JPH05275712A - Semiconductor nonvolatile memory device and its manufacture - Google Patents

Semiconductor nonvolatile memory device and its manufacture

Info

Publication number
JPH05275712A
JPH05275712A JP7197092A JP7197092A JPH05275712A JP H05275712 A JPH05275712 A JP H05275712A JP 7197092 A JP7197092 A JP 7197092A JP 7197092 A JP7197092 A JP 7197092A JP H05275712 A JPH05275712 A JP H05275712A
Authority
JP
Japan
Prior art keywords
film
floating gate
memory device
conductive film
metal ions
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7197092A
Other languages
Japanese (ja)
Inventor
Masataka Takebuchi
政孝 竹渕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP7197092A priority Critical patent/JPH05275712A/en
Publication of JPH05275712A publication Critical patent/JPH05275712A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To make the charge accumulation state of a floating gate sure and to enhance the reliability of a nonvolatile memory device by a method wherein a thin film which contains nitrogen atoms is formed between the floating gate and a metal interconnection. CONSTITUTION:A floating gate 13 and a selection gate 20 are patterned by using a photoetching method; immediately after that, a silicon nitride film 31 is deposited; an insulating film 15 is laminated and formed in such a way that at least the floating gate 13 is covered; an interconnection contact hole 26 is formed; an Al interconnection 16 is formed. Thansks to a shielding effect against heavy-metal ions by this constitution, the floating gate 13 is protected, it is possible to prevent a change in the characteristic of an element when the heavy-metal ions are mixed in a later process and it is possible to prevent the malfunction of the element. Since a silicon nitride film 31 is formed immediately after the floating gate 13 has been formed, the effect to prevent the heavy-metal ions becomes much greater, it is possible to prevent the change in the characteristic of the element and the malfunction of the element when the heavy-metal ions creep. Since a thin film which contains nitrogen functions as the trap of electrons, it is possible to enhance the charge holding characteristic of the title memory device.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、電気的に浮遊状態にあ
る導電膜を有した半導体不揮発性記憶装置およびその製
造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor nonvolatile memory device having a conductive film in an electrically floating state and a method for manufacturing the same.

【0002】[0002]

【従来の技術】この種の記憶装置の従来例のパターン平
面図を図7に、図7のA−A線に沿う断面図を図8に、
図7のB−B線に沿う断面図を図9に示す。この図7〜
図9は、従来の不揮発性記憶装置の工程を経て得られた
もので、ここでは、1層のポリシコン電極構造の電気的
に書き替え可能な不揮発性記憶装置(EEPROMと略
す)を構成している。
2. Description of the Related Art FIG. 7 shows a pattern plan view of a conventional example of a memory device of this type, FIG. 8 shows a sectional view taken along the line AA of FIG.
FIG. 9 shows a sectional view taken along the line BB of FIG. 7. This Figure 7-
FIG. 9 is obtained through a process of a conventional nonvolatile memory device, and here, an electrically rewritable nonvolatile memory device (abbreviated as EEPROM) having a one-layer polysilicon electrode structure is configured. There is.

