JPH0527358B2 - - Google Patents

Info

Publication number
JPH0527358B2
JPH0527358B2 JP58068302A JP6830283A JPH0527358B2 JP H0527358 B2 JPH0527358 B2 JP H0527358B2 JP 58068302 A JP58068302 A JP 58068302A JP 6830283 A JP6830283 A JP 6830283A JP H0527358 B2 JPH0527358 B2 JP H0527358B2
Authority
JP
Japan
Prior art keywords
rotor
current
sensor
excitation phase
driving
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58068302A
Other languages
Japanese (ja)
Other versions
JPS59194692A (en
Inventor
Jiro Tanuma
Takao Uchida
Kuniharu Hayashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oki Electric Industry Co Ltd
Original Assignee
Oki Electric Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oki Electric Industry Co Ltd filed Critical Oki Electric Industry Co Ltd
Priority to JP58068302A priority Critical patent/JPS59194692A/en
Publication of JPS59194692A publication Critical patent/JPS59194692A/en
Publication of JPH0527358B2 publication Critical patent/JPH0527358B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/14Electronic commutators
    • H02P6/16Circuit arrangements for detecting position
    • H02P6/18Circuit arrangements for detecting position without separate position detecting elements

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)

Description

【発明の詳細な説明】 (技術分野) 本発明は、直流ブラシレスモータの駆動方法に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Technical Field) The present invention relates to a method for driving a DC brushless motor.

(従来技術) 従来の直流ブラシレスモータの構造を第1図
a,b,cに示す。1はステータで磁性材料より
なるステータヨーク2の上に絶縁板3を介して基
板4がある。基板4には6個の電機子コイル5−
1,5−2,5−3,5−1′,5−2′,5−
3′が第1図dに示す如く3相(φ1,φ2,φ3)結
線され、電気角で120゜位相がずれる様にホール素
子6が3個接続されている。また、速度検出用パ
ターン7(以下FGパターンと略記する)が周囲
にある。8は軸受けである。9はロータであり、
磁性材料よりなるロータヨーク10に、扇形に
N;S極交互に8等分割着磁されたマグネツト1
1と、FGパターン7のピツチと同じ間隔で分割
されN・S極交互に着磁されたリング状のマグネ
ツト12が取付けられており、シヤフト13でス
テータ1に組み込まれる。動作原理を簡単に説明
すると、3個のホール素子6の検出出力によりロ
ータ9の位置を検知し、その位置での電流を電機
子コイル5に通電すると、電機子コイル5はフレ
ミング左手の法則により電流力を受けるが、電機
子コイル5は固定されているため、マグネツト1
1に反力が作用してロータ9が回転する。ロータ
9が回転するとリング状マグネツト12によつて
FGパターン7に交流電流が誘起される。それを
パルス状に変換し、パルス幅、つまり誘起電流の
周期を計測することにより、加速、減速、定速制
御が可能となる。従つて、位置検出と速度検出と
があるので、信号の種類は4種類となり、回路部
品が多くなり、ホール素子6のバラツキとか組立
時の取付誤差も問題となる。また、電機子コイル
5の中心にホール素子6を入れる構造になるため
に、電機子コイル5の内側にコイルを十分に巻く
ことができなくなり、トルクが十分出せなかつた
り、組立が複雑になるという欠点があつた。
(Prior Art) The structure of a conventional DC brushless motor is shown in FIGS. 1a, b, and c. Reference numeral 1 denotes a stator, and a substrate 4 is disposed on a stator yoke 2 made of a magnetic material with an insulating plate 3 interposed therebetween. The board 4 has six armature coils 5-
1,5-2,5-3,5-1',5-2',5-
3' are connected in three phases (φ 1 , φ 2 , φ 3 ) as shown in FIG. Further, a speed detection pattern 7 (hereinafter abbreviated as FG pattern) is provided around the periphery. 8 is a bearing. 9 is a rotor;
A rotor yoke 10 made of a magnetic material has a magnet 1 magnetized into 8 equal parts in a fan shape with alternating N and S poles.
1 and a ring-shaped magnet 12, which is divided at the same intervals as the pitch of the FG pattern 7 and magnetized alternately in N and S poles, is attached to the stator 1 by a shaft 13. To briefly explain the principle of operation, the position of the rotor 9 is detected by the detection outputs of the three Hall elements 6, and when the current at that position is applied to the armature coil 5, the armature coil 5 operates according to Fleming's left-hand rule. However, since the armature coil 5 is fixed, the magnet 1
A reaction force acts on the rotor 1, causing the rotor 9 to rotate. When the rotor 9 rotates, the ring-shaped magnet 12
An alternating current is induced in the FG pattern 7. By converting it into a pulse and measuring the pulse width, that is, the period of the induced current, acceleration, deceleration, and constant speed control become possible. Therefore, since there are position detection and speed detection, there are four types of signals, the number of circuit components increases, and problems arise such as variations in the Hall elements 6 and installation errors during assembly. In addition, since the Hall element 6 is placed in the center of the armature coil 5, it becomes impossible to wrap the coil sufficiently inside the armature coil 5, making it difficult to generate sufficient torque and complicating assembly. There were flaws.

