JPH05275058A - Wien filter - Google Patents

Wien filter

Info

Publication number
JPH05275058A
JPH05275058A JP4068540A JP6854092A JPH05275058A JP H05275058 A JPH05275058 A JP H05275058A JP 4068540 A JP4068540 A JP 4068540A JP 6854092 A JP6854092 A JP 6854092A JP H05275058 A JPH05275058 A JP H05275058A
Authority
JP
Japan
Prior art keywords
poles
magnetic
electrode
electric field
axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4068540A
Other languages
Japanese (ja)
Other versions
JP3040245B2 (en
Inventor
Katsushige Tsuno
勝重 津野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jeol Ltd
Original Assignee
Jeol Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jeol Ltd filed Critical Jeol Ltd
Priority to JP4068540A priority Critical patent/JP3040245B2/en
Publication of JPH05275058A publication Critical patent/JPH05275058A/en
Application granted granted Critical
Publication of JP3040245B2 publication Critical patent/JP3040245B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Electron Tubes For Measurement (AREA)

Abstract

PURPOSE:To make the electric field distribution and the magnetic field distribution conform to each other in a fringe field of a Wien filter. CONSTITUTION:Poles P1-P8 are formed of conductor having ferromagnetism. Each of the pole P1 and the pole P5 functions as one electrode. The poles P2, P3, P4 function as one electrode as a whole. The poles P6, P7, P8 also function as one electrode on the whole. An electric field, which is homogeneous and which has a quadrupole component E2, is formed by giving a fixed electric potential to these four electrodes. The poles P1, P2, P8 function as one magnetic electrode as a whole. The poles P4, P5, P6 function as one magnetic electrode as a whole. Each of the poles P3, P7 functions as one magnetic electrode. A magnetic field which is homogeneous and which has a quadrupole component B2 is formed when a predetermined ampere-turn is given to these four magnetic electrodes.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、電子顕微鏡等に置いて
エネルギーフィルタ像等を得るために用いられるウィー
ンフィルタに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a Wien filter used in an electron microscope or the like to obtain an energy filter image or the like.

【0002】[0002]

【従来の技術】ウィーンフィルタは、電子ビームの進行
方向に直交する面内において、互いに直交する電場Eと
磁場Bを加えることによって、特定の速度の電子ビーム
だけを直進させるものである。この電子ビームが直進す
るための条件は、電場の方向をx方向、磁場の方向をy
方向としたとき、電場の一次成分E1 、磁場の一次成分
1 、電子の速度vを用いて、E1 −vB1 =0で表さ
れ、ウィーン条件と称されている。ウィーンフィルタは
このような性質を有するため、荷電粒子線を取り扱う種
々の装置において、エネルギー分析はもとより、エネル
ギー分析のためのモノクロメータ、低速電子顕微鏡用ビ
ームセパレータ等に用いられている。
2. Description of the Related Art A Wien filter is a device that causes an electron beam of a specific velocity to go straight by applying an electric field E and a magnetic field B which are orthogonal to each other in a plane orthogonal to the traveling direction of the electron beam. The condition for this electron beam to go straight is that the direction of the electric field is x and the direction of the magnetic field is y.
When the direction is used, it is represented by E 1 −vB 1 = 0 using the primary component E 1 of the electric field, the primary component B 1 of the magnetic field, and the velocity v of the electron, which is called the Wien condition. Since the Wien filter has such a property, it is used not only in energy analysis but also in a monochromator for energy analysis, a beam separator for a low-speed electron microscope, and the like in various devices that handle charged particle beams.

【0003】[0003]

【発明が解決しようとする課題】ところで、ウィーン条
件は電場及び磁場の働いている全ての領域において成立
する必要があるが、このようなウィーンフィルタを構成
することは非常に困難であり、特にウィーンフィルタの
入射口と出射口の縁端部においては磁場と電場の分布は
異なるのが通常であり、この分布の相違は即ち当該縁端
部においては電場と磁場の関係がウィーン条件から外れ
ることを意味し、従ってこの場合には電子ビームは偏向
され、大きな収差を生じることになる。
By the way, the Wien condition must be satisfied in all regions where an electric field and a magnetic field are working, but it is very difficult to construct such a Wien filter, and particularly, the Wien filter is used. The distribution of the magnetic field and the electric field is usually different at the edges of the entrance and exit of the filter, and this difference in distribution means that the relationship between the electric field and the magnetic field deviates from the Wien condition at the edges. This means that in this case the electron beam is deflected and causes a large aberration.

