JPH0527382B2 - - Google Patents

Info

Publication number
JPH0527382B2
JPH0527382B2 JP7911585A JP7911585A JPH0527382B2 JP H0527382 B2 JPH0527382 B2 JP H0527382B2 JP 7911585 A JP7911585 A JP 7911585A JP 7911585 A JP7911585 A JP 7911585A JP H0527382 B2 JPH0527382 B2 JP H0527382B2
Authority
JP
Japan
Prior art keywords
phenylethanol
halo
microorganisms
genus
candeida
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP7911585A
Other languages
Japanese (ja)
Other versions
JPS61239893A (en
Inventor
Hidetoshi Kutsuki
Natsuki Mori
Junzo Hasegawa
Kyoshi Watanabe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanegafuchi Chemical Industry Co Ltd
Original Assignee
Kanegafuchi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanegafuchi Chemical Industry Co Ltd filed Critical Kanegafuchi Chemical Industry Co Ltd
Priority to JP7911585A priority Critical patent/JPS61239893A/en
Priority to US06/849,985 priority patent/US4857468A/en
Priority to DE8686104993T priority patent/DE3686502T2/en
Priority to EP86104993A priority patent/EP0198440B1/en
Publication of JPS61239893A publication Critical patent/JPS61239893A/en
Publication of JPH0527382B2 publication Critical patent/JPH0527382B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は、一般式〔〕 〔式中、Xはハロゲン原子を表わす〕 で示されるα−ハロアセトフエノンを(S)配置を有
する一般式〔〕 〔式中、Xは〔〕と同じ〕 で示される(S)−2−ハロ−1−フエニルエタノー
ルに不斉的に還元する能力を有するキヤンデイダ
属、デバリオマイセス属、サツカロマイセス属、
サツカロマイコピシス属、トルロピシス属、トリ
コスポロン属、スポリデイオボルス属、デイポダ
スクス属、ゲオトリカム属に属する微生物群から
選ばれた微生物に接触せしめ、生成する一般式
〔〕に示される(S)−2−ハロ−1−フエニルエ
タノールを採取することを特徴とする(S)−2−ハ
ロ−1−フエニルエタノールの製造法に関するも
のである。 光学活性な(S)−2−ハロ−1−フエニルエタノ
ールは2種の官能基を有し、また反応性に富む(S)
−スチレンオキサイドにも容易に導けるところか
ら光学活性を必要とする医薬、農薬、動物薬、香
料等の合成原料として極めて有用性のある物質で
ある。 〔従来の技術と問題点〕 光学活性の2−ハロ−1−フエニルエタノール
の製法に関して、α−ハロアセトフエノンをサツ
カロマイセス・セルビシエー(Saccharomyces
cerevisiae)〔ジヤーナル・オブ・ケミカル・ソ
サイアテイー・ケミカル・コミニユケイシヨン
(J.Chem.Soc.Chem.Comm.)、400頁、197年〕や
クリプトコツカス・マセランス
(Cryptococcusmacerans)〔ジヤーナル・オブ・
オルガニツク・ケミストリー(J.Org.Chem.)、
45巻、3352頁、1980年〕による不斉還元法が示さ
れているが、これらはいずれも(R)体であり、本発
明の目的とする(S)体とは立体位置が異つている。 〔問題点を解決するための手段〕 本発明者らはα−ハロアセトフエノンを不斉還
元し(S)−2−ハロ−1−フエニルエタノールを生
産する微生物を検索した結果、種々の微生物が従
来の知見とは逆の立体配置を有する(S)−2−ハロ
−1−フエニルエタノールへと変換することを見
い出し、本発明を完成した。 本発明に用いるα−ハロアセトフエノンを不斉
還元し(S)−2−ハロ−1−フエニルエタノールに
変換する微生物は以下説明する方法によつて見い
出すことができる。 例えば、グルコース40g、イーストエキス3
g、(NH42HPO413g、KH2PO47g、MgSO4
7H2O0.8g、ZnSo4・7H2O60mg、FeSO4
7H2O90mg、CuSO4.5H2O5mg、MnSO4・4H2O10
mg、NaCl0.1g(1当り)の組成からなるA倍
地300mlを2容坂口フラスコに入れ殺菌後、微
生物を植え、30℃で2日間振とう培養する。その
後、菌体を遠心分離により集めα−クロロアセト
フエノン0.5%、シユクロース5%含有する水75
mlに懸濁し、2坂口フラスコ中で2ないし3日
間30℃で振とうする。その後等量の酢酸エチルを
加え抽出を行ない生成する2−クロロ−1−フエ
ニルエタノールをガスクロマトグラフイー(カラ
ム:シリコンOV−17、φ0.3×200cm、カラム温
度135℃、N2ガス圧1.2Kg/cm2)で分析する。一
方、2−クロロ−1−フエニルエタノールの光学
純度は抽出オイルを蒸留精製後、高速液体クロマ
トグラフイー(カラム:日本分光(株)製、
Chiralcel−OC、溶出溶剤ヘキサン−エーテル
(30:1)、流速2.2ml/min、検出220nm)によ
り(R)体が29分、(S)体が33分の保持時間で分離し、
光学純度を決定することができる。またα−クロ
ロアセトフエノンを(S)−2−クロロ−1−フエニ
ルエタノールに変換しうる微生物はα−ブロムア
セトフエノンも同様に(S)−2−ブロム−1−フエ
ニルエタノールに変換しうる。 本発明に使用しうる微生物としては、α−ハロ
アセトフエノンを還元し(S)−2−ハロ−1−フエ
ニルエタノールに変換する能力を有する微生物で
あれば、いづれも使用可能であるが、例えばキヤ
ンデイダ・フミコーラ(Candida humicola)
CBS 2774、キヤンデイダ・ルゴーザ(Candida
