JPH05273231A - Capacity type acceleration sensor - Google Patents

Capacity type acceleration sensor

Info

Publication number
JPH05273231A
JPH05273231A JP10230492A JP10230492A JPH05273231A JP H05273231 A JPH05273231 A JP H05273231A JP 10230492 A JP10230492 A JP 10230492A JP 10230492 A JP10230492 A JP 10230492A JP H05273231 A JPH05273231 A JP H05273231A
Authority
JP
Japan
Prior art keywords
electrode
thin film
acceleration sensor
movable electrode
diagnostic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10230492A
Other languages
Japanese (ja)
Inventor
Tomiki Sakurai
止水城 桜井
Tomio Nagata
富夫 永田
Hiroaki Terabe
宏明 寺部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyoda Koki KK
Original Assignee
Toyoda Koki KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyoda Koki KK filed Critical Toyoda Koki KK
Priority to JP10230492A priority Critical patent/JPH05273231A/en
Publication of JPH05273231A publication Critical patent/JPH05273231A/en
Pending legal-status Critical Current

Links

Landscapes

  • Pressure Sensors (AREA)

Abstract

PURPOSE:To obtain a capacity type acceleration sensor which can detect a failure correctly. CONSTITUTION:A silicon substrate 20 and a glass substrate 30 are bonded through anodic bonding in a capacity type acceleration sensor 10. The acceleration is measured by the change of the capacitance between a movable electrode 21 and a fixed electrode 31 formed on the substrates 20 and 30. A stopper 41 comprised of a conductive thin film 41a and an insulating thin film 41b is formed on the surface of the movable electrode 21. At the time of the anodic bonding, the conductive thin film 41a does not show polarization, whereas the insulating thin film 41b assumes considerably weak polarization. Before measurement, generally, a voltage is applied between the movable electrode 21 working also as a diagnostic electrode and a diagnostic electrode 32. The change of the output due to the change of the capacitance between the movable electrode 21 and the fixed electrode 31 is subsequently measured. Since a minute gap between the diagnostic electrodes is set to be small, the sensitivity at the checking time of failures is improved. Moreover, since a polarization is hardly brought about, the shifting amount between the electrodes in response to the application of the voltage for the purpose of checking failures is increased, thereby making it possible to detect a failure correctly.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、電極が形成された基板
同士を接合して形成した容量型加速度センサに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a capacitive acceleration sensor formed by joining substrates having electrodes formed on each other.

【0002】[0002]

【従来技術】容量型加速度センサは可動電極を有する一
方の基板と固定電極を有する他方の基板との各電極を対
向させて配設される。その一方の基板に形成された可動
電極はその周囲からバネ性を有した複数のビームにて支
持されている。そして、加速度を受けるとそれらビーム
が撓んで一方の基板の可動電極と他方の基板に形成され
た固定電極との間隔が変化する。容量型加速度センサは
この両電極間の間隔が変化することによる容量の変化に
より加速度を測定している。一般に、容量Cは、次式に
て求められる。 C=εS/d (ε:誘電率,S:電極面
積,d:電極間隔)
2. Description of the Related Art A capacitive acceleration sensor is arranged such that one electrode having a movable electrode and the other substrate having a fixed electrode face each other. The movable electrode formed on one of the substrates is supported from the periphery by a plurality of beams having spring properties. Then, when subjected to acceleration, the beams are bent and the distance between the movable electrode on one substrate and the fixed electrode formed on the other substrate changes. The capacitive acceleration sensor measures acceleration by a change in capacitance due to a change in the distance between the electrodes. Generally, the capacitance C is calculated by the following equation. C = εS / d (ε: dielectric constant, S: electrode area, d: electrode spacing)

【0003】[0003]