(発明の目的) 本発明はこれらの欠点を除去するため、位置検
出素子を取り除き、速度検出素子だけで、制御す
る直流ブラシレスモータの駆動方法を提供するも
のである。
(Object of the Invention) In order to eliminate these drawbacks, the present invention provides a method for driving a DC brushless motor in which the position detection element is removed and the motor is controlled only by the speed detection element.

(発明の構成) 本発明は、円周方向にN,S交互に分割着磁さ
れたロータマグネツトを有するロータと、該ロー
タの外周部に外周円に沿つて同心円上に設けられ
た一列の所定の数のスリツトと、前記ロータの回
転に応じて該スリツトの有無を検出する第1のセ
ンサーと、該第1のセンサーと電気角で90度ずら
して配置された第2のセンサーと、前記ロータの
回転に伴う前記第1と第2のセンサーの出力パル
スを計数するカウンタを有する直流ブラシレスモ
ータの駆動方法において、起動時、一つの励磁相
に予め定められた一定時間電流を流した後、前記
励磁相に隣接する励磁相に同様に一定時間電流を
流して、前記ロータを所定の位置に位置決めし、
前記ロータを所定の位置に位置決めした後、各励
磁相層に流す電流を前記カウンタの計数値に応じ
て順次切り替えて前記ロータを回転駆動すること
を特徴とするものであり、以下に詳細に説明す
る。
(Structure of the Invention) The present invention provides a rotor having rotor magnets that are magnetized in alternating N and S segments in the circumferential direction, and a row of rotor magnets provided concentrically along the outer circumference on the outer circumference of the rotor. a predetermined number of slits, a first sensor that detects the presence or absence of the slits according to the rotation of the rotor, a second sensor that is arranged 90 degrees electrically offset from the first sensor; In a method for driving a DC brushless motor having a counter that counts output pulses from the first and second sensors as the rotor rotates, at startup, after passing current through one excitation phase for a predetermined period of time, Similarly, current is passed through an excitation phase adjacent to the excitation phase for a certain period of time to position the rotor at a predetermined position;
After the rotor is positioned at a predetermined position, the rotor is rotationally driven by sequentially switching the current flowing through each excitation phase layer according to the count value of the counter, and will be described in detail below. do.

(実施例) 本発明の実施例を第2図に示す。従来と同じも
のは、同じ数字を用いて表わす。
(Example) An example of the present invention is shown in FIG. Items that are the same as before are expressed using the same numbers.

ロータ9はロータヨーク10とマグネツト11
と速度検出用スリツト14およびシヤフト13か
ら構成される。ステータ1は第1図においてホー
ル素子6、FGパターン7を削除したものと同等
であるのでここでは図を省略する。第3図は3相
モータの簡易回路図であり15〜20はトランジ
スタ、21〜23は電機子コイルであり21は第
1図電機子コイル5−1,5−1′、22は同じ
く5−2,5−2′,23は同じく5−3,5−
3′に対応する。24aは電源の正側端子、24
bは電源の負側端子である。電機子コイル21〜
23に流す電流の方向は2相励磁の場合第3図の
,,とこれらと反対方向の −1 , −2
, −3 の6種類であり各電機子コイル21,
22,23に矢印,,, −1 , −2 ,
−3 方向の定電流を流した場合の出力トルク
波形を第4図に示す。第4図においてa,b,
c,d,e,f,a′は各出力トルク波形と点線P
−P′との交点でありA,B,C,D,E,F,
A′は上記a,b,c,d,e,f,a′点のトルク
を発生するロータ9位置である。
The rotor 9 has a rotor yoke 10 and a magnet 11
, a speed detection slit 14 and a shaft 13. The stator 1 is the same as the one shown in FIG. 1 with the Hall element 6 and FG pattern 7 removed, so the illustration is omitted here. FIG. 3 is a simplified circuit diagram of a three-phase motor, 15 to 20 are transistors, 21 to 23 are armature coils, 21 is the armature coil 5-1, 5-1' shown in FIG. 1, and 22 is also 5- 2,5-2',23 are also 5-3,5-
Corresponds to 3'. 24a is the positive terminal of the power supply, 24
b is the negative terminal of the power supply. Armature coil 21~
In the case of two-phase excitation, the direction of the current flowing through 23 is as shown in Figure 3, and -1 and -2 in the opposite direction.
, -3, and each armature coil 21,
Arrows at 22 and 23, -1, -2,
Figure 4 shows the output torque waveform when a constant current in the −3 direction is applied. In Figure 4, a, b,
c, d, e, f, a' are each output torque waveform and dotted line P
−P′ and is the intersection point A, B, C, D, E, F,
A' is the rotor 9 position that generates the torque at the points a, b, c, d, e, f, and a'.