rugosa)IFO 0591、デバリオマイセス・ハンセ
ンイ(Debaryomyces hansenii)IFO 0855、サ
ツカロマイセス・ルキシー(Saccharomyces
rouxii)IFO 0493、サツカロマイコピシス・リ
ポリテイカ(Saccharomycopsis lypolytica)
IFO 1209、トルロピシス・グロツペンギイエセ
エリ(Torulopsis gropengiesseri)IFO 0659、
トリコスポロン・フアーメンタンス
(Trichosporon fermentans)IFO 1199、スポリ
デイオボルス・ジヨンソニイ(Sporidiobolus
johnsonii)IFO 6903、デイポダスクス・レージ
イー(Dipodascus reessii)CBS 179.60、ゲオ
トリカム・キヤンデイダム(Geotrichum
candidum)CBS187.67などがある。 これらの微生物の培養には、通常これらの微生
物が資化しうる栄養源であれば何んでも使用しう
る。例えばグルコース、シユクロース等の炭水化
物、エタノール、グリセロール等のアルコール;
パラフイン等の炭化水素、酢酸、プロピオン酸な
どの有機酸;大豆油等の炭素源またはこれらの混
合物、酵母エキス、ペプトン、肉エキス、コーン
ステープリカー、硫安、アンモニウム等の含窒素
無機有機栄養源;リン酸塩、マグネシウム、鉄、
マンガン、カリ等の無機栄養源;およびビオチ
ン、チアミン等のビタミン類を適宜配合した通常
の培地が用いられる。培養方法としては栄養培地
のPHを4.0〜9.5の範囲で好気的に20〜40℃の範囲
で1〜5日間培養する。 還元方法の方法としては培養液そのままを用い
る方法、遠心分離等により菌体を分離し、これを
リン酸緩衝液あるいは水等に再懸濁したものにα
−ハロアセトフエノンを添加し、反応させる方法
等がある。この反応の際、グルコース、シユクロ
ース等の炭素源をエネルギー源として添加しても
良い。また菌体は生菌体のままでもよいし、アセ
トン処理、凍結乾燥等の処理をほどこしたもので
も良い。又これらの菌体を担体に固定化して用い
ることもできる。 α−ハロアセトフエノンの添加は結晶のまま、
あるいは反応に影響を与えないような有機溶剤に
溶解して反応始めから一括に、あるいは分割添加
してもよい。反応はPH5〜9の範囲で10〜60℃の
温度で3〜120時間撹拌下で行なう。 反応によつて生成した(S)−2−ハロ−1−フエ
ニルエタノールの採取は、反応液から直接、ある
いは菌体分離後、酢酸エチル、ジクロルメタン等
の溶剤で抽出し、脱水後、蒸留すれば高純度の(S)
−2−ハロ−1−フエニルエタノールが容易に得
られる。 〔実施例〕 以下本発明を具体的に実施例にて説明するが、
本発明はこれら実施例のみに限定されるものはな
い。 実施例 1 前記のA培地300mlを2容坂口フラスコに入
れ殺菌後、表1に示す微生物をそれぞれ植菌し
た。そして30℃で2日間好気的に振とう培養を行
つた。この培養液から菌体を遠心分離によつて集
め、α−クロロアセトフエノン0.5%、5%シユ
クロース含有0.1Mリン酸緩衝液(PH7.0)75mlに
懸濁し、2坂口フラスコに入れて30℃、48時間
振とう反応させた。反応後、反応液から等量の酢
酸エチル抽出(2回)で(S)−2−クロロ−1−フ
エニルエタノールを抽出し、酢酸エチル層をガス
クロマトグラフイーで分析し、反応率を調べた。
次に酢酸エチルを無水芒硝で脱水後、脱溶剤を行
ない、油状物を得た。これをミニ蒸留により精製
し、(S)−2−クロロ−1−フエニルエタノールを
得た。これをメタノールに溶解し高速液体クロマ
トグラフイーにて光学純度を測定した。その結果
を表1に示す。
[Industrial Application Field] The present invention relates to the general formula [] [In the formula, X represents a halogen atom] A general formula having α-haloacetophenone in the (S) configuration [] [In the formula, X is the same as []] Candeida genus, Debaryomyces genus, Satucharomyces genus, which has the ability to asymmetrically reduce to (S)-2-halo-1-phenylethanol,
(S)-2 produced by the general formula [ ] when brought into contact with microorganisms selected from the microorganisms belonging to the genera Satucharomycopisis, Torulopissis, Trichosporon, Sporidiobolus, Deipoduscus, and Geotrichum. This invention relates to a method for producing (S)-2-halo-1-phenylethanol, which comprises collecting halo-1-phenylethanol. Optically active (S)-2-halo-1-phenylethanol has two types of functional groups and is highly reactive (S)
- Since it can be easily derived from styrene oxide, it is an extremely useful substance as a synthetic raw material for pharmaceuticals, agricultural chemicals, animal drugs, fragrances, etc. that require optical activity. [Prior art and problems] Regarding the production method of optically active 2-halo-1-phenylethanol, α-haloacetophenone was extracted from Saccharomyces cerevisiae.
cerevisiae) [J.Chem.Soc.Chem.Comm., p. 400, 197] and Cryptococcus macerans [J.Chem.Soc.Chem.Comm., p. 400, 197].
Organ Chemistry (J.Org.Chem.)