【発明が解決しようとする課題】ここで、被測定加速度
が極端に大きな過負荷時、微小ギャップを有する電極間
が極端に接近するような過大な変位を防止してビームな
どの機械的な損傷、又、微小ギャップを有する電極間の
電気的な短絡を防止して回路の電気的な破壊が起こらな
いようにする必要がある。このため、図7に示したよう
に、従来の容量型加速度センサ90では可動電極21面
上に絶縁性薄膜から成るストッパ28を形成している。
このストッパ28の絶縁性薄膜としては、通常、PSG
(燐ガラス)薄膜28a及びSiN(窒化シリコン)薄膜
28bが使用されている。
SUMMARY OF THE INVENTION Here, when the acceleration to be measured is extremely large and overloaded, excessive displacement such that electrodes having minute gaps are extremely close to each other is prevented to prevent mechanical damage such as a beam. Moreover, it is necessary to prevent electrical short circuit between electrodes having a minute gap so that electrical breakdown of the circuit does not occur. For this reason, as shown in FIG. 7, in the conventional capacitive acceleration sensor 90, the stopper 28 made of an insulating thin film is formed on the surface of the movable electrode 21.
The insulating thin film of the stopper 28 is usually PSG.
A (phosphorus glass) thin film 28a and a SiN (silicon nitride) thin film 28b are used.

【0004】更に、可動電極と固定電極との微小ギャッ
プを共用し対向して形成された2つの診断用電極間に電
圧(電位差)Vを印加すると両電極間には次式にて示さ
れた静電力Pe が生じる。 Pe=εSV2/2d2 ………(1) (ε:誘電率,S:電極面積,d:電極間隔)
Further, when a voltage (potential difference) V is applied between two diagnostic electrodes that are formed facing each other while sharing a small gap between the movable electrode and the fixed electrode, the following expression is given between both electrodes. An electrostatic force P e is generated. P e = εSV 2 / 2d 2 ......... (1) (ε: dielectric constant, S: electrode area, d: distance between electrodes)

【0005】ここで、シリコン基板及びガラス基板間の
接合方法として陽極接合法が実施されている。上記陽極
接合法としては、シリコン基板とガラス基板とを重ね、
300〜400℃程度に加熱し、シリコン基板側を正、ガラス
基板側を負とし 800〜1500V程度の直流電圧が印加され
る。この陽極接合時、上記PSG薄膜28aには強い分
極が生じる。この分極が生じたPSG薄膜28aが形成
されている可動電極21は電位差ゼロの状態のときでも
固定電極31側に引っ張られたままとなる。これは、陽
極接合時のPSG薄膜28aの分極による膜中電荷によ
り電位差ゼロの初期状態においても上記静電力Pe が働
いているためである。すると、図5に従来品の特性を示
したように、例えば、電源電圧DC5Vの容量型加速度
センサでその電圧を故障チェックの入力信号であるプラ
イマリチェック印加電圧(V)として使用しようとして
も、加速度感度に対するプライマリ感度(%)の変化量
が小さく見かけ上、可動電極21が殆ど動いていないと
いう結果を招いていた。
An anodic bonding method is used as a bonding method between the silicon substrate and the glass substrate. As the anodic bonding method, a silicon substrate and a glass substrate are stacked,
A DC voltage of about 800 to 1500V is applied with the silicon substrate side being positive and the glass substrate side being negative, by heating to about 300 to 400 ° C. At the time of this anodic bonding, strong polarization occurs in the PSG thin film 28a. The movable electrode 21 on which the polarized PSG thin film 28a is formed remains pulled to the fixed electrode 31 side even when the potential difference is zero. This is because the electrostatic force P e acts even in the initial state where the potential difference is zero due to the charges in the film due to the polarization of the PSG thin film 28a during the anodic bonding. Then, as shown in the characteristics of the conventional product in FIG. 5, even if the voltage is used as a primary check applied voltage (V) which is an input signal for a failure check in a capacitive acceleration sensor with a power supply voltage of DC5V, the acceleration The amount of change in the primary sensitivity (%) with respect to the sensitivity was small, and apparently the result was that the movable electrode 21 hardly moved.

【0006】本発明は、上記の課題を解決するために成
されたものであり、その目的とするところは、故障診断
時における診断用電極間の印加電圧に対して加速度測定
用電極間ギャップが大きく変化するようにして故障チェ
ックを正確に行うことができる容量型加速度センサを提
供することである。
The present invention has been made in order to solve the above-mentioned problems, and an object of the present invention is to determine the gap between the electrodes for acceleration measurement with respect to the applied voltage between the electrodes for diagnosis during failure diagnosis. It is an object of the present invention to provide a capacitive acceleration sensor capable of accurately performing a failure check with a large change.