6種類の波形は電気角で60゜ずつずれた相似形
であり、図のa点からb点では−3,b点からc
点では,c点からd点では…という具合で電
流の流す方向を60゜ごとに切り換えると、点線P
−P′の上の部分のリツプルの最も少ない出力トル
クが得られ、ロータ9は正回転(第2図aの矢印
方向から見て時計方向)をする。逆回転(反時計
方向)の場合は点線Q−Q′の下の部分を利用す
ればよい。
The six types of waveforms are similar shapes shifted by 60 degrees in electrical angle, -3 from point a to point b in the figure, and from point b to c.
If the direction of current flow is changed every 60 degrees from point c to point d, etc., the dotted line P
The output torque with the least ripple is obtained above -P', and the rotor 9 rotates in the normal direction (clockwise when viewed from the direction of the arrow in FIG. 2a). For reverse rotation (counterclockwise), use the area below the dotted line Q-Q'.

以上の様に電気角60゜ごとに電流を切り換える
と、1周期(a〜a′)では6回切り換えることに
なる。また、この1周期はマグネツト11のN・
S極のピツチであり、第2図bより明らかなよう
にロータ9の1回転につき4周期となるので、ロ
ータ9の1回転当たり6×4=24回の電流切り換
えが必要となる。この時、速度検出用スリツト1
4が96分割されていると、1回の通電期間、例え
ば第4図のa点からb点では、96÷24=4個のパ
ルス又はビツト情報の0か1かでは2倍の8個の
状態が表われる。
If the current is switched every 60 degrees of electrical angle as described above, it will be switched six times in one cycle (a to a'). Also, this one cycle is the N.
This is the pitch of the south pole, and as is clear from FIG. 2b, there are four periods per rotation of the rotor 9, so current switching is required 6×4=24 times per rotation of the rotor 9. At this time, speed detection slit 1
If 4 is divided into 96 parts, in one energizing period, for example from point a to point b in Fig. 4, 96÷24=4 pulses or 8 pulses, which is twice as many if the bit information is 0 or 1. The condition is revealed.

起動時において、ロータ9であるマグネツト1
1と電機子コイル21〜23との位置の相対関係
は、第4図のA点からA′点までの間のどれかで
ある。
At startup, the magnet 1 which is the rotor 9
The relative positional relationship between the armature coils 1 and the armature coils 21 to 23 is between points A and A' in FIG.

従つて初めに方向の電流を流し、マグネツト
11が停止するまでの十分な時間を置き、次に方
向の電流を流し、同様に十分な時間を置くと、
方向の電流を流した場合に、A点(又はA′点)
でつり合つた状態でロータが動かない状態であつ
ても、次に方向の電流を流すことによつてロー
タがつり合い状態からはなれE点でロツク状態と
なり、起動時のロータの原点位置決めが完了す
る。
Therefore, if you first apply a current in the direction, leave enough time for the magnet 11 to stop, then apply a current in the same direction, and leave a sufficient time as well, then
When a current flows in the direction, point A (or point A')
Even if the rotor does not move in a balanced state, by applying a current in the next direction, the rotor will leave the balanced state and become locked at point E, completing the rotor's home positioning at startup. .