45, p. 3352, 1980], but these are all (R) forms, which differ in steric position from the (S) form that is the object of the present invention. . [Means for solving the problem] The present inventors searched for microorganisms that asymmetrically reduce α-haloacetophenone and produce (S)-2-halo-1-phenylethanol, and as a result, various microorganisms were discovered. The present invention was completed by discovering that microorganisms convert into (S)-2-halo-1-phenylethanol, which has a steric configuration opposite to the conventional knowledge. Microorganisms that asymmetrically reduce α-haloacetophenone to convert it into (S)-2-halo-1-phenylethanol used in the present invention can be found by the method described below. For example, 40g glucose, 3g yeast extract
g, (NH 4 ) 2 HPO 4 13 g, KH 2 PO 4 7 g, MgSO 4 .
7H2O0.8g , ZnSo47H2O60mg , FeSO4
7H2O90mg , CuSO4.5H2O5mg , MnSO4 4H2O10
After sterilization, 300 ml of A medium having a composition of 0.1 g NaCl (mg) and 0.1 g (per 1 ml) of NaCl was placed in a 2-volume Sakaguchi flask, and microorganisms were inoculated and cultured with shaking at 30°C for 2 days. Thereafter, the bacterial cells were collected by centrifugation and water containing 0.5% α-chloroacetophenone and 5% sucrose was added.
ml and shaken at 30°C for 2 to 3 days in a two-sakaguchi flask. After that, an equal amount of ethyl acetate was added to perform extraction, and the resulting 2-chloro-1-phenylethanol was subjected to gas chromatography (column: silicon OV-17, φ0.3 x 200 cm, column temperature 135°C, N2 gas pressure 1.2 Kg/cm 2 ). On the other hand, the optical purity of 2-chloro-1-phenylethanol was determined by distillation and purification of the extracted oil using high performance liquid chromatography (column: manufactured by JASCO Corporation).
Using Chiralcel-OC, elution solvent hexane-ether (30:1), flow rate 2.2 ml/min, detection 220 nm), the (R) form was separated with a retention time of 29 minutes and the (S) form with a retention time of 33 minutes.
Optical purity can be determined. In addition, microorganisms that can convert α-chloroacetophenone into (S)-2-chloro-1-phenylethanol can also convert α-bromoacetophenone into (S)-2-brom-1-phenylethanol. Can be converted. Any microorganism that can be used in the present invention can be used as long as it has the ability to reduce α-haloacetophenone and convert it into (S)-2-halo-1-phenylethanol. , for example Candida humicola
CBS 2774, Candida Rugoza
rugosa) IFO 0591, Debaryomyces hansenii (Debaryomyces hansenii) IFO 0855, Saccharomyces luxii (Saccharomyces
rouxii) IFO 0493, Saccharomycopsis lypolytica
IFO 1209, Torulopsis gropengiesseri IFO 0659,
Trichosporon fermentans IFO 1199, Sporidiobolus zijonsonii
johnsonii) IFO 6903, Dipodascus reessii CBS 179.60, Geotrichum
candidum) CBS187.67, etc. For culturing these microorganisms, any nutrient source that can be assimilated by these microorganisms can be used. For example, carbohydrates such as glucose and sucrose, alcohols such as ethanol and glycerol;