【0007】[0007]

【課題を解決するための手段】上記課題を解決するため
の発明の構成は、一方の基板に形成された可動電極と他
方の基板に形成された固定電極とが微小ギャップを有す
るように対向させてそれら両基板を接合し、前記両電極
間の容量の変化により加速度を測定する容量型加速度セ
ンサにおいて、前記可動電極と前記固定電極との微小ギ
ャップを共有し対向させて前記両基板に形成した一対の
診断用電極と、少なくとも一方の前記診断用電極面上に
導電性材料にて該診断用電極と電気的に短絡させて形成
した導電性薄膜と、前記導電性薄膜面上又はその周囲の
前記診断用電極面上で該導電性薄膜よりも対向する電極
に接近するように形成された絶縁性薄膜とを備えたこと
を特徴とする
According to the structure of the invention for solving the above problems, a movable electrode formed on one substrate and a fixed electrode formed on the other substrate are opposed to each other with a minute gap. In the capacitive acceleration sensor, in which the two electrodes are joined together and the acceleration is measured by the change in capacitance between the two electrodes, the movable electrode and the fixed electrode are formed so as to face each other with a small gap shared therebetween. A pair of diagnostic electrodes, a conductive thin film formed by electrically short-circuiting the diagnostic electrode with a conductive material on at least one of the diagnostic electrode surfaces, and the conductive thin film surface or its periphery An insulating thin film formed so as to be closer to the facing electrode than the conductive thin film on the diagnostic electrode surface.

【0008】[0008]

【作用】上記の手段によれば、診断用電極面上でその診
断用電極と電気的に短絡され形成された導電性薄膜によ
り一対の診断用電極間における微小ギャップが減少され
る。又、絶縁性薄膜により対向する電極同士が直接に接
触することがなくなる。
According to the above means, the minute gap between the pair of diagnostic electrodes is reduced by the conductive thin film which is electrically short-circuited with the diagnostic electrode on the diagnostic electrode surface. In addition, the insulating thin film prevents the opposing electrodes from directly contacting each other.

【0009】[0009]

【実施例】以下、本発明を具体的な実施例に基づいて説
明する。図1は本発明に係る容量型センサである容量型
加速度センサ10を示した中央縦断面図である。又、図
2は図1の容量型加速度センサ10のシリコン基板20
を可動電極21側から見た平面図である。又、図3は図
1の容量型加速度センサ10のガラス基板30を固定電
極31側から見た平面図である。容量型加速度センサ1
0は可動電極21などが形成された一方の基板であるシ
リコン基板20と固定電極31が形成された他方の基板
であるガラス基板30と更に、ガラスから成る基台40
との三層構造にて構成されている。上記可動電極21と
固定電極31とが微小ギャップを有するように対向させ
て両基板20,30を接合し、更に、それらを基台40
上に接合している。上記可動電極21はシリコン基板2
0の表面に不純物としてリン拡散により形成され、その
下部に加速度により移動するおもり22を有する。又、
シリコン基板20には可動電極21をその周囲からバネ
性を有して支持する4本の細いビーム23a,23b,
23c,23dが形成されている。又、上記固定電極3
1はガラス基板30上にAl(アルミニウム)などの金属
を蒸着して形成されている。尚、上記可動電極21の下
部のおもり22及びビーム23a,23b,23c,2
3d等はシリコン基板20をエッチングすることで達成
される。
EXAMPLES The present invention will be described below based on specific examples. FIG. 1 is a central longitudinal sectional view showing a capacitive acceleration sensor 10 which is a capacitive sensor according to the present invention. 2 is a silicon substrate 20 of the capacitive acceleration sensor 10 of FIG.
FIG. 6 is a plan view of the above as viewed from the movable electrode 21 side. FIG. 3 is a plan view of the glass substrate 30 of the capacitive acceleration sensor 10 of FIG. 1 viewed from the fixed electrode 31 side. Capacitive acceleration sensor 1
Reference numeral 0 denotes a silicon substrate 20 which is one substrate on which the movable electrode 21 and the like are formed, a glass substrate 30 which is the other substrate on which the fixed electrode 31 is formed, and a base 40 made of glass.
It has a three-layer structure. The movable electrode 21 and the fixed electrode 31 are opposed to each other so as to have a minute gap, and the two substrates 20 and 30 are bonded to each other.
Bonded on top. The movable electrode 21 is the silicon substrate 2
A weight 22 is formed on the surface of 0 as an impurity by phosphorus diffusion, and a weight 22 that moves by acceleration is provided below the weight. or,
The silicon substrate 20 is provided with four thin beams 23a, 23b for supporting the movable electrode 21 from its surroundings with a spring property.
23c and 23d are formed. In addition, the fixed electrode 3
1 is formed by depositing a metal such as Al (aluminum) on a glass substrate 30. The weight 22 and the beams 23a, 23b, 23c, 2 below the movable electrode 21.
3d and the like are achieved by etching the silicon substrate 20.