この様にすれば、起動時にマグネツト11がど
の位置にあつても、→の順で電流を流すこと
により、マグネツト11の位置をE点に設定でき
るので、それから正回転に駆動する場合には −
1 → −2 → −3 →→→→ −1 …の
順番に、又逆回転に駆動する場合には −3 ,
−2 , −1 →→→→ −3 …の順番に
電流を流してやればよいわけである。その際、電
流の方向を切り換えるタイミングは、前述した様
に、速度検出用スリツト14からの出力の4個の
パルス又は8個の状態が検知された時に切り換え
ればよい。
In this way, no matter where the magnet 11 is at the time of startup, the position of the magnet 11 can be set to point E by flowing current in the order of →, so when driving forward rotation from then on, -
When driving in the order of 1 → -2 → -3 →→→→ -1 ... or in the opposite direction, -3,
The current can be passed in the order of −2, −1 →→→→ −3, and so on. At this time, the timing of switching the current direction may be changed when four pulses or eight states of the output from the speed detection slit 14 are detected, as described above.

次に正・逆両回転する場合の方法を説明する。
回転方向を検知するために、速度検出用スリツト
14の検出センサを電気角90゜ずらして設定する
と、その時の検出出力φA,φBは第5図の様にな
る。該φA,φB2ビツト(φB:上位ビツト,
φA:下位ビツト)を用いてデジタル的にセンサ
出力を表わしたのが第5図の下に示した値であ
る。よつてセンサのデジタル出力値が0→2→3
→1→0…が正回転すると、0→1→3→2→0
…が逆回転となる。従つて前述の電流の切り換え
タイミングは、速度検出用スリツト14が同じも
のとすると、4個のパルスの4倍の16個のセンサ
出力値によつて決定されることになる。さて、駆
動方法では、最初の設定は前述と同同様なので省
略する。
Next, a method for both forward and reverse rotation will be explained.
In order to detect the direction of rotation, if the detection sensors of the speed detection slit 14 are set to be shifted by 90 degrees in electrical angle, the detection outputs φA and φB at that time will be as shown in FIG. The φA, φB2 bits (φB: upper bit,
The value shown at the bottom of FIG. 5 is a digital representation of the sensor output using φA (lower bit). Therefore, the digital output value of the sensor changes from 0 → 2 → 3
→ When 1 → 0... rotates forward, 0 → 1 → 3 → 2 → 0
...is a reverse rotation. Therefore, if the speed detection slit 14 is the same, the above-mentioned current switching timing will be determined by 16 sensor output values, which are four times as many as four pulses. Now, regarding the driving method, the initial settings are the same as those described above, so a description thereof will be omitted.

回転方向の切り換え方法を、やはり第4図によ
つて説明する。今、正回転に駆動を開始したとす
ると、正回転方向の電流方向と、それと逆の電流
方向を、逆回転方向の情報として用意するのであ
る。例えば、方向の電流を正回転方向として流
している場合、 −2 の電流方向を逆回転方向と
して用意すればよい。
The method of switching the rotation direction will also be explained with reference to FIG. Now, if driving is started in the forward rotation direction, the current direction in the forward rotation direction and the current direction in the opposite direction are prepared as information for the reverse rotation direction. For example, when a current in the direction is flowing as a forward rotation direction, it is sufficient to prepare a current direction of -2 as a reverse rotation direction.

また、センサの出力をカウントし、正回転方向
の時はインクリメントして、カウント値が16にな
れば0にもどし、逆回転方向の時はデクリメント
し、カウント値が0になれば16に設定する様にす
る。
It also counts the output of the sensor, increments it when the rotation direction is forward, returns it to 0 when the count value reaches 16, decrements it when it rotates in the reverse direction, and sets it to 16 when the count value reaches 0. I'll do it like that.

そして第4図のF点において回転方向を切り換
えるならば、D点において方向の電流を流し
て、後はセンサのみを検知し、E点になれば、正
回転方向の電流 −1 と逆回転方向の電流の情
報の用意だけし、実際に流す電流はのままとす
る。そしてF点でロツク状態になり停止すれば、
用意されている逆回転方向の電流から流して駆
動すればよいのである。もし、F点を通過して
も、センサの出力さえ確実に検知すれば、次の正
回転方向は −2 、逆回転方向はの情報が用意
されるので、位相ずれは生じない。
If the direction of rotation is switched at point F in Figure 4, a current in the direction flows at point D, and only the sensor is detected after that, and at point E, the current in the forward rotation direction -1 and the current in the reverse rotation direction. We only prepare the current information and leave the actual current flowing as is. Then, if it becomes locked at point F and stops,
All you have to do is to supply a current in the reverse rotation direction that is provided and drive it. If the output of the sensor is detected reliably even after passing point F, the information of −2 for the next forward rotation direction and −2 for the reverse rotation direction will be prepared, so no phase shift will occur.