【0004】これに対して、本出願人は、先に、縁端部
でのフリンジ場の電場と磁場の分布を一致させるため、
図4Aに示す構成のウィーンフィルタにおいて、電極1
1 ,12 間のギャップSe と、磁極21 ,22 間のギャ
ップSm とを等しくすることを提案した。
On the other hand, the present applicant has previously made the electric field and the magnetic field distribution of the fringe field coincident with each other at the edge portion,
In the Wien filter having the configuration shown in FIG. 4A, the electrode 1
1, 1 and the gap S e between 2 was proposed to equalize the gap S m between the magnetic poles 2 1, 2 2.

【0005】これによって、フリンジ場の電場分布と磁
場分布は図4Bに示すようになり、従来よりも縁端部に
おける電場と磁場の分布の一致度を向上させることが可
能となるのであるが、しかしながら、フリンジ場におい
て電場分布と磁場分布とを一致させることはできないも
のであった。
As a result, the electric field distribution and magnetic field distribution of the fringe field are as shown in FIG. 4B, and it is possible to improve the degree of coincidence between the electric field and magnetic field distributions at the edge portion as compared with the conventional case. However, it was impossible to match the electric field distribution and the magnetic field distribution in the fringe field.

【0006】その理由は、第1には、電極11 ,12
して銅等の非磁性金属を用い、磁極21 ,22 として鉄
等の強磁性体を用いた場合、電極11 ,12 は磁場の発
生に関して何等寄与しないが、電場の発生に関しては磁
極21 ,22 は導電体であるためにアースポテンシャル
を与えてしまうことによるためであり、第2には電極1
1 ,12 と、磁極21 ,22 の形状が異なるために、電
極11 ,12 がフリンジ場に及ぼす影響と、磁極21
2 がフリンジ場に及ぼす影響とが異なることによるた
めである。勿論、電極面と磁極面を同一形状にすること
は可能ではあるが、電極面及び磁極面は一義的には一様
な電場及び一様な磁場を発生させることを目的とするも
のであるので、フリンジ場の分布を同一にするために同
一形状にすることはできないものである。
The first reason is that when a non-magnetic metal such as copper is used as the electrodes 1 1 and 1 2 and a ferromagnetic material such as iron is used as the magnetic poles 2 1 and 2 2 , the electrodes 1 1 and Although 1 2 does not contribute to the generation of the magnetic field, it does not contribute to the generation of the electric field because the magnetic poles 2 1 and 2 2 are conductors and therefore give the earth potential.
Since the shapes of 1 and 1 2 and the magnetic poles 2 1 and 2 2 are different, the influence of the electrodes 1 1 and 1 2 on the fringe field and the magnetic poles 2 1 and 2 2
2 2 and the impact on the fringe field is because due to different things. Of course, it is possible to make the electrode surface and the magnetic pole surface the same shape, but since the electrode surface and the magnetic pole surface are primarily intended to generate a uniform electric field and a uniform magnetic field. , The fringe fields cannot be formed in the same shape in order to have the same distribution.

【0007】また、ウィーンフィルタには、フリンジ場
の電場分布と磁場分布を一致させることの他にも、非点
なし結像を行うことができること、及び二次収差が小さ
いことが要求される。非点なし結像を行うための条件と
しては、E2 /E1 −B2 /B1 =−1/4RC を満足
すればよいことが知られている。ここで、E2 は電場の
一次勾配、B2 は磁場の一次勾配、RC はサイクロトロ
ン半径であり、この条件を満足させるために、磁極を傾
斜させたり、あるいは4極子を構成することによって、
電場または磁場に一次の勾配を持たせることも提案され
ている。
In addition to matching the electric field distribution and the magnetic field distribution of the fringe field, the Wien filter is required to be able to perform astigmatic imaging and to have a small second-order aberration. The conditions for carrying out the stigmatic imaging, it is known that it satisfies the E 2 / E 1 -B 2 / B 1 = -1 / 4R C. Here, E 2 is the primary gradient of the electric field, B 2 is the primary gradient of the magnetic field, and R C is the cyclotron radius. To satisfy this condition, by tilting the magnetic poles or forming a quadrupole,
It has also been proposed to have a first-order gradient in the electric or magnetic field.