【0003】すなわち、半導体基板11上に、シリコン
のゲート酸化膜12を介して、電気的に浮遊状態にある
ポリシリコン電極13が積層され、さらにポリシリコン
電極13上に、酸化膜14、燐、ボロン等の不純物が混
入されたシリケートガラス層15を介して、金属(A
l)配線層16が設けられている。ここで17はフィー
ルド酸化膜、18a〜18dは、基板11とは逆導電型
不純物の拡散層である。18b、18cはチャネル領域
19を挟むように設けられ、一方はデータ記憶セルトラ
ンジスタ22のソース領域、他方はドレイン領域であ
る。18a、18bは、一方がソース領域、他方がドレ
イン領域で、これらの領域とポリシリコンゲート電極2
0とで、セルトランジスタ22の選択用トランジスタ2
3を構成する。18dはワード線である。24はトンネ
ル酸化膜、25はカップリング酸化膜で、層13、18
d間を結合するコンデンサ用である。26はAl配線1
6用コンタクト孔である。
That is, a polysilicon electrode 13 in an electrically floating state is laminated on a semiconductor substrate 11 via a silicon gate oxide film 12, and an oxide film 14, phosphorus, and Through the silicate glass layer 15 mixed with impurities such as boron, metal (A
l) The wiring layer 16 is provided. Here, 17 is a field oxide film, and 18a to 18d are diffusion layers of impurities of opposite conductivity type to the substrate 11. 18b and 18c are provided so as to sandwich the channel region 19, one of which is a source region of the data storage cell transistor 22 and the other of which is a drain region. One of 18a and 18b is a source region and the other is a drain region. These regions and the polysilicon gate electrode 2 are formed.
0 and the selection transistor 2 of the cell transistor 22
Make up 3. 18d is a word line. Reference numeral 24 is a tunnel oxide film, and 25 is a coupling oxide film.
It is for a capacitor that couples between d. 26 is Al wiring 1
6 contact hole.

【0004】上記構成のものにあっては、ポリシリコン
浮遊ゲート13とAl配線16との間には、約300オ
ングストロームの酸化膜14、および燐、ボロン等の不
純物が混入されたシリケートガラス層15が介在してい
る。
In the structure described above, an oxide film 14 of about 300 angstroms and a silicate glass layer 15 containing impurities such as phosphorus and boron are provided between the polysilicon floating gate 13 and the Al wiring 16. Is intervening.

【0005】ここで浮遊ゲートとは、EEPROMの”
1”“0”を決定する電荷蓄積場所であり、ゲートにバ
イアスのかかる従来のデバイスと比較しても、外界から
の電気的影響については敏感である。したがって浮遊ゲ
ート13は、EEPROMとして機能させる以外は、外
部との遮蔽性が完全であることが好ましい。所が上記の
構成のものにあっては、浮遊ゲート13を形成してから
デバイス完成までには、多くの歓迎されない不純物が混
入される。とくに重金属イオン(Na+ 、Ka+ など)
の挙動には注意が必要である。
Here, the floating gate is an EEPROM "
It is a charge storage location that determines 1 "and" 0 ", and is more sensitive to electrical influences from the external environment than a conventional device in which the gate is biased. Therefore, the floating gate 13 functions as an EEPROM. However, in the above structure, many unwelcome impurities are mixed in from the formation of the floating gate 13 to the completion of the device. Especially heavy metal ions (Na + , Ka + Such)
Be careful of the behavior of.

【0006】なぜなら、上記重金属イオンは浮遊ゲート
の電荷蓄積状態によって移動し、浮遊ゲートに本来ある
べき電荷量が、みかけ上変動したりするからである。こ
の変動度合が大きいと、誤読み出しを引き起こしかねな
くなる。
This is because the heavy metal ions move depending on the charge accumulation state of the floating gate, and the amount of charges originally supposed to be in the floating gate may change apparently. If this fluctuation degree is large, erroneous reading may occur.

【0007】[0007]

【発明が解決しようとする課題】そこで本発明の目的
は、浮遊ゲートの電荷蓄積状態を確実化し、不揮発性記
憶装置の信頼性を向上させることにある。
SUMMARY OF THE INVENTION An object of the present invention is to ensure the charge storage state of the floating gate and improve the reliability of the nonvolatile memory device.

【0008】[0008]

【課題を解決するための手段と作用】本発明は、半導体
基板と、この半導体基板の表面に設けられた絶縁膜と、
この絶縁膜中に設けられ電気的に浮遊状態にある導電膜
と、前記絶縁膜の上部に設けられた金属配線膜と、この
金属配線膜と前記導電膜との間にこの導電膜を覆うよう
に設けられ、窒素原子を含む薄膜とを具備したことを特
徴とする半導体不揮発性記憶装置である。
The present invention provides a semiconductor substrate, an insulating film provided on the surface of the semiconductor substrate,
A conductive film provided in the insulating film in an electrically floating state, a metal wiring film provided on the insulating film, and the conductive film between the metal wiring film and the conductive film so as to cover the conductive film. And a thin film containing a nitrogen atom, the semiconductor non-volatile memory device.