【0010】シリコン基板20の周辺部で接合されたガ
ラス基板30の外側にはCMOS回路を用いたIC50
が配設されている。又、シリコン基板20の表面にはリ
ン拡散による可動電極21と同時に配線25が形成さ
れ、その配線25により可動電極21とIC50とが接
続されている。このシリコン基板20に形成された可動
電極21は一方の診断用電極を兼ねている。又、ガラス
基板30に形成された固定電極31の中央にはシリコン
基板20に形成された可動電極21に対向して他方の診
断用電極32が形成されている。更に、上記可動電極2
1面上には診断用電極32面に対向した大きさにて導電
性材料であるAl から成る導電性薄膜41aが形成さ
れ、可動電極21と電気的に短絡されている。上記導電
性薄膜41a面上には絶縁性材料であるSiN から成る
絶縁性薄膜41bが形成されている。そして、ガラス基
板30とシリコン基板20との接合によりガラス基板3
0側の固定電極31の端子部31a及び診断用電極32
の端子部32aはシリコン基板20側の対向した端子部
26,27を介してIC50とそれぞれ接続される。
An IC 50 using a CMOS circuit is provided outside the glass substrate 30 bonded at the peripheral portion of the silicon substrate 20.
Are arranged. Further, a wiring 25 is formed at the same time as the movable electrode 21 by phosphorus diffusion on the surface of the silicon substrate 20, and the wiring 25 connects the movable electrode 21 and the IC 50. The movable electrode 21 formed on the silicon substrate 20 also serves as one diagnostic electrode. Further, at the center of the fixed electrode 31 formed on the glass substrate 30, the other diagnostic electrode 32 is formed facing the movable electrode 21 formed on the silicon substrate 20. Furthermore, the movable electrode 2
A conductive thin film 41a made of a conductive material, Al, is formed on one surface so as to face the surface of the diagnostic electrode 32, and is electrically short-circuited with the movable electrode 21. An insulating thin film 41b made of SiN, which is an insulating material, is formed on the surface of the conductive thin film 41a. Then, the glass substrate 3 and the silicon substrate 20 are bonded to each other to form the glass substrate 3
Terminal part 31a of fixed electrode 31 on the 0 side and diagnostic electrode 32
The terminal portion 32a is connected to the IC 50 via the terminal portions 26 and 27 facing each other on the silicon substrate 20 side.

【0011】ガラス基板30とシリコン基板20とは前
述のように陽極接合にて接合される。この陽極接合時
に、可動電極21面上の導電性薄膜41aは導電性材料
のAlから成るため分極は生じない。又、その導電性薄
膜41a面上の絶縁性薄膜41bは絶縁性材料で分極し
難いSiN から成るため分極をごく弱いものとすること
ができる。又、この分極作用は薄膜の厚さが厚くなる程
大きくなるが導電性材料にて高さを高くしてその外側に
SiN から成る絶縁性薄膜を形成したので分極作用が極
力小さくなるようにされている。
The glass substrate 30 and the silicon substrate 20 are bonded by anodic bonding as described above. At the time of this anodic bonding, since the conductive thin film 41a on the surface of the movable electrode 21 is made of a conductive material Al, no polarization occurs. The insulating thin film 41b on the surface of the conductive thin film 41a is made of SiN, which is an insulating material and is hardly polarized, so that the polarization can be made extremely weak. Further, this polarization action becomes larger as the thickness of the thin film becomes thicker, but since the height is made of a conductive material and an insulating thin film made of SiN is formed on the outside thereof, the polarization action is made as small as possible. ing.