【0008】また一方、二次収差については、電場の二
次勾配E3 、磁場の二次勾配B3 に対して、E3 /E1
−B3 /B1 =0が成立するときに極小となることが知
られており、従って電極及び磁極の構造を、E3 =B3
=0またはE3 /E1 =B3/B1 となるようにすれば
二次収差を極小にすることができることが分かる。
On the other hand, regarding the second-order aberration, with respect to the second-order gradient E 3 of the electric field and the second-order gradient B 3 of the magnetic field, E 3 / E 1
It is known that when -B 3 / B 1 = 0 holds, it becomes a minimum, so that the structure of the electrode and the magnetic pole is E 3 = B 3
It can be seen that the secondary aberration can be minimized by setting = 0 or E 3 / E 1 = B 3 / B 1 .

【0009】以上の3つの条件の全てを満足するウィー
ンフィルタとしては8極子構造のものが提案されている
が、機械的な構造及び電気的な構造が非常に複雑であ
り、実現することは非常に難しいものである。
As a Wien filter satisfying all of the above three conditions, an octupole structure has been proposed, but its mechanical structure and electrical structure are very complicated and it is extremely difficult to realize it. It's very difficult.

【0010】本発明は、上記の課題を解決するものであ
って、フリンジ場における電場分布と磁場分布を一致さ
せることができるばかりでなく、非点なし結像を行うこ
とができ、且つ二次収差が小さいウィーンフィルタを提
供することを目的とするものである。
The present invention is to solve the above-mentioned problems, and not only can match the electric field distribution and the magnetic field distribution in the fringe field, but can also perform astigmatism-free imaging, and the secondary An object of the present invention is to provide a Wien filter having a small aberration.

【0011】[0011]

【課題を解決するための手段】上記の目的を達成するた
めに、本発明のウィーンフィルタは、円筒面の一部を構
成する形状を有する8極の強磁性導体を備えるウィーン
フィルタであって、8極のうちの4極は中心軸からみて
開き角が略30°となされて90°間隔で配置され、残
りの4極は中心軸からみて開き角が略60°となされて
前記中心軸からみて開き角が略30°の4極の中間の位
置に配置されてなり、前記8極のうち、中心軸からみて
x軸を中心とする120°の開き角内にある3極づつを
対向し合う磁極とし、それ以外のy軸上にある1極づつ
を対向し合う他の磁極として磁場を発生させると共に、
中心軸からみてy軸を中心とする120°の開き角内に
ある3極づつを対向し合う電極とし、それ以外のx軸上
にある1極づつを対向し合う他の電極として電場を発生
させることを特徴とする。
In order to achieve the above object, a Wien filter of the present invention is a Wien filter provided with an 8-pole ferromagnetic conductor having a shape forming a part of a cylindrical surface, The four poles out of the eight poles have an opening angle of about 30 ° as viewed from the central axis and are arranged at 90 ° intervals, and the remaining four poles have an opening angle of about 60 ° as viewed from the central axis and are separated from the central axis. It is arranged at an intermediate position of 4 poles with an opening angle of about 30 °, and among the 8 poles, 3 poles within an opening angle of 120 ° centered on the x axis when viewed from the central axis are opposed to each other. A magnetic field is generated as a matching magnetic pole, and one magnetic pole on the y-axis other than that is generated as another magnetic pole facing each other.
An electric field is generated by using three poles within an opening angle of 120 ° centered on the y axis as viewed from the central axis as electrodes facing each other and one pole on the other x axis as another electrode facing each other. It is characterized in that

【0012】[0012]

【作用及び発明の効果】本発明に係るウィーンフィルタ
は、その表面が円筒面の一部を構成する形状を有する8
極の強磁性導体を備える。その8極の中の4極は、中心
軸からみて開き角が略30°となされて90°間隔で配
置されており、残りの4極は、中心軸からみて開き角が
略60°となされて、前記中心軸からみて開き角が略3
0°の4極の中間の位置に配置されている。
The Wien filter according to the present invention has a surface whose surface forms a part of a cylindrical surface.
It has a polar ferromagnetic conductor. The four poles among the eight poles have an opening angle of approximately 30 ° when viewed from the central axis and are arranged at 90 ° intervals, and the remaining four poles have an opening angle of approximately 60 ° when viewed from the central axis. And the opening angle is about 3 when viewed from the central axis.
It is arranged at an intermediate position between the four poles at 0 °.