【0009】すなわち本発明は、浮遊ゲートがゲート電
極の上層の電極である不揮発性記憶装置(電気的に書き
替え可能なEPROM、EEPROM等)において、浮
遊ゲートと金属配線との間に、窒素原子を含む薄膜(シ
リコン窒化膜など)を形成する。この窒素を含む薄膜
は、重金属イオンに対して遮蔽効果を有するため、浮遊
ゲートに蓄積された電荷は、良好に保持される。
That is, according to the present invention, in a nonvolatile memory device (electrically rewritable EPROM, EEPROM, etc.) in which the floating gate is an electrode above the gate electrode, a nitrogen atom is provided between the floating gate and the metal wiring. Forming a thin film containing silicon (such as a silicon nitride film). This nitrogen-containing thin film has a shielding effect on heavy metal ions, so that the charges accumulated in the floating gate are well retained.

【0010】[0010]

【実施例】以下図面を参照して本発明の第1実施例を説
明する。図1は本実施例の断面図であるが、これは前記
図7〜図9のものに対応させた場合の例であるから、対
応箇所には同一符号を付しておく。本実施例の特徴は、
浮遊ゲート13、選択ゲート20を、通常の写真蝕刻法
を用いてパターニングした直後に、シリコン窒化膜31
を堆積し、この窒化膜31で、少なくとも浮遊ゲートを
覆うようにしたものである。シリコン窒化膜31は、例
えばCVD法により形成することができ、また膜厚は、
窒化膜の応力を考慮し、1000オングストローム以下
としている。その後、絶縁膜15を積層形成し、配線コ
ンタクト穴26を設けて後、Al配線16を形成するも
のである。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A first embodiment of the present invention will be described below with reference to the drawings. FIG. 1 is a cross-sectional view of this embodiment, but this is an example of a case corresponding to those of FIGS. 7 to 9 described above, and therefore, corresponding parts are designated by the same reference numerals. The feature of this embodiment is that
Immediately after patterning the floating gate 13 and the select gate 20 by using a normal photo-etching method, a silicon nitride film 31 is formed.
Is deposited, and at least the floating gate is covered with this nitride film 31. The silicon nitride film 31 can be formed by, for example, a CVD method, and the film thickness is
Considering the stress of the nitride film, it is set to 1000 angstroms or less. After that, the insulating film 15 is laminated and the wiring contact hole 26 is provided, and then the Al wiring 16 is formed.

【0011】図1のような構成であれば、浮遊ゲート1
3がシリコン窒化膜31で覆われているため、その重金
属イオンに対する遮蔽効果により、浮遊ゲート13が保
護され、したがって後工程での重金属イオン混入による
素子の特性変動、さらには誤動作(誤データ読み出し)
を防止できる。またシリコン窒化膜31を設ける時期
は、浮遊ゲート13を設けた直後なので、重金属イオン
防止効果は一層大きくなる。
With the configuration shown in FIG. 1, the floating gate 1
Since 3 is covered with the silicon nitride film 31, the floating gate 13 is protected by the shielding effect against the heavy metal ions, and therefore, the characteristic variation of the element due to the mixing of the heavy metal ions in the subsequent process and the malfunction (wrong data reading).
Can be prevented. Further, since the silicon nitride film 31 is provided immediately after the floating gate 13 is provided, the effect of preventing heavy metal ions is further enhanced.

【0012】図2は、本発明の第2実施例を示す。この
実施例は、浮遊ゲート電極13、選択ゲート20を、通
常の写真蝕刻法を用いてパターニング形成した後に、シ
リコン酸化膜14を形成し、引き続いてシリコン窒化膜
31を堆積形成したものである。ここで、シリコン酸化
膜14は熱酸化法で形成し、シリコン窒化膜31はCV
D法で形成している。
FIG. 2 shows a second embodiment of the present invention. In this embodiment, the floating gate electrode 13 and the select gate 20 are patterned and formed by a usual photo-etching method, then a silicon oxide film 14 is formed, and then a silicon nitride film 31 is deposited and formed. Here, the silicon oxide film 14 is formed by a thermal oxidation method, and the silicon nitride film 31 is CV.
It is formed by the D method.

