 Optical waveguide type variable-wavelength laser oscillator Pending JPH05275783A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9747192A JPH05275783A (en) 1992-03-25 1992-03-25 Optical waveguide type variable-wavelength laser oscillator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9747192A JPH05275783A (en) 1992-03-25 1992-03-25 Optical waveguide type variable-wavelength laser oscillator

Publications (1)

Publication Number Publication Date
JPH05275783A true JPH05275783A (en) 1993-10-22

Family

ID=14193225

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9747192A Pending JPH05275783A (en) 1992-03-25 1992-03-25 Optical waveguide type variable-wavelength laser oscillator

Country Status (1)

Country Link
JP (1) JPH05275783A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6641939B1 (en) 1998-07-01 2003-11-04 The Morgan Crucible Company Plc Transition metal oxide doped alumina and methods of making and using

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6641939B1 (en) 1998-07-01 2003-11-04 The Morgan Crucible Company Plc Transition metal oxide doped alumina and methods of making and using

Similar Documents

Publication Publication Date Title
US5123026A (en) Frequency-doubled, diode-pumped ytterbium laser
WO1996038757A1 (en) Optical device, laser beam source, laser apparatus and method of producing optical device
JP2007086101A (en) Deep ultraviolet laser device
JP2001251002A (en) Laser device
JP2000340865A (en) Laser oscillator and laser amplifier
JPH05275783A (en) Optical waveguide type variable-wavelength laser oscillator
JPH05267753A (en) Solid laser
Hodgson et al. Diode-pumped, 220 W ultra-thin slab Nd: YAG laser with near-diffraction limited beam quality
CN208078370U (en) A kind of solid state laser of high repetition rate mode-locked lasers
JPH06283798A (en) Fiber laser and optical fiber amplifier
JP3306990B2 (en) Wavelength conversion laser device
JP3272674B2 (en) Laser processing equipment
CN101383477A (en) Laser second harmonic generation device
Liu et al. High-energy pulse generation from solid-state ultraviolet lasers using large Ce: fluoride crystals
JP3091329B2 (en) Solid laser equipment
JPH0555680A (en) Pulse light source
WO2024031743A1 (en) Method for breaking through limitation of fluorescence spectrum on laser wavelength, and laser device
EP4346031A1 (en) Method for breaking through limitation of fluorescence spectrum on laser wavelength, and laser device
CN219917893U (en) Solid laser with bias selection function
JPH10150238A (en) Optical parametric oscillator and its designing method
JP2663197B2 (en) Laser diode pumped solid state laser
JP2001185795A (en) Ultraviolet laser device
JPH08102564A (en) Wavelength converting laser device
JPH0714666U (en) Solid-state laser device
JPH07135359A (en) Solid-state laser oscillator