【0013】そして、磁場は、8極の中の、中心軸から
みてx軸を中心とする120°の開き角内にある3極づ
つを対向し合う磁極とし、それ以外のy軸上にある1極
づつを対向し合う他の磁極として発生させ、電場は、中
心軸からみてy軸を中心とする120°の開き角内にあ
る3極づつを対向し合う電極とし、それ以外のx軸上に
ある1極づつを対向し合う他の電極として発生させる。
In the magnetic field, three magnetic poles within the eight poles within the opening angle of 120 ° centered on the x axis when viewed from the central axis are used as the magnetic poles facing each other, and on the other y axes. One pole is generated as the other magnetic pole facing each other, and the electric field is an electrode having three poles facing each other within an opening angle of 120 ° centered on the y-axis from the central axis, and the other x-axis. Each of the upper electrodes is generated as another electrode facing each other.

【0014】つまり、8個の極は電極として機能すると
共に、磁極としても機能するのであり、このように電極
と磁極とを同一材料で、しかも同一形状とするので、フ
リンジ場の電場分布と磁場分布とを一致させることがで
き、更に非点なし結像のための条件及び二次収差を極小
にできる条件を満足させることができる。
That is, the eight poles function not only as the electrodes but also as the magnetic poles. Since the electrodes and the magnetic poles are made of the same material and have the same shape, the electric field distribution of the fringe field and the magnetic field are formed. The distributions can be matched, and the conditions for astigmatic imaging and the conditions for minimizing the secondary aberration can be satisfied.

【0015】[0015]

【実施例】実施例を説明するに先立って、まず本発明の
原理について説明する。さて、フリンジ場において、E
1 とB1 の分布を一致させるためには、電極と磁極を同
一材料を用いて同一形状にすればよいことは上述したと
ころから容易に理解することができる。そのためには、
電極を強磁性を有する導体で構成すればよいが、しかし
ながら、この場合には、磁極の間隙に電極としての強磁
性体が挿入されることになるため、磁場の一様性が著し
く損なわれ、二次収差を極小とするための条件であるB
3 =0という条件を満足させることが非常に難しいもの
となる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Before explaining the embodiments, the principle of the present invention will be explained first. Now, at the fringe field, E
It can be easily understood from the above description that the electrodes and the magnetic poles may be formed in the same shape by using the same material in order to match the distributions of 1 and B 1 . for that purpose,
The electrodes may be made of a conductor having ferromagnetism. However, in this case, since the ferromagnetic material as an electrode is inserted in the gap between the magnetic poles, the uniformity of the magnetic field is significantly impaired, B is the condition for minimizing the secondary aberration.
It becomes very difficult to satisfy the condition of 3 = 0.

【0016】ところで、図1に示すように、強磁性を有
する導体で円筒面の一部を構成する形状を有する4極を
構成し、電極11 ,12 にはそれぞれ(V1 +Vx ),
(V1 −Vx )を与え、電極13 ,14 には共にV2
与えた場合には、一様な電場、即ちE3 =0となる電場
を発生させることができ、且つ4極子成分E2 を与える
ことができることが知られている。なお、図1におい
て、x軸上で対向する電極11 ,12 の中心軸からの開
き角は共に 120°であり、y軸上で対向する電極13
4 の中心軸からの開き角は共に60°である。
By the way, as shown in FIG. 1, four poles having a shape which constitutes a part of a cylindrical surface are constituted by a conductor having ferromagnetism, and electrodes (1 1 and 1 2 ) are respectively (V 1 + V x ). ,
(V 1 -V x) giving, in case the electrode 1 3, 1 4 both gave V 2 can be generated a uniform electric field, i.e. electric field becomes E 3 = 0, and 4 It is known that the polar component E 2 can be provided. In FIG. 1, open angle from the electrode 1 1, 1 2 of the central axis facing on the x-axis are both 120 °, the electrode 1 3 opposed on the y-axis,
1 4 open angle from the central axis of the are both 60 °.