【0013】図3は、本発明の第3実施例を示す。この
実施例は、浮遊ゲート電極13、選択ゲート20を、通
常の写真蝕刻法を用いてパターニング形成した後に、ト
ランジスタのソース、ドレイン(高濃度部)のイオン注
入を行うための側壁41を、シリコン酸化膜形成、方向
性エッチング法などで形成した直後に、シリコン窒化膜
31を堆積形成したものである。ここで、シリコン酸化
膜41、シリコン窒化膜31は、ともにCVD法で形成
している。
FIG. 3 shows a third embodiment of the present invention. In this embodiment, after forming the floating gate electrode 13 and the select gate 20 by patterning using a normal photo-etching method, a sidewall 41 for performing ion implantation of a source and a drain (high concentration portion) of a transistor is formed with silicon. The silicon nitride film 31 is deposited and formed immediately after the formation of the oxide film and the directional etching method. Here, the silicon oxide film 41 and the silicon nitride film 31 are both formed by the CVD method.

【0014】図4は、本発明の第4実施例を示す。この
実施例は、浮遊ゲート電極13、選択ゲート20を、通
常の写真蝕刻法を用いてパターニング形成した後に、ト
ランジスタのソース、ドレイン(高濃度部)のイオン注
入を行うための側壁41を、シリコン酸化膜形成、方向
性エッチング法などで形成し、続いてシリコン酸化膜1
4を形成した直後に、シリコン窒化膜31を堆積形成し
たものである。ここで、シリコン酸化膜41、シリコン
窒化膜31は、ともにCVD法で形成し、シリコン酸化
膜14は熱酸化法で形成している。
FIG. 4 shows a fourth embodiment of the present invention. In this embodiment, after forming the floating gate electrode 13 and the select gate 20 by patterning using a normal photo-etching method, a sidewall 41 for performing ion implantation of a source and a drain (high concentration portion) of a transistor is formed with silicon. Oxide film formation, directional etching method, etc., followed by silicon oxide film 1
Immediately after the formation of No. 4, the silicon nitride film 31 is deposited and formed. Here, the silicon oxide film 41 and the silicon nitride film 31 are both formed by the CVD method, and the silicon oxide film 14 is formed by the thermal oxidation method.

【0015】図5は、本発明の第5実施例を示す。この
実施例は、浮遊ゲート電極13、選択ゲート20を、通
常の写真蝕刻法を用いてパターニング形成した後に、第
1の燐シリケートガラス(PSG)またはシリコン酸化
膜を堆積した後、連続的にボロン・燐シリケートガラス
(BPSG)、第2の燐シリケートガラスを堆積した
後、熱処理を加えることにより、絶縁膜15を形成す
る。その後シリコン窒化膜31を堆積形成したものであ
る。前記第1および第2のPSG、BPSG、シリコン
酸化膜、シリコン窒化膜は、CVD法で形成している。
FIG. 5 shows a fifth embodiment of the present invention. In this embodiment, the floating gate electrode 13 and the select gate 20 are patterned by using a normal photo-etching method, and then a first phosphosilicate glass (PSG) or silicon oxide film is deposited, and then boron is continuously formed. -Insulating film 15 is formed by depositing phosphorus silicate glass (BPSG) and second phosphorus silicate glass and then applying heat treatment. After that, a silicon nitride film 31 is deposited and formed. The first and second PSGs, BPSGs, silicon oxide films, and silicon nitride films are formed by the CVD method.