Hydrocarbons such as paraffin, organic acids such as acetic acid and propionic acid; carbon sources such as soybean oil or mixtures thereof; nitrogen-containing inorganic organic nutrient sources such as yeast extract, peptone, meat extract, corn staple liquor, ammonium sulfate, and ammonium; phosphate, magnesium, iron,
A conventional medium containing an appropriate amount of inorganic nutrients such as manganese and potassium; and vitamins such as biotin and thiamine is used. As a culture method, the nutrient medium is cultured aerobically at a pH of 4.0 to 9.5 at a temperature of 20 to 40°C for 1 to 5 days. Reduction methods include using the culture solution as it is, separating the bacterial cells by centrifugation, etc., and resuspending them in phosphate buffer or water.
- There are methods such as adding haloacetophenone and causing a reaction. During this reaction, a carbon source such as glucose or sucrose may be added as an energy source. Furthermore, the bacterial cells may be kept as viable cells, or may be treated with acetone, freeze-drying, or the like. Furthermore, these bacterial cells can also be used by immobilizing them on a carrier. Addition of α-haloacetophenone remains crystalline;
Alternatively, it may be dissolved in an organic solvent that does not affect the reaction and added all at once or in portions from the beginning of the reaction. The reaction is carried out at a pH of 5 to 9 and at a temperature of 10 to 60°C with stirring for 3 to 120 hours. (S)-2-halo-1-phenylethanol produced by the reaction can be collected directly from the reaction solution, or after bacterial cell isolation, extraction with a solvent such as ethyl acetate or dichloromethane, dehydration, and distillation. High purity (S)
-2-Halo-1-phenylethanol is easily obtained. [Example] The present invention will be specifically explained below with reference to Examples.
The present invention is not limited only to these examples. Example 1 After sterilizing 300 ml of the above medium A in a 2-volume Sakaguchi flask, each microorganism shown in Table 1 was inoculated. Then, aerobic shaking culture was performed at 30°C for 2 days. Bacterial cells were collected from this culture solution by centrifugation, suspended in 75 ml of 0.1M phosphate buffer (PH7.0) containing 0.5% α-chloroacetophenone and 5% sucrose, and placed in a 2-sakaguchi flask for 30 minutes. The reaction was allowed to shake for 48 hours at ℃. After the reaction, (S)-2-chloro-1-phenylethanol was extracted from the reaction solution with an equal amount of ethyl acetate (twice), and the ethyl acetate layer was analyzed by gas chromatography to check the reaction rate. .
Next, the ethyl acetate was dehydrated with anhydrous sodium sulfate, and the solvent was removed to obtain an oily substance. This was purified by mini-distillation to obtain (S)-2-chloro-1-phenylethanol. This was dissolved in methanol and the optical purity was measured using high performance liquid chromatography. The results are shown in Table 1.