【0012】図4は本発明の容量型加速度センサ10の
電気的構成を示したブロックダイヤグラムである。容量
型加速度センサ10は可動電極21と固定電極31との
対向する電極面積やその時の電極間隔などにて容量CV
が決定される。又、可動電極21と診断用電極32との
対向する電極面積や電極間隔などにて容量CP が決定さ
れる。上記容量型加速度センサ10は加速度の通常測定
時において、スイッチSW は実線にて示された状態、即
ち、電源VDDに接続され測定には影響がないようにされ
ている。そして、定電流回路I1,2 、トランジスタT
r1,Tr2、シュミットトリガ回路61、インバータ回路
62,66にて構成されるC/fコンバータによりその
時の容量CV を充電及び放電するときの端子電圧波形が
周波数fS に変換される。この周波数fS はf/Vコン
バータ63にて電圧VS1に変換される。この電圧VS1
高周波通過フィルタ(HPF)65に入力され低周波数
がカットされた電圧VS2に変換される。そして、この電
圧VS2は差動増幅器64に入力され、差動増幅器64か
ら容量型加速度センサ10の加速度が零の時の容量CV
に対応した電圧V1 との差に応じてアナログ出力である
電圧Vout が測定信号として出力される。
FIG. 4 is a block diagram showing the electrical construction of the capacitive acceleration sensor 10 of the present invention. The capacitive acceleration sensor 10 has a capacitance C V depending on the area of the electrodes where the movable electrode 21 and the fixed electrode 31 face each other, the electrode spacing at that time, and the like.
Is determined. Moreover, the capacitance C P is determined by the area of the electrodes and the electrode interval where the movable electrode 21 and the diagnostic electrode 32 face each other. The capacitance type acceleration sensor 10 in the normal measurement of the acceleration, the state switch S W is shown by a solid line, i.e., it is to be no effect on the measurement is connected to the power supply V DD. Then, the constant current circuit I 1, I 2 , the transistor T
The C / f converter composed of r1 , T r2 , the Schmitt trigger circuit 61, and the inverter circuits 62, 66 converts the terminal voltage waveform at the time of charging and discharging the capacity C V at that time into the frequency f S. This frequency f S is converted into a voltage V S1 by the f / V converter 63. This voltage V S1 is input to a high frequency pass filter (HPF) 65 and converted into a voltage V S2 in which low frequencies are cut. This voltage V S2 is input to the differential amplifier 64, and the capacitance C V when the acceleration of the capacitive acceleration sensor 10 is zero from the differential amplifier 64.
The voltage V out, which is an analog output, is output as a measurement signal in accordance with the difference from the voltage V 1 corresponding to.

【0013】次に、上述のC/fコンバータの通常測定
時における作動について詳述する。電源がオンされる
と、先ず、トランジスタTr1がオンとなり、容量CV
対する放電が開始される。容量CV が放電され所定の電
圧以上となるとシュミットトリガ回路61の出力電圧が
Lo レベル、インバータ回路66の出力電圧がHi レベ
ルとなり、トランジスタTr2をオンとする。すると、容
量CV が充電されて所定の電圧以下となるとシュミット
トリガ回路61の出力電圧がHi レベル、インバータ回
路66の出力電圧がLo レベルとなる。そして、上述の
動作が繰り返されることにより容量CV 及び容量CP
比例したパルス信号が出力される。
Next, the operation of the above-mentioned C / f converter during normal measurement will be described in detail. When the power is turned on, first, the transistor T r1 is turned on, and the discharge of the capacitance C V is started. Capacitance C V is the output voltage Lo level when the discharge becomes higher than a predetermined voltage Schmitt trigger circuit 61, the output voltage of the inverter circuit 66 becomes Hi level, to turn on the transistor T r2. Then, when the capacitance C V is charged and becomes lower than a predetermined voltage, the output voltage of the Schmitt trigger circuit 61 becomes Hi level and the output voltage of the inverter circuit 66 becomes Lo level. Then, by repeating the above operation, a pulse signal proportional to the capacitance C V and the capacitance C P is output.