【0016】図6は、本発明の第6実施例である。この
実施例は、前記実施例の組み合わせである。すなわち、
浮遊ゲート13、選択ゲート20をパターニング形成
後、引き続いてシリコン酸化膜14、そのうえにシリコ
ン窒化膜31aを形成する。さらには、第1の燐シリケ
ートガラス(PSG)またはシリコン酸化膜を堆積した
後、連続的にボロン・燐シリケートガラス(BPS
G)、第2の燐シリケートガラスを堆積した後、熱処理
を加えることにより、絶縁膜15を形成する。その後シ
リコン窒化膜31bを堆積形成したものである。
FIG. 6 shows a sixth embodiment of the present invention. This embodiment is a combination of the above embodiments. That is,
After forming the floating gate 13 and the select gate 20 by patterning, the silicon oxide film 14 and then the silicon nitride film 31a are formed thereon. Furthermore, after depositing the first phosphorus silicate glass (PSG) or silicon oxide film, boron / phosphorus silicate glass (BPS) is continuously formed.
G) After depositing the second phosphorus silicate glass, heat treatment is applied to form the insulating film 15. After that, a silicon nitride film 31b is deposited and formed.

【0017】図6のような構成であれば、シリコン窒化
膜31aの形成後の工程で、重金属イオンの侵入があっ
たとしても、シリコン窒化膜31aの作用で、上記重金
属イオンが、浮遊ゲート13に移動することもない。さ
らに上部層も、シリコン窒化膜31bによりガードされ
ているため、重金属イオン(汚染源)がシリコン窒化膜
31a、31b間にあるような場合、その領域内に重金
属イオンを閉じ込めておけるので、他の領域への汚染の
広がりがない。また、重金属による汚染源が、シリコン
窒化膜31bより上方にある場合、浮遊ゲート13は二
重のシリコン窒化膜で遮蔽されることになり、重金属イ
オンに対する遮蔽効果は、さらに向上するものである。
With the structure as shown in FIG. 6, even if heavy metal ions intrude in the process after the formation of the silicon nitride film 31a, the heavy metal ions can be made to act on the floating gate 13 by the action of the silicon nitride film 31a. Never move to. Further, since the upper layer is also guarded by the silicon nitride film 31b, when the heavy metal ions (contamination source) are between the silicon nitride films 31a and 31b, the heavy metal ions can be confined in that region. There is no spread of pollution to. When the source of heavy metal contamination is above the silicon nitride film 31b, the floating gate 13 is shielded by the double silicon nitride film, and the shielding effect against heavy metal ions is further improved.

【0018】なお、本発明は上記実施例に限られること
なく、種々の応用が可能である。例えば、実施例では、
窒素原子を含む膜としてシリコン窒化膜を用いたが、こ
れのみに限られず、例えばSix y z (シリコン窒
化酸化膜)など、種々のものを選定できる。またプラズ
マCVD法により堆積されるSiO2 も、反応ガスにN
2 を使用しているため、その膜中に窒素原子が存在して
いる。本発明は、このように形成される膜を、上記窒素
原子を含む薄膜として用いることができる。
The present invention is not limited to the above embodiment, but various applications are possible. For example, in the example,
Although the silicon nitride film is used as the film containing nitrogen atoms, it is not limited to this and various materials such as Si x O y N z (silicon oxynitride film) can be selected. Also, SiO 2 deposited by the plasma CVD method contains N as a reaction gas.
Since 2 is used, nitrogen atoms are present in the film. In the present invention, the film thus formed can be used as a thin film containing the nitrogen atom.

【0019】[0019]

【発明の効果】以上説明したごとく本発明によれば、浮
遊状態にある導電膜に対し、重金属イオン侵入による素
子の特性変動、誤動作を防止できる。また、窒素を含む
薄膜が、浮遊ゲートから漏れた電子のトラップとして働
くため、電荷保持特性を向上させることも可能になる。
As described above, according to the present invention, it is possible to prevent the characteristic change and malfunction of the element due to the invasion of heavy metal ions with respect to the conductive film in the floating state. In addition, since the thin film containing nitrogen acts as a trap for electrons leaked from the floating gate, it is possible to improve the charge retention characteristic.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1実施例を示す断面図。FIG. 1 is a sectional view showing a first embodiment of the present invention.

【図2】本発明の第2実施例を示す断面図。FIG. 2 is a sectional view showing a second embodiment of the present invention.

【図3】本発明の第3実施例を示す断面図。FIG. 3 is a sectional view showing a third embodiment of the present invention.

【図4】本発明の第4実施例を示す断面図。FIG. 4 is a sectional view showing a fourth embodiment of the present invention.

【図5】本発明の第5実施例を示す断面図。FIG. 5 is a sectional view showing a fifth embodiment of the present invention.

【図6】本発明の第6実施例を示す断面図。FIG. 6 is a sectional view showing a sixth embodiment of the present invention.

【図7】従来素子のパターン平面図。FIG. 7 is a pattern plan view of a conventional element.

【図8】図7のA−A線に沿う断面図。8 is a sectional view taken along the line AA of FIG.

【図9】図7のB−B線に沿う断面図。9 is a cross-sectional view taken along the line BB of FIG.

【符号の説明】[Explanation of symbols]

11…半導体基板、12…ゲート絶縁膜、13…浮遊状
態の導電膜、14、15、25…絶縁膜、16…Al配
線、18a〜18d…半導体基板とは逆導電型の層、2
2…記憶セル用トランジスタ、23…選択トランジス
タ、24…トンネル酸化膜、26…コンタクト穴、3
1、31a、31b…シリコン窒化膜。
11 ... Semiconductor substrate, 12 ... Gate insulating film, 13 ... Floating conductive film, 14, 15, 25 ... Insulating film, 16 ... Al wiring, 18a-18d ... Layer of opposite conductivity type to semiconductor substrate, 2
2 ... Memory cell transistor, 23 ... Select transistor, 24 ... Tunnel oxide film, 26 ... Contact hole, 3
1, 31a, 31b ... Silicon nitride film.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 G11C 16/04 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification code Internal reference number FI technical display location G11C 16/04

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】半導体基板と、この半導体基板の表面に設
けられた絶縁膜と、この絶縁膜中に設けられ電気的に浮
遊状態にある導電膜と、前記絶縁膜の上部に設けられた
金属配線膜と、この金属配線膜と前記導電膜との間にこ
の導電膜を覆うように設けられ、窒素原子を含む薄膜と
を具備したことを特徴とする半導体不揮発性記憶装置。
1. A semiconductor substrate, an insulating film provided on the surface of the semiconductor substrate, a conductive film in the insulating film in an electrically floating state, and a metal provided on the insulating film. A semiconductor nonvolatile memory device, comprising: a wiring film; and a thin film containing a nitrogen atom, the thin film being provided between the metal wiring film and the conductive film so as to cover the conductive film.
【請求項2】前記導電膜は浮遊ゲートを構成し前記導電
膜下の半導体基板表面のチャネル領域を挟むようにソー
ス、ドレインが設けられた請求項1に記載の半導体不揮
発性記憶装置。
2. The semiconductor nonvolatile memory device according to claim 1, wherein the conductive film forms a floating gate, and a source and a drain are provided so as to sandwich a channel region on the surface of the semiconductor substrate below the conductive film.
【請求項3】半導体基板上に設けられた絶縁膜で覆われ
かつ電気的に浮遊状態にあるように導電膜を設ける工程
と、前記絶縁膜中または上部で、前記導電膜を覆うよう
に、窒素原子を含む薄膜を少なくとも一層設ける工程
と、前記薄膜の上方に金属配線膜を設ける工程とを具備
したことを特徴とする半導体不揮発性記憶装置の製造方
法。
3. A step of forming a conductive film so as to be covered with an insulating film provided on a semiconductor substrate and to be in an electrically floating state, and to cover the conductive film in or on the insulating film, A method for manufacturing a semiconductor nonvolatile memory device, comprising: providing at least one thin film containing nitrogen atoms; and providing a metal wiring film above the thin film.
【請求項4】前記導電膜は、前記半導体基板の表面部に
設けられたソース、ドレイン間のチャネル領域上にあっ
て、浮遊ゲートを構成する請求項3に記載の半導体不揮
発性記憶装置の製造方法。
4. The semiconductor non-volatile memory device according to claim 3, wherein the conductive film is on a channel region between a source and a drain provided on a surface portion of the semiconductor substrate to form a floating gate. Method.
【請求項5】前記導電膜上に前記導電膜への電荷移動を
行う手段をつかさどるための別の導電膜を有することの
ない請求項4に記載の半導体不揮発性記憶装置の製造方
法。
5. The method of manufacturing a semiconductor non-volatile memory device according to claim 4, wherein another conductive film for controlling a means for transferring charges to the conductive film is not provided on the conductive film.
JP7197092A 1992-03-30 1992-03-30 Semiconductor nonvolatile memory device and its manufacture Pending JPH05275712A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7197092A JPH05275712A (en) 1992-03-30 1992-03-30 Semiconductor nonvolatile memory device and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7197092A JPH05275712A (en) 1992-03-30 1992-03-30 Semiconductor nonvolatile memory device and its manufacture