【表】【table】

【表】 実施例 2 実施例1と同様に表2に示す微生物を培養し、
α−クロロアセトフエノンの代りにα−ブロムア
セトフエノンを用い、以下同様に反応させ分析し
た。その結果を表2に示す。
[Table] Example 2 The microorganisms shown in Table 2 were cultured in the same manner as in Example 1,
Using α-bromoacetophenone instead of α-chloroacetophenone, the reaction and analysis were carried out in the same manner. The results are shown in Table 2.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、実施例に示す通り、光学活性
(S)−2−ハロ−1−フエニルエタノールを効率よ
く製造することができる。
According to the present invention, as shown in Examples, optically active
(S)-2-halo-1-phenylethanol can be efficiently produced.

Claims (1)

【特許請求の範囲】 1 一般式〔〕 〔式中、Xはハロゲン原子を表わす〕 で示されるα−ハロアセトフエノンを(S)配置を有
する一般式〔〕 〔式中、Xは〔〕と同じ〕 で示される(S)−2−ハロ−1−フエニルエタノー
ルに不斉的に還元する能力を有するキヤンデイダ
属、デバリオマイセス属、サツカロマイセス属、
サツカロマイコピシス属、トルロピシス属、トリ
コスポロン属、スポリデイオボルス属、デイポダ
スクス属、ゲオトリカム属に属する微生物群から
選ばれた微生物に接触せしめ、生成する一般式
〔〕に示される(S)−2−ハロ−1−フエニルエ
タノールを採取することを特徴とする(S)−2−ハ
ロ−1−フエニルエタノールの製造法。 2 一般式〔〕、〔〕において、ハロゲン原子
がClまたはBrである特許請求の範囲第1項記載
の製造法。 3 微生物がキヤンデイダ・フミコーラ、キヤン
デイダ・ルゴーザ、デバリオマイセス・ハンセン
イ、サツカロマイセス・ルキシー、サツカロマイ
コピシス・リポリテイカ、トルロピシス・グロツ
ペンギイエゼエリ、トリコスポロン・フアーメン
タンス、スポリデイオボルス・ジヨンソニイ、デ
イポダスクス・レージイーイ、ゲオトリカム・キ
ヤンデイダムである特許請求の範囲第1項または
第2項記載の製造法。
[Claims] 1. General formula [] [In the formula, X represents a halogen atom] A general formula having α-haloacetophenone in the (S) configuration [] [In the formula, X is the same as []] Candeida genus, Debaryomyces genus, Satucharomyces genus, which has the ability to asymmetrically reduce to (S)-2-halo-1-phenylethanol,
(S)-2 produced by the general formula [ ] when brought into contact with microorganisms selected from the microorganisms belonging to the genera Satucharomycopisis, Torulopissis, Trichosporon, Sporidiobolus, Deipoduscus, and Geotrichum. - A method for producing (S)-2-halo-1-phenylethanol, which comprises collecting halo-1-phenylethanol. 2. The production method according to claim 1, wherein the halogen atom in the general formulas [] and [] is Cl or Br. 3 The microorganisms include Candeida humicola, Candeida rugosa, Debaryomyces hansenii, Satucharomyces luxii, Satucharomycopisis lipolyteica, Torulopis glotspengii eseeri, Trichosporon famentans, Sporideiobolus jionsonii, Deipoduscus spp. 3. The manufacturing method according to claim 1 or 2, which is Geotrichum candidum.
JP7911585A 1985-04-13 1985-04-13 Production of optically active(s)-2-halo-1-phenyl ethanol Granted JPS61239893A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP7911585A JPS61239893A (en) 1985-04-13 1985-04-13 Production of optically active(s)-2-halo-1-phenyl ethanol
US06/849,985 US4857468A (en) 1985-04-13 1986-04-10 Process for preparing optically active 2-halo-1-phenyl ethanol
DE8686104993T DE3686502T2 (en) 1985-04-13 1986-04-11 METHOD FOR PRODUCING OPTICALLY ACTIVE 2-HALO-PHENYL ETHANOL.
EP86104993A EP0198440B1 (en) 1985-04-13 1986-04-11 Process for preparing optically active 2-halo-1-phenyl ethanol