【0017】また、磁極についても同様であり、図2に
示すように、強磁性を有する導体で円筒面の一部を構成
する形状を有する4極を構成し、磁極21 ,22 には共
に−2NIB アンペアターンを与え、磁極23 ,24
はそれぞれ(NIB +NIy)アンペアターン、(NIB
−NIy )アンペアターンを与えた場合には、一様な
磁場、即ちB3 =0となる磁場を発生させることがで
き、且つ4極子成分B2を与えることができることが知
られている。なお、図2において、x軸上で対向する磁
極21 ,22 の中心軸からの開き角は共に60°であり、
y軸上で対向する磁極23 ,24 の中心軸からの開き角
は共に 120°である。
The same applies to the magnetic poles. As shown in FIG. 2, four poles having a shape that constitutes a part of a cylindrical surface are formed by a conductor having ferromagnetism, and the magnetic poles 2 1 and 2 2 are Both give -2NI B ampere-turns, and the magnetic poles 2 3 and 2 4 have (NI B + NI y ) ampere-turns, (NI B
It is known that when a −NI y ) ampere turn is applied, a uniform magnetic field, that is, a magnetic field with B 3 = 0 can be generated and a quadrupole component B 2 can be applied. In FIG. 2, the opening angles of the magnetic poles 2 1 and 2 2 facing each other on the x-axis from the central axis are both 60 °,
The opening angles of the magnetic poles 2 3 and 2 4 facing each other on the y-axis from the central axis are both 120 °.

【0018】従って、図1に示す電極構造と、図2に示
す磁極構造とを同一面内に形成すれば、上記の3条件を
備えたウィーンフィルタ、即ちフリンジ場における電場
分布と磁場分布を一致させることができると共に、非点
なし結像を行うことができ、且つ二次収差が小さいウィ
ーンフィルタを構成できることが分かる。
Therefore, if the electrode structure shown in FIG. 1 and the magnetic pole structure shown in FIG. 2 are formed in the same plane, the Wien filter having the above-mentioned three conditions, that is, the electric field distribution and the magnetic field distribution in the fringe field match. It can be seen that the Wien filter can be configured and astigmatism-free imaging can be performed and the secondary aberration is small.

【0019】以下、図3を参照して本発明の実施例につ
いて説明する。図3において、8つの極P1 ,P2 ,P
3 ,P4 ,P5 ,P6 ,P7 ,P8 は、鉄、ニッケル・
パーマロイ等の強磁性を有する導体で構成されている。
極P2,P4 ,P6 及びP8 の中心軸からの開き角は30
°であり、中心軸の回りに90°の間隔で配置されてい
る。また、極P1 ,P3 ,P5 及びP7 の中心軸からの
開き角は60°であり、極P2 ,P4 ,P6 ,P8 の中間
の位置に中心軸の回りに90°の間隔で配置されている。
そして、極P1 と極P5 は一体に形成されているので同
電位であり、これらの極はそれぞれ一つの電極として機
能する。極P2 ,P3 ,P4 は一体に形成されているの
で同電位であり、従ってこれらの3極は全体として一つ
の電極として機能する。同様に、極P6 ,P7 ,P8
一体に形成されているので、それぞれ同電位であり、こ
れらの3極は全体として一つの電極として機能する。
An embodiment of the present invention will be described below with reference to FIG. In FIG. 3, eight poles P 1 , P 2 , P
3 , P 4 , P 5 , P 6 , P 7 , P 8 are iron, nickel
It is composed of a conductor having ferromagnetism such as permalloy.
The opening angle of the poles P 2 , P 4 , P 6 and P 8 from the central axis is 30.
And are arranged at intervals of 90 ° around the central axis. Further, the opening angle of the poles P 1 , P 3 , P 5 and P 7 from the central axis is 60 °, and it is 90 degrees around the central axis at a position intermediate between the poles P 2 , P 4 , P 6 and P 8. They are arranged at intervals of °.
Since the pole P 1 and the pole P 5 are integrally formed, they have the same potential, and these poles each function as one electrode. Since the poles P 2 , P 3 and P 4 are integrally formed, they have the same potential, and therefore these three poles function as one electrode as a whole. Similarly, since the poles P 6 , P 7 , and P 8 are also integrally formed, they have the same potential, and these three poles function as one electrode as a whole.

【0020】従って、極P1 ,P5 にはV2 を与え、極
2 ,P3 ,P4 には(V1 +Vx)を与え、極P6
7 ,P8 には(V1 −Vx )を与れば、図1に示す電
極構成と同様になるので、一様で且つ4極子成分E2
有する電場を発生させることができる。
Therefore, the poles P 1 and P 5 are given V 2 , the poles P 2 , P 3 and P 4 are given (V 1 + V x ), and the poles P 6 and P 5 are given.
If (V 1 −V x ) is applied to P 7 and P 8 , the electrode configuration is the same as that shown in FIG. 1, so that a uniform electric field having a quadrupole component E 2 can be generated.