これらを連続して行なうことにより、ホール素
子6がなくてもロータの位置制御が可能である。
By performing these steps continuously, the position of the rotor can be controlled even without the Hall element 6.

速度制御の方法は従来と同様に行なえばよい。 The speed control method may be performed in the same manner as in the past.

(発明の効果) 以上詳細に説明したように、起動時、一つの励
磁相に予め定められた一定時間電流を流した後、
前記励磁相に隣接する励磁相に同様に一定時間電
流を流して、前記ロータを所定の位置に位置決め
し、前記ロータを所定の位置に位置決めした後、
各励磁相に流す電流を前記カウンタの計数値に応
じて順次切り替えて前記ロータを回転駆動するよ
うにしたので、ロータに一列のスリツトを設けた
だけの構造が簡単な直流ブラシレスモータの駆動
制御が可能となり、従来直流ブラシレスモータに
必要とされた位置検出用ホール素子を不要とでき
る効果がある。さらに電機子コイルの中心にホー
ル素子のための場所を設ける必要がなくなるので
コイルの巻数を増加させモータのパワーを上昇さ
せることが可能となる。
(Effects of the Invention) As explained in detail above, at startup, after passing current through one excitation phase for a predetermined period of time,
Similarly, a current is passed through an excitation phase adjacent to the excitation phase for a certain period of time to position the rotor at a predetermined position, and after positioning the rotor at a predetermined position,
Since the rotor is rotated by switching the current flowing through each excitation phase in sequence according to the count value of the counter, it is possible to control the drive of a DC brushless motor, which has a simple structure with only a row of slits provided in the rotor. This has the effect of making it possible to eliminate the need for a Hall element for position detection, which was conventionally required in DC brushless motors. Furthermore, since there is no need to provide a space for the Hall element at the center of the armature coil, it becomes possible to increase the number of turns of the coil and increase the power of the motor.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の直流ブラシレスモータの構造図
でありaはロータの平面図、bは断面図、cはス
テータの平面図、dは電機子コイルの結線を示す
図である。第2図は本発明の直流ブラシレスモー
タの構造図でありaはロータ部の断面図、bはロ
ータの平面図である。第3図は3相モータの簡易
回路図、第4図は出力トルク波形、第5図はスリ
ツトの動作を説明する図である。 1……ステータ、2……ステータヨーク、3…
…絶縁板、4……基板、5−1,5−2,5−
3,5−1′,5−2′,5−3′……電機子コイ
ル、6……ホール素子、7……FGパターン、8
……軸受け、9……ロータ、10……ロータヨー
ク、11……マグネツト、12……リング状マグ
ネツト、13……シヤフト、14……速度検出用
スリツト、15〜20……トランジスタ、21〜
23……コイル、24a……電源の正側端子、2
4b……電源の負側端子。
FIG. 1 is a structural diagram of a conventional DC brushless motor, in which a is a plan view of a rotor, b is a sectional view, c is a plan view of a stator, and d is a diagram showing connections of armature coils. FIG. 2 is a structural diagram of the DC brushless motor of the present invention, in which a is a sectional view of the rotor portion and b is a plan view of the rotor. FIG. 3 is a simplified circuit diagram of a three-phase motor, FIG. 4 is an output torque waveform, and FIG. 5 is a diagram explaining the operation of the slit. 1...Stator, 2...Stator yoke, 3...
...Insulating plate, 4...Substrate, 5-1, 5-2, 5-
3, 5-1', 5-2', 5-3'... Armature coil, 6... Hall element, 7... FG pattern, 8
... bearing, 9 ... rotor, 10 ... rotor yoke, 11 ... magnet, 12 ... ring-shaped magnet, 13 ... shaft, 14 ... speed detection slit, 15-20 ... transistor, 21 ...
23...Coil, 24a...Positive side terminal of power supply, 2
4b... Negative terminal of power supply.