【0014】次に、容量型加速度センサ10が加速度の
通常測定状態に入る前の、正常或いは故障の作動チェッ
クであるプライマリチェック時における作動について述
べる。上記プライマリチェック時においては、プライマ
リチェック信号SP がLo レベルのVL からHi レベル
のVH となり、スイッチSW が破線で示された状態に切
り換えられる。そして、一方の診断用電極32側が接地
され、他方の可動電極21側に、例えば、所定の電圧5
V が印加される。ここで、微小ギャップを有する可動電
極21と診断用電極32との両電極間には式(1) にて算
出される静電力Pe が生じる。このとき、上述のように
両電極間に形成された導電性薄膜41a及び絶縁性薄膜
41bには分極が殆ど生じることがない。従って、図5
に示したように、プライマリチェック印加電圧(V)に
て加速度感度に対するプライマリ感度(%)の変化量大
となり、即ち、プライマリチェック印加電圧に対する可
動電極21の変位が大きくなる。これにより、本発明の
容量型加速度センサ10は通常測定となる以前でプライ
マリチェック信号が出力される毎に、正常か故障かの判
定を正確におこなうことができる。
Next, the operation during the primary check, which is a normal or failure operation check before the capacitive acceleration sensor 10 enters the normal acceleration measurement state, will be described. During the primary check, the primary check signal S P is V H becomes a Hi level from Lo level V L, is switched to a state in which the switch S W is indicated by a broken line. Then, one diagnostic electrode 32 side is grounded, and the other movable electrode 21 side is, for example, a predetermined voltage 5
V is applied. Here, an electrostatic force P e calculated by the equation (1) is generated between the movable electrode 21 having a minute gap and the diagnostic electrode 32. At this time, polarization hardly occurs in the conductive thin film 41a and the insulating thin film 41b formed between both electrodes as described above. Therefore, FIG.
As shown in, the change amount of the primary sensitivity (%) with respect to the acceleration sensitivity becomes large at the primary check applied voltage (V), that is, the displacement of the movable electrode 21 with respect to the primary check applied voltage becomes large. As a result, the capacitive acceleration sensor 10 of the present invention can accurately determine whether the sensor is normal or failed each time the primary check signal is output before the normal measurement.

【0015】次に、図6を参照して本発明に係る他の実
施例である容量型加速度センサ70の構成について説明
する。尚、上述の実施例と同様の構成部分については同
じ符号を付してその説明を省略する。この容量型加速度
センサ70では、可動電極21面上に従来と同様な分極
性の高いPSG薄膜71が形成され、その面上にAl 薄
膜から成る導電性薄膜72が形成されている。この導電
性薄膜72は周端面が可動電極21と電気的に短絡され
ており、PSG薄膜71の分極効果をなくしている。そ
して、導電性薄膜72の周囲の可動電極21面上にPS
G薄膜78a及びSiN 薄膜78bからなるストッパ7
8が形成されている。このストッパ78は過負荷時に導
電性薄膜72が対向する診断用電極32に接触し電気的
に短絡しないようにしている。これにより、本発明の容
量型加速度センサ70は加速感度に対するプライマリ感
度の変化量が大となり、上述の容量型加速度センサ10
と同様にプライマリチェックし易くなる。
Next, the configuration of a capacitive acceleration sensor 70 which is another embodiment of the present invention will be described with reference to FIG. The same components as those in the above-described embodiment are designated by the same reference numerals, and the description thereof will be omitted. In this capacitive acceleration sensor 70, a PSG thin film 71 having high polarizability similar to the conventional one is formed on the surface of the movable electrode 21, and a conductive thin film 72 made of an Al thin film is formed on the surface. The peripheral end surface of the conductive thin film 72 is electrically short-circuited with the movable electrode 21, thereby eliminating the polarization effect of the PSG thin film 71. Then, PS is formed on the surface of the movable electrode 21 around the conductive thin film 72.
Stopper 7 consisting of G thin film 78a and SiN thin film 78b
8 is formed. The stopper 78 prevents the electrically conductive thin film 72 from contacting the diagnostic electrode 32 facing the electrically conductive thin film 72 at the time of an overload and electrically short-circuiting. As a result, the capacitive acceleration sensor 70 of the present invention has a large change amount of the primary sensitivity with respect to the acceleration sensitivity, and the capacitive acceleration sensor 10 described above is used.
It becomes easy to check the primary as well.