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7911585A JPS61239893A (en) 1985-04-13 1985-04-13 Production of optically active(s)-2-halo-1-phenyl ethanol

Publications (2)

Publication Number Publication Date
JPS61239893A JPS61239893A (en) 1986-10-25
JPH0527382B2 true JPH0527382B2 (en) 1993-04-21

Family

ID=13680912

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7911585A Granted JPS61239893A (en) 1985-04-13 1985-04-13 Production of optically active(s)-2-halo-1-phenyl ethanol

Country Status (1)

Country Link
JP (1) JPS61239893A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5266485A (en) * 1990-07-24 1993-11-30 Kanegafuchi Kagaku Kogyo Kabushiki Kaisha Method of manufacturing optically active (-)-2-halo-1-(substituted phenyl) ethanol by ketone reduction

Also Published As

Publication number Publication date
JPS61239893A (en) 1986-10-25

Similar Documents

Publication Publication Date Title
US4857468A (en) Process for preparing optically active 2-halo-1-phenyl ethanol
US4981796A (en) Manufacturing method of optically-active 1,2-diols
US4070244A (en) Method for producing ubiquinone-10
JPH0527382B2 (en)
CA1239361A (en) METHOD OF PREPARING D(-)-.beta.-HYDROXYISOBUTYRIC ACID BY FERMENTATION
US3956337A (en) Process for the preparation of D-gluconic-δ-lactam
JPH0528111B2 (en)
JPH0468915B2 (en)
JPH0669B2 (en) Process for producing optically active (R) -4-phenyl-2-butanol
JP3067817B2 (en) Method for producing optically active (-)-2-halo-1- (substituted phenyl) ethanol
JPH0528110B2 (en)
US4981794A (en) Method of preparing D(-)-β-hydroxyisobutyric acid by fermentation
JP2784578B2 (en) Method for producing optically active 1,2-diols
NL8006026A (en) PROCESS FOR PREPARING D (-) - BETA-HYDROXYISO-BUTIC ACID.
JP3651924B2 (en) Process for producing (R) -4- (2-halo-1-hydroxyethyl) -2-trifluoromethylthiazole
JPS5923794B2 (en) Manufacturing method of dihydroxyacetone
JP4475407B2 (en) Process for producing optically active 3-chloro-2-methyl-1,2-propanediol using microorganisms
JP3705046B2 (en) Preparation of optically active 4-halogeno-1,3-butanediol and its derivatives by microorganisms
JP3030916B2 (en) Method for producing β-glucooligosaccharide
JPH0616714B2 (en) Process for producing optically active (S) -4-phenyl-2-butanol
JPH0569512B2 (en)
JPH0146112B2 (en)
JPH0532035B2 (en)
JP2624296B2 (en) Method for producing γ-halo-β-hydroxybutyrate
JPH0379996B2 (en)