Claims (1)

【特許請求の範囲】 1 円周方向にN,S交互に分割着磁されたロー
タマグネツトを有するロータと、該ロータの外周
部に外周円に沿つて同心円上に設けられた一列の
所定の数のスリツトと、前記ロータの回転に応じ
て該スリツトの有無を検出する第1のセンサー
と、該第1のセンサーと電気角で90度ずらして配
置された第2のセンサーと、前記ロータの回転に
伴う前記第1と第2のセンサーの出力パルスを計
数するカウンタを有する直流ブラシレスモータの
駆動方法において、 起動時、一つの励磁相に予め定められた一定時
間電流を流した後、前記励磁相に隣接する励磁相
に同様に一定時間電流を流して、前記ロータを所
定の位置に位置決めし、 前記ロータを所定の位置に位置決めした後、各
励磁相層に流す電流を前記カウンタの計数値に応
じて順次切り替えて前記ロータを回転駆動するこ
とを特徴とする、 直流ブラシレスモータの駆動方法。
[Scope of Claims] 1. A rotor having rotor magnets divided and magnetized alternately in N and S directions in the circumferential direction, and a row of predetermined magnets provided concentrically along the outer circumference on the outer circumference of the rotor. a first sensor that detects the presence or absence of the slit according to the rotation of the rotor; a second sensor that is arranged 90 degrees electrically offset from the first sensor; In a method for driving a DC brushless motor having a counter that counts output pulses of the first and second sensors as the motor rotates, at startup, after passing a current through one excitation phase for a predetermined period of time, the excitation The rotor is positioned at a predetermined position by similarly passing a current through an excitation phase adjacent to the phase for a certain period of time, and after positioning the rotor at a predetermined position, the current flowing through each excitation phase layer is determined by the count value of the counter. A method for driving a DC brushless motor, characterized in that the rotor is rotationally driven by switching sequentially according to the following.
JP58068302A 1983-04-20 1983-04-20 Driving method of dc brushless motor Granted JPS59194692A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58068302A JPS59194692A (en) 1983-04-20 1983-04-20 Driving method of dc brushless motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58068302A JPS59194692A (en) 1983-04-20 1983-04-20 Driving method of dc brushless motor

Publications (2)

Publication Number Publication Date
JPS59194692A JPS59194692A (en) 1984-11-05
JPH0527358B2 true JPH0527358B2 (en) 1993-04-20

Family

ID=13369854

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58068302A Granted JPS59194692A (en) 1983-04-20 1983-04-20 Driving method of dc brushless motor

Country Status (1)

Country Link
JP (1) JPS59194692A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60118086A (en) * 1983-11-01 1985-06-25 Oki Electric Ind Co Ltd Origin positioning method of dc brushless motor
JPS62285687A (en) * 1986-06-02 1987-12-11 Fujitsu Ltd System for detecting direction and position of rotation of motor

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5910162A (en) * 1982-07-05 1984-01-19 Mitsubishi Electric Corp Brushless dc motor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5910162A (en) * 1982-07-05 1984-01-19 Mitsubishi Electric Corp Brushless dc motor

Also Published As

Publication number Publication date
JPS59194692A (en) 1984-11-05

Similar Documents

Publication Publication Date Title
JP2875529B2 (en) Drive device for sensorless brushless motor
EP0313046B1 (en) Motor control apparatus
JPH0588076B2 (en)
US6320347B1 (en) Method of driving directly a rotary drum in a reproducing machine by a prime mover
JP2003009500A (en) Permanent magnet type rotary electric machine with three-phase ring-coil
JP2001045788A (en) Brushless motor and its rotary control method
JP2001119914A (en) Detector for rotor position of motor
JP3344914B2 (en) Speed controller for three-phase motor
US4950960A (en) Electronically commutated motor having an increased flat top width in its back EMF waveform, a rotatable assembly therefor, and methods of their operation
JP4478537B2 (en) Brushless motor
JPH0570398B2 (en)
JP3153287B2 (en) Brushless motor
JP2004194490A (en) Brushless motor controlling method
JPH0527358B2 (en)
JP2001343206A (en) Rotation angle detector, brushless motor and motor- driven power steering device
JP2003274623A (en) Brushless motor and control method therefor
JP2897210B2 (en) Sensorless drive for brushless motor
JPH027280B2 (en)
JPH11136888A (en) Permanent magnet motor and manufacture thereof
JPH0640468Y2 (en) Brushless motor detection mechanism
JPH0336237Y2 (en)
JP2883519B2 (en) Motor signal processing device
JPS5839257A (en) Detecting device for speed of revolution
JP2934257B2 (en) Servo device
JP2993380B2 (en) 4-phase brushless motor