【0016】[0016]

【発明の効果】本発明は、以上説明したように構成され
ているので、導電性薄膜により診断用電極間の微小ギャ
ップが減少され故障診断する際の感度が向上される。
又、導電性薄膜面上又はその周囲に形成された絶縁性薄
膜により過負荷時の電極間の過大な変位が防止され損傷
を防ぐことができる。更に、絶縁性薄膜により電極同士
が直接に接触することがなくなり、それら電極間の電気
的な短絡が防止され回路の破壊を防ぐことができる。
Since the present invention is configured as described above, the conductive thin film reduces the minute gaps between the diagnostic electrodes and improves the sensitivity in fault diagnosis.
Further, the insulating thin film formed on or around the conductive thin film surface prevents excessive displacement between the electrodes at the time of overload and can prevent damage. Further, the insulating thin film prevents the electrodes from directly contacting each other, preventing an electrical short circuit between the electrodes and preventing the circuit from being destroyed.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の具体的な一実施例に係る容量型加速度
センサの構成を示した中央縦断面図である。
FIG. 1 is a central longitudinal sectional view showing a configuration of a capacitive acceleration sensor according to a specific example of the present invention.

【図2】同実施例に係る容量型加速度センサのシリコン
基板を可動電極側から見た平面図である。
FIG. 2 is a plan view of the silicon substrate of the capacitive acceleration sensor according to the embodiment as seen from the movable electrode side.

【図3】同実施例に係る容量型加速度センサのガラス基
板を固定電極側から見た平面図図である。
FIG. 3 is a plan view of the glass substrate of the capacitive acceleration sensor according to the embodiment as seen from the fixed electrode side.

【図4】同実施例に係る容量型加速度センサの電気的構
成を示したブロックダイヤグラムである。
FIG. 4 is a block diagram showing an electrical configuration of the capacitive acceleration sensor according to the embodiment.

【図5】プライマリチェック印加電圧と加速度感度に対
するプライマリ感度との関係を示した特性図である。
FIG. 5 is a characteristic diagram showing a relationship between a primary check applied voltage and primary sensitivity with respect to acceleration sensitivity.

【図6】本発明に係る容量型加速度センサの第2の実施
例を示した中央縦断面図である。
FIG. 6 is a central longitudinal sectional view showing a second embodiment of the capacitive acceleration sensor according to the present invention.

【図7】従来の容量型加速度センサの構成を示した中央
縦断面図である。
FIG. 7 is a central longitudinal sectional view showing the configuration of a conventional capacitive acceleration sensor.

【符号の説明】[Explanation of symbols]

10−容量型加速度センサ 20−シリコン基板 21−可動電極(診断用電極) 22−おもり 23a,23b,23c,23d−ビーム 30−ガ
ラス基板 31−固定電極 32−診断用電極 40−基台
41−ストッパ 41a−導電性薄膜 41b−絶縁性薄膜 50−
IC
10-capacitance type acceleration sensor 20-silicon substrate 21-movable electrode (diagnostic electrode) 22-weights 23a, 23b, 23c, 23d-beam 30-glass substrate 31-fixed electrode 32-diagnostic electrode 40-base
41-Stopper 41a-Conductive thin film 41b-Insulating thin film 50-
IC

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 一方の基板に形成された可動電極と他方
の基板に形成された固定電極とが微小ギャップを有する
ように対向させてそれら両基板を接合し、前記両電極間
の容量の変化により加速度を測定する容量型加速度セン
サにおいて、 前記可動電極と前記固定電極との微小ギャップを共有し
対向させて前記両基板に形成した一対の診断用電極と、 少なくとも一方の前記診断用電極面上に導電性材料にて
該診断用電極と電気的に短絡させて形成した導電性薄膜
と、 前記導電性薄膜面上又はその周囲の前記診断用電極面上
で該導電性薄膜よりも対向する電極に接近するように形
成された絶縁性薄膜とを備えたことを特徴とする容量型
加速度センサ。
1. A movable electrode formed on one substrate and a fixed electrode formed on the other substrate are opposed to each other so as to have a minute gap, and the two substrates are joined to each other to change the capacitance between the two electrodes. In a capacitive acceleration sensor that measures acceleration by means of a pair of diagnostic electrodes formed on both substrates so as to face each other with a small gap shared by the movable electrode and the fixed electrode, at least one of the diagnostic electrode surfaces And a conductive thin film formed by electrically short-circuiting the diagnostic electrode with a conductive material, and an electrode facing the conductive thin film on the conductive thin film surface or on the periphery of the diagnostic electrode surface. And an insulating thin film formed so as to come close to the capacitive acceleration sensor.
JP10230492A 1992-03-27 1992-03-27 Capacity type acceleration sensor Pending JPH05273231A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10230492A JPH05273231A (en) 1992-03-27 1992-03-27 Capacity type acceleration sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10230492A JPH05273231A (en) 1992-03-27 1992-03-27 Capacity type acceleration sensor