【0021】また、図3において、コイルC1 は、極P
1 ,P2 及びP8 を一纏めに巻回している。従って、極
1 ,P2 ,P8 は全体として一つの磁極として機能す
る。同様にコイルC3 は、極P4 ,P5 及びP6 を一纏
めに巻回しているので、これらの3極は全体として一つ
の磁極として機能する。コイルC2 及びC4 は、それぞ
れ、極P3 及びP7 のみに巻回されているので、これら
の極はそれぞれ一つの磁極として機能する。
Further, in FIG. 3, the coil C 1 has a pole P.
1 , P 2 and P 8 are wound together. Therefore, the poles P 1 , P 2 and P 8 function as one magnetic pole as a whole. Similarly, the coil C 3 has the poles P 4 , P 5, and P 6 wound together, so that these three poles collectively function as one magnetic pole. The coils C 2 and C 4 are wound around only the poles P 3 and P 7 , respectively, so that these poles each function as one magnetic pole.

【0022】従って、極P3 で構成される磁極及び極P
7 で構成される磁極には共に−2NIB アンペアターン
を与え、P1 ,P2 ,P8 の3極で構成される磁極には
(NIB +NIy )アンペアターンを与え、P4 ,P
5 ,P6 の3極で構成される磁極には(NIB −NI
y )アンペアターンを与えれば、図2に示す磁極構成と
同様になるので、一様で且つ4極子成分B2 を有する磁
場を発生させることができる。そして図3に示す構成で
は磁極と電極が中心軸を囲む面において完全に対称とな
っているので、フリンジ場における電場分布と磁場分布
は一致する。
Therefore, the magnetic pole composed of the pole P 3 and the pole P
-2NI B ampere turns are given to both magnetic poles formed by 7 , and (NI B + NI y ) ampere turns are given to the magnetic poles formed by 3 poles P 1 , P 2 , and P 8 , and P 4 , P
(NI B -NI) is applied to the magnetic pole composed of 3 poles of 5 and P 6.
y ) By giving an ampere-turn, the magnetic pole structure becomes similar to that shown in FIG. 2, so that a uniform magnetic field having a quadrupole component B 2 can be generated. In the configuration shown in FIG. 3, the magnetic pole and the electrode are completely symmetrical in the plane surrounding the central axis, so that the electric field distribution and the magnetic field distribution in the fringe field match.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明で用いる電極の構成を説明するための
図である。
FIG. 1 is a diagram for explaining a configuration of an electrode used in the present invention.

【図2】 本発明で用いる磁極の構成を説明するための
図である。
FIG. 2 is a diagram for explaining the configuration of magnetic poles used in the present invention.

【図3】 本発明に係るウィーンフィルタの一実施例の
構成を示す図である。
FIG. 3 is a diagram showing a configuration of an embodiment of a Wien filter according to the present invention.

【図4】 従来のウィーンフィルタの構成例を示す図で
ある。
FIG. 4 is a diagram showing a configuration example of a conventional Wien filter.

【符号の説明】[Explanation of symbols]

1…電極、2…磁極、P…極、C…コイル。 1 ... Electrode, 2 ... Magnetic pole, P ... Pole, C ... Coil.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 円筒面の一部を構成する形状を有する8
極の強磁性導体を備えるウィーンフィルタであって、8
極のうちの4極は中心軸からみて開き角が略30°とな
されて90°間隔で配置され、残りの4極は中心軸から
みて開き角が略60°となされて前記中心軸からみて開
き角が略30°の4極の中間の位置に配置されてなり、
前記8極のうち、中心軸からみてx軸を中心とする12
0°の開き角内にある3極づつを対向し合う磁極とし、
それ以外のy軸上にある1極づつを対向し合う他の磁極
として磁場を発生させると共に、中心軸からみてy軸を
中心とする120°の開き角内にある3極づつを対向し
合う電極とし、それ以外のx軸上にある1極づつを対向
し合う他の電極として電場を発生させることを特徴とす
るウィーンフィルタ。
1. A shape having a shape forming a part of a cylindrical surface.
A Wien filter having a polar ferromagnetic conductor, comprising:
Four of the poles have an opening angle of about 30 ° when viewed from the central axis and are arranged at 90 ° intervals, and the other four poles have an opening angle of about 60 ° when viewed from the central axis and viewed from the central axis. It is placed in the middle of the four poles with an opening angle of about 30 °,
Of the eight poles, centered on the x-axis when viewed from the center axis 12
The three poles within the opening angle of 0 ° are the opposite magnetic poles,
A magnetic field is generated by using the other poles on the y-axis as the other magnetic poles that face each other, and the three poles that face each other within an opening angle of 120 ° centered on the y-axis from the central axis face each other. A Wien filter, characterized in that an electric field is generated by using electrodes as electrodes and other electrodes on the x-axis that are opposite each other.
JP4068540A 1992-03-26 1992-03-26 Vienna filter Expired - Fee Related JP3040245B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4068540A JP3040245B2 (en) 1992-03-26 1992-03-26 Vienna filter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4068540A JP3040245B2 (en) 1992-03-26 1992-03-26 Vienna filter