Publications (1)

Publication Number Publication Date
JPH05275712A true JPH05275712A (en) 1993-10-22

Family

ID=13475840

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7197092A Pending JPH05275712A (en) 1992-03-30 1992-03-30 Semiconductor nonvolatile memory device and its manufacture

Country Status (1)

Country Link
JP (1) JPH05275712A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6017792A (en) * 1994-09-06 2000-01-25 Motorola, Inc. Process for fabricating a semiconductor device including a nonvolatile memory cell
JP2005142560A (en) * 2003-11-01 2005-06-02 Samsung Electronics Co Ltd Eprom device, semiconductor device, and manufacturing method of semiconductor device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6017792A (en) * 1994-09-06 2000-01-25 Motorola, Inc. Process for fabricating a semiconductor device including a nonvolatile memory cell
JP2005142560A (en) * 2003-11-01 2005-06-02 Samsung Electronics Co Ltd Eprom device, semiconductor device, and manufacturing method of semiconductor device

Similar Documents

Publication Publication Date Title
US5702964A (en) Method for forming a semiconductor device having a floating gate
US6100559A (en) Multipurpose graded silicon oxynitride cap layer
US5051794A (en) Non-volatile semiconductor memory device and method for manufacturing the same
JP3430084B2 (en) Manufacturing method of nonvolatile semiconductor memory device
JP2713178B2 (en) Semiconductor memory device and method of manufacturing the same
KR920007166A (en) Method for manufacturing nonvolatile semiconductor memory device having storage cell array and peripheral circuit and its structure
EP0677869B1 (en) Planarization process for the manufacturing of integrated circuits, particularly for non-volatile semiconductor memory devices
US7671406B2 (en) Semiconductor device and method of fabricating the same
US20020003253A1 (en) Nonvolatile semiconductor memory device and its manufacturing method
US5309023A (en) Contact structure for interconnection in semiconductor devices and manufacturing method thereof
JPH0817948A (en) Semiconductor device and its manufacture
EP0383011B1 (en) Semiconductor non-volatile memory device
EP0287031B1 (en) High breakdown voltage insulating film provided between polysilicon layers
JPH05275712A (en) Semiconductor nonvolatile memory device and its manufacture
JPS60113460A (en) Dynamic memory element
JP2670330B2 (en) Nonvolatile semiconductor memory device
KR970005143B1 (en) Semiconductor memory device having improved write charateristic
JPH07106441A (en) Fabrication of semiconductor device
US5453634A (en) Non-volatile semiconductor device
CN1375875B (en) Semiconductor device and its manufacturing method
US6194271B1 (en) Method for fabricating flash memory
US6696346B2 (en) Method of manufacturing semiconductor device
JP3400231B2 (en) Semiconductor storage device and manufacturing method
JPH08130263A (en) Semiconductor device
JPH05343694A (en) Manufacture of nonvolatile semiconductor storage element