Publications (1)

Publication Number Publication Date
JPH05273231A true JPH05273231A (en) 1993-10-22

Family

ID=14323872

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10230492A Pending JPH05273231A (en) 1992-03-27 1992-03-27 Capacity type acceleration sensor

Country Status (1)

Country Link
JP (1) JPH05273231A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0742581A2 (en) * 1995-04-12 1996-11-13 Sensonor A.S. Sealed cavity arrangement
WO1999035477A1 (en) * 1998-01-09 1999-07-15 Robert Bosch Gmbh Micromechanical component
JP2004245696A (en) * 2003-02-13 2004-09-02 Kyocera Corp Package for pressure detector
JP2011022149A (en) * 2003-03-05 2011-02-03 Vti Technologies Oy Capacitive acceleration sensor
WO2015111416A1 (en) * 2014-01-27 2015-07-30 パナソニックIpマネジメント株式会社 Acceleration sensor

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0742581A2 (en) * 1995-04-12 1996-11-13 Sensonor A.S. Sealed cavity arrangement
EP0742581A3 (en) * 1995-04-12 1997-05-02 Sensonor As Sealed cavity arrangement
WO1999035477A1 (en) * 1998-01-09 1999-07-15 Robert Bosch Gmbh Micromechanical component
JP2002500961A (en) * 1998-01-09 2002-01-15 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Micromechanical structural elements
US6465854B1 (en) 1998-01-09 2002-10-15 Robert Bosch Gmbh Micromechanical component
DE19800574B4 (en) * 1998-01-09 2013-11-14 Robert Bosch Gmbh Micromechanical component
JP2004245696A (en) * 2003-02-13 2004-09-02 Kyocera Corp Package for pressure detector
JP2011022149A (en) * 2003-03-05 2011-02-03 Vti Technologies Oy Capacitive acceleration sensor
WO2015111416A1 (en) * 2014-01-27 2015-07-30 パナソニックIpマネジメント株式会社 Acceleration sensor
JPWO2015111416A1 (en) * 2014-01-27 2017-03-23 パナソニックIpマネジメント株式会社 Acceleration sensor
US10191078B2 (en) 2014-01-27 2019-01-29 Panasonic Intellectual Property Management Co., Ltd. Acceleration sensor

Similar Documents

Publication Publication Date Title
US5388460A (en) Capacitive sensor for detecting a physical value such as acceleration
US5864063A (en) Electrostatic capacity-type acceleration sensor
US5517845A (en) Acceleration sensor having fault diagnosing device
JPH0278925A (en) Electrostatic capacity type pressure sensor
WO1992017759A1 (en) Method of testing performance of device for measuring physical quantity by using change of distance between electrodes and physical quantity measuring device provided with function of executing this method
JPH05215766A (en) Inspectable acceleration sensor
JPH05273231A (en) Capacity type acceleration sensor
JP2582160B2 (en) Sensor device
US6360603B1 (en) Acceleration sensor and acceleration detecting device
US10677668B2 (en) Pressure sensor and method for measuring a pressure
JPH09318656A (en) Electrostatic capacity type acceleration sensor
US5481915A (en) Acceleration sensor with direct mounting
JP3091775B2 (en) Capacitive sensor
JP2836676B2 (en) Test method and apparatus for semiconductor element
JP2833365B2 (en) Acceleration sensor
JP3250085B2 (en) Acceleration sensor
US6973844B2 (en) Semiconductor mechanical quantity sensor
JP2021099226A (en) Insulation monitoring device and electric power supply having the same
JP2946776B2 (en) Capacitive acceleration sensor
JP3347316B2 (en) Apparatus for detecting physical quantity using change in distance between electrodes and operation test method thereof
JP3116326B2 (en) Probe card
WO2024009968A1 (en) Mems sensor
JPH05107262A (en) Semiconductor acceleration sensor
JP2002257508A (en) Irregularity detecting sensor
JP2017092466A (en) Semiconductor device, manufacturing method thereof, and controller for vehicle