Publications (2)

Publication Number Publication Date
JPH05275058A true JPH05275058A (en) 1993-10-22
JP3040245B2 JP3040245B2 (en) 2000-05-15

Family

ID=13376683

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4068540A Expired - Fee Related JP3040245B2 (en) 1992-03-26 1992-03-26 Vienna filter

Country Status (1)

Country Link
JP (1) JP3040245B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002190273A (en) * 2000-12-22 2002-07-05 Anelva Corp Electromagnetic field superimposed sector type spectroscope
KR100521271B1 (en) * 2001-11-08 2005-10-14 슐럼버거 테크놀로지즈, 아이엔씨. Wien filter for use in a scanning electron microscope or the like
US20160329189A1 (en) * 2015-05-08 2016-11-10 Kla-Tencor Corporation Method and System for Aberration Correction in an Electron Beam System

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002190273A (en) * 2000-12-22 2002-07-05 Anelva Corp Electromagnetic field superimposed sector type spectroscope
KR100521271B1 (en) * 2001-11-08 2005-10-14 슐럼버거 테크놀로지즈, 아이엔씨. Wien filter for use in a scanning electron microscope or the like
US20160329189A1 (en) * 2015-05-08 2016-11-10 Kla-Tencor Corporation Method and System for Aberration Correction in an Electron Beam System
CN107533943A (en) * 2015-05-08 2018-01-02 科磊股份有限公司 Method and system for aberration correction in electron beam system
US10224177B2 (en) * 2015-05-08 2019-03-05 Kla-Tencor Corporation Method and system for aberration correction in an electron beam system
CN107533943B (en) * 2015-05-08 2019-12-10 科磊股份有限公司 Method and system for aberration correction in electron beam systems

Also Published As

Publication number Publication date
JP3040245B2 (en) 2000-05-15

Similar Documents

Publication Publication Date Title
US8436317B1 (en) Wien filter
JP4256902B2 (en) Monochromator for charged particles
US5448063A (en) Energy filter with correction of a second-order chromatic aberration
US9349565B2 (en) Multipole lens, aberration corrector, and electron microscope
JP4242101B2 (en) Vienna filter
JP5826529B2 (en) Spin rotation device
JPH11233062A (en) Wien filter and direct mapping type reflection electron microscope
US8421029B1 (en) Wien filter with reduced field leakage
JP3040245B2 (en) Vienna filter
JP4023556B2 (en) Electro-optic lens device having a gap-shaped aperture cross section
JP2007149495A (en) Apparatus of correcting aberration and electron microscope
Tsuno et al. Third‐order aberration theory of Wien filters for monochromators and aberration correctors
Tsuno Simulation of a Wien filter as beam separator in a low energy electron microscope
JP2004538632A (en) Arrangement of slit and lens of particle beam
JP2006147520A (en) Aberration correcting device and electron microscope
Martı́nez et al. Design of Wien filters with high resolution
JP2856518B2 (en) Ex-B type energy filter
JPH05275057A (en) Wien filter
JPH06119906A (en) Wien filter
Rose Optimization of imaging energy filters for high-resolution analytical electron microscopy
JP3958149B2 (en) Magnetic field type energy filter
Tsuno et al. Application of Wien filters to electrons
JPH0575280B2 (en)
Cherepin Spherotron—a new concept in mass spectrometry
JPH0554853A (en) Wiener filter

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20000208

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100303

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110303

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110303

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120303

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees