JPH05107262A - Semiconductor acceleration sensor - Google Patents

Semiconductor acceleration sensor

Info

Publication number
JPH05107262A
JPH05107262A JP3293684A JP29368491A JPH05107262A JP H05107262 A JPH05107262 A JP H05107262A JP 3293684 A JP3293684 A JP 3293684A JP 29368491 A JP29368491 A JP 29368491A JP H05107262 A JPH05107262 A JP H05107262A
Authority
JP
Japan
Prior art keywords
circuit
resistor
bridge circuit
diagnostic
diagnosis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3293684A
Other languages
Japanese (ja)
Other versions
JP3019549B2 (en
Inventor
Akihiro Hanamura
昭宏 花村
Hideo Muro
英夫 室
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP3293684A priority Critical patent/JP3019549B2/en
Publication of JPH05107262A publication Critical patent/JPH05107262A/en
Application granted granted Critical
Publication of JP3019549B2 publication Critical patent/JP3019549B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P15/12Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values by alteration of electrical resistance
    • G01P15/123Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values by alteration of electrical resistance by piezo-resistive elements, e.g. semiconductor strain gauges
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P21/00Testing or calibrating of apparatus or devices covered by the preceding groups
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P2015/0805Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration
    • G01P2015/0822Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining out-of-plane movement of the mass
    • G01P2015/0825Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining out-of-plane movement of the mass for one single degree of freedom of movement of the mass
    • G01P2015/0828Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining out-of-plane movement of the mass for one single degree of freedom of movement of the mass the mass being of the paddle type being suspended at one of its longitudinal ends

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)
  • Pressure Sensors (AREA)

Abstract

PURPOSE:To provide the title sensor provided with a self-diagnostic circuit without necessity for providing a particular driving power for a self-diagnosis and requiring no precision for mechanical structure. CONSTITUTION:A current source circuit 32 as a driving circuit is connected with a piezoresistance bridge circuit 26 of a semiconductor acceleration sensor, an end of a diagnosis resistor 28 is connected to the output terminal P1 of the bridge circuit, and the other end of the diagnosis resistor is grounded through a switch 34. A false acceleration state is made by switching on. A thin film resistor is formed on a semiconductor substrate to be made the diagnosis resistor 28.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、自己診断回路を備え
たピエゾ抵抗式半導体加速度センサの構成に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a structure of a piezoresistive semiconductor acceleration sensor having a self-diagnosis circuit.

【0002】[0002]

【従来の技術】自己診断回路を備えた半導体加速度セン
サとして、例えば「TOYOTA AIR BAG S
ENSOR」(M.Mutoh et al、ISAT
A 911270号 第95頁、1991年)に開示さ
れたようなものがある。この半導体加速度センサは、図
5に示すように、肉薄の片持ち梁6が半導体基体の固定
部7から延びており、その先端側には質量部8が接続さ
れていて、基体主面に垂直な方向の加速度が加わると、
片持ち梁6の表面に歪みが生じ応力が発生するようにな
っている。片持ち梁6上にはピエゾ抵抗ブリッジ回路1
が形成されている。すなわちピエゾ抵抗は、例えば(1
00)シリコン基体の<110>方向に形成された梁6
上に、梁と平行に2本、垂直に2本形成されていて、応
力に対して2つの出力端子の電圧変化が逆の極性になる
ようになっている。
2. Description of the Related Art As a semiconductor acceleration sensor having a self-diagnosis circuit, for example, "TOYOTA AIR BAG S" is used.
ENSOR "(M. Mutoh et al, ISAT
A 911270, page 95, 1991). In this semiconductor acceleration sensor, as shown in FIG. 5, a thin cantilever beam 6 extends from a fixed portion 7 of a semiconductor substrate, and a mass portion 8 is connected to the tip side thereof so as to be perpendicular to the main surface of the substrate. When acceleration in different directions is applied,
The surface of the cantilever 6 is distorted to generate stress. Piezoresistive bridge circuit 1 on cantilever 6
Are formed. That is, the piezo resistance is, for example, (1
00) Beam 6 formed in <110> direction of silicon substrate
Two pieces are formed on the upper side in parallel with the beam and two pieces are formed on the upper side so that the voltage changes of the two output terminals with respect to the stress have opposite polarities.

【0003】このピエゾ抵抗ブリッジ回路1を用いた検
知および自己診断の回路は、図6のようになっており、
2はピエゾ抵抗ブリッジ回路1を駆動するための電流源
回路、3はピエゾ抵抗ブリッジ回路1の出力を増幅する
ための増幅器、4はピエゾ抵抗ブリッジ回路の出力にオ
フセットを与えるための微少電流源、5は微少電流源4
をピエゾ抵抗ブリッジ回路1の片側の出力に接続するた
めのスイッチである。増幅器3や電流源回路2、微少電
流源4など周辺回路は、図5の半導体基体の固定部7に
設けられた領域9に形成される。
A detection and self-diagnosis circuit using the piezoresistive bridge circuit 1 is as shown in FIG.
2 is a current source circuit for driving the piezoresistive bridge circuit 1, 3 is an amplifier for amplifying the output of the piezoresistive bridge circuit 1, 4 is a minute current source for giving an offset to the output of the piezoresistive bridge circuit, 5 is a minute current source 4
Is a switch for connecting to the output on one side of the piezoresistive bridge circuit 1. Peripheral circuits such as the amplifier 3, the current source circuit 2, and the minute current source 4 are formed in the region 9 provided in the fixed portion 7 of the semiconductor substrate of FIG.

【0004】半導体加速度センサ外部の制御システムか
ら診断信号が入力されると、スイッチ5がオンされ、微
少電流源4がピエゾ抵抗ブリッジ回路1に接続される。
これによりピエゾ抵抗ブリッジ回路1が擬似的に出力を
生じる形になるので、自己診断が可能となる。
When a diagnostic signal is input from a control system outside the semiconductor acceleration sensor, the switch 5 is turned on and the minute current source 4 is connected to the piezoresistive bridge circuit 1.
As a result, the piezoresistive bridge circuit 1 produces a pseudo output, which enables self-diagnosis.

【0005】他の例としてはまた、「Accelero
meter Systems with Self−t
estable Features」(HENRY
V.ALLEN,STEPHEN C.TERRY a
nd DIEDERIK W.DE BRUIN, S
ensors and Actuators、 Vo
l.20、 第153〜161頁、1989年)に開示
された両持ち梁式の半導体加速度センサもある。
Another example is also "Accelero.
meter Systems with Self-t
"Estable Features" (HENRY
V. ALLEN, STEPHEN C.I. TERRY a
nd DIEDERIK W.N. DE BRUIN, S
ensors and Actuators, Vo
l. 20, pp. 153-161, 1989).

【0006】これを図7に示すと、中央の質量部12を
挟むようにシリコン基体10を裏面からエッチングして
複数の肉薄の梁11が形成されていて、質量部12を両
側から支持している。このシリコン基体10の上下両面
には、それぞれストッパ基板13、14が接着されてい
る。ストッパ基板13、14の材料はシリコン或いはガ
ラスで、凹部16、17を形成して質量部12が加速度
に応じて上下に変位可能な空間をつくっている。さらに
質量部12と対向する部分には質量部の変位を所定限度
に制限するように、突起部18、19が形成されてい
る。
As shown in FIG. 7, a plurality of thin beams 11 are formed by etching the silicon substrate 10 from the back side so as to sandwich the central mass portion 12, and the mass portion 12 is supported from both sides. There is. Stopper substrates 13 and 14 are adhered to the upper and lower surfaces of the silicon substrate 10, respectively. The material of the stopper substrates 13 and 14 is silicon or glass, and the recesses 16 and 17 are formed to form a space in which the mass portion 12 can be vertically displaced according to acceleration. Further, protrusions 18 and 19 are formed in a portion facing the mass portion 12 so as to limit the displacement of the mass portion to a predetermined limit.

【0007】梁11の表面にはブリッジ回路を構成する
ピエゾ抵抗15が形成されていて、加速度により質量部
12が変位し梁11に応力が生じると、その抵抗値が変
化し加速度を検出できるようになっている。
A piezoresistor 15 forming a bridge circuit is formed on the surface of the beam 11, and when the mass portion 12 is displaced by the acceleration and the stress is generated in the beam 11, the resistance value changes and the acceleration can be detected. It has become.

【0008】この加速度センサでは、過大な加速度が加
わると質量部12は突起部18、19に当接するまでは
変位するが、そこで制限されて、梁に過大応力による破
損が生じないようになっている。両持ち梁構造での通常
作動における変位量は応力の割りに小さく、この突起部
までのギャップは微少で、通常数μmのレベルである。
In this acceleration sensor, when an excessive acceleration is applied, the mass portion 12 is displaced until it comes into contact with the protrusions 18 and 19, but this is limited so that the beam will not be damaged by excessive stress. There is. The displacement amount in the normal operation in the double-supported beam structure is small relative to the stress, and the gap up to the protrusion is very small, usually on the order of several μm.

【0009】質量部12上には上側ストッパ基板の突起
部18と対向して金属電極20が形成されている。外部
から金属電極20とストッパ基板13の間に電圧が印加
されると、静電力により質量部12が上方に変位し、加
速度が加わった状態を擬似的に作ることができる。これ
によりセンサの各部の機能を確認する自己診断を行うこ
とが可能となる。なお、図中21はボンディング・パッ
ドである。その他のシリコン基体10の表面酸化膜.配
線電極等は簡単のため省略した。
A metal electrode 20 is formed on the mass portion 12 so as to face the protrusion 18 of the upper stopper substrate. When a voltage is applied between the metal electrode 20 and the stopper substrate 13 from the outside, the mass portion 12 is displaced upward by an electrostatic force, and a state in which acceleration is applied can be artificially created. This enables self-diagnosis to confirm the function of each part of the sensor. Reference numeral 21 in the drawing is a bonding pad. Other surface oxide film of silicon substrate 10. Wiring electrodes and the like are omitted for simplicity.

【0010】[0010]

【発明が解決しようとする課題】しかしながら、上記従
来の半導体加速度センサのうち、自己診断回路として、
ピエゾ抵抗ブリッジ回路の片側の出力端子にスイッチを
介して微少電流源を接続する構成のものでは、この微少
電流源の値は、例えばピエゾ抵抗5KΩ、ブリッジ印加
電圧3V、フル・レンジのピエゾ抵抗の変化率を0.1
%、診断出力をフルレンジの10%とすると、30nA
となり、極めて小さな値にする必要がある。
However, among the above-mentioned conventional semiconductor acceleration sensors, as a self-diagnosis circuit,
In a configuration in which a minute current source is connected to an output terminal on one side of a piezoresistive bridge circuit via a switch, the value of this minute current source is, for example, piezoresistor 5KΩ, bridge applied voltage 3V, full range piezoresistor. Change rate 0.1
%, Assuming that the diagnostic output is 10% of the full range, 30 nA
Therefore, the value must be extremely small.

【0011】このような微少な電流源を実現するために
は、大きな値の抵抗と、電流を絞っていくための多段の
カレント・ミラーが必要となる。このため、微少電流源
を実現するための回路構成が複雑となり、かつ大きな面
積を占有することになるという問題があった。
In order to realize such a minute current source, a resistor having a large value and a multistage current mirror for narrowing the current are required. Therefore, there is a problem that the circuit configuration for realizing the minute current source becomes complicated and occupies a large area.

【0012】また、数μmという狭いギャップを挟ん
で、静電力により質量部を変位させて出力をチェックす
る方式のものでは、ギャップの管理が難かしく、製造工
程も複雑である。また静電力を用いるという特殊性か
ら、サンドウィッチ構造以外の通常の加速度センサには
適用できないという問題があった。
Further, in a system in which a mass portion is displaced by an electrostatic force to check an output across a narrow gap of several μm, it is difficult to manage the gap and the manufacturing process is complicated. Further, due to the peculiarity of using electrostatic force, there is a problem that it cannot be applied to ordinary acceleration sensors other than the sandwich structure.

【0013】したがってこの発明は、上記のような従来
の問題点に着目し、自己診断のために特別の駆動電源を
設ける必要がなく、また機械構造的に精度を必要としな
い自己診断回路を備えた半導体加速度センサを提供する
ことを目的とする。
Therefore, the present invention focuses on the above-mentioned conventional problems and includes a self-diagnosis circuit that does not require a special drive power source for self-diagnosis and does not require precision in terms of mechanical structure. Another object of the present invention is to provide a semiconductor acceleration sensor.

【0014】[0014]

【課題を解決するための手段】このため本発明は、半導
体基体が固定部と質量部とこれら固定部と質量部とを接
続する薄肉の梁とに区分けされ、前記梁上にピエゾ抵抗
を有し、前記質量部の変位による前記ピエゾ抵抗の抵抗
値変化をブリッジ回路で検出する半導体加速度センサに
おいて、前記ブリッジ回路の出力端子の一端に設けられ
た診断抵抗と、診断信号を受けて前記ブリッジ回路の出
力端子と接地との間を前記診断抵抗を介して接続するス
イッチを有する自己診断回路を備え、前記診断抵抗が前
記半導体基体上に形成された薄膜抵抗で構成されるもの
とした。
Therefore, according to the present invention, the semiconductor substrate is divided into a fixed portion, a mass portion, and a thin beam connecting the fixed portion and the mass portion, and a piezoresistor is provided on the beam. Then, in a semiconductor acceleration sensor that detects a resistance value change of the piezoresistor due to the displacement of the mass portion in a bridge circuit, a diagnostic resistor provided at one end of an output terminal of the bridge circuit, and the bridge circuit receiving a diagnostic signal. A self-diagnosis circuit having a switch for connecting the output terminal and the ground via the diagnostic resistor is provided, and the diagnostic resistor is composed of a thin film resistor formed on the semiconductor substrate.

【0015】[0015]

【作用】スイッチがオフしているとき、加速度を受けて
質量部が変位すると、梁に歪み応力が生じて、ピエゾ抵
抗ブリッジ回路が歪み応力に対応したオフセットを生
じ、このオフセットを基に加速度信号が出力される。診
断信号によりスイッチがオンすると診断抵抗が接続され
る。これによりピエゾ抵抗ブリッジ回路の抵抗値が変化
し、擬似的に出力を生じる形になるので自己診断が可能
となる。
When the switch is off and the mass section is displaced due to acceleration, a strain stress is generated in the beam, and the piezoresistive bridge circuit generates an offset corresponding to the strain stress. Is output. When the switch is turned on by the diagnostic signal, the diagnostic resistor is connected. As a result, the resistance value of the piezoresistive bridge circuit changes, and a pseudo output is generated, which enables self-diagnosis.

【0016】[0016]

【実施例】図1は本発明の実施例を示す。ピエゾ抵抗ブ
リッジ回路26にはその駆動回路としての電流源回路3
2が接続され、ピエゾ抵抗ブリッジ回路26の出力端子
P1、P2は増幅器33に接続されている。出力端子P
1には診断抵抗28の一端が接続されており、診断抵抗
28の他端は、スイッチ34により接地される。このス
イッチ34は診断信号を受けてオンするもので、例えば
トランジスタスイッチとすることができる。
FIG. 1 shows an embodiment of the present invention. The piezoresistive bridge circuit 26 has a current source circuit 3 as its drive circuit.
2 are connected, and the output terminals P1 and P2 of the piezoresistive bridge circuit 26 are connected to the amplifier 33. Output terminal P
One end of the diagnostic resistor 28 is connected to 1, and the other end of the diagnostic resistor 28 is grounded by the switch 34. The switch 34 is turned on upon receiving a diagnostic signal, and can be, for example, a transistor switch.

【0017】回路の主要素は、半導体基体上に図2およ
び図3に示すようにレイアウトされる。半導体基体は固
定部22と質量部24とこれら両者を接続するように裏
面よりエッチングして形成された薄肉の梁23に別れて
おり、25は質量部24および梁23を取り囲むように
形成された略U字形の溝で、表面側からのエッチングあ
るいは、予めP形層を形成しておいて、裏面からのエレ
クトロ・ケミカル・エッチングで梁23部形成と同時に
エッチすることにより実現される。
The main elements of the circuit are laid out on a semiconductor substrate as shown in FIGS. The semiconductor substrate is divided into a fixing portion 22, a mass portion 24, and a thin beam 23 formed by etching from the back surface so as to connect them, and 25 is formed so as to surround the mass portion 24 and the beam 23. This is realized by etching from the front surface side in a substantially U-shaped groove or by forming a P-type layer in advance and etching the beam 23 at the same time as electrobeam etching from the back surface.

【0018】ピエゾ抵抗ブリッジ回路26は梁23上に
形成され、梁23の長さ方向と平行なブリッジ抵抗2
本、これに垂直な2本が正方形の形に配置されて、フル
ブリッジを構成している。増幅器33や電流源回路32
など周辺回路は固定部22に周辺回路部27として配置
されている。なお、ブリッジ回路26はすべての抵抗が
梁23の面上に形成される必要はなく、一部を固定部2
2に設けるなど各種変形例が考えられる。
The piezoresistive bridge circuit 26 is formed on the beam 23 and has a bridge resistance 2 parallel to the length direction of the beam 23.
A book and two perpendicular to it are arranged in a square shape to form a full bridge. Amplifier 33 and current source circuit 32
Peripheral circuits, etc. are arranged in the fixed portion 22 as the peripheral circuit portion 27. It is not necessary that all resistances of the bridge circuit 26 be formed on the surface of the beam 23.
Various modifications such as being provided in No. 2 are possible.

【0019】診断抵抗28が半導体基体の固定部22上
に形成された周辺回路部27に重ねて、薄膜プロセスに
よって同一基体上に形成されている。29は台座で質量
部24の上下方向の変位が可能となるように凹部30が
形成されている。31は絶縁酸化膜である。
The diagnostic resistor 28 is formed on the same substrate by a thin film process, overlapping the peripheral circuit portion 27 formed on the fixed portion 22 of the semiconductor substrate. A pedestal 29 is formed with a recess 30 so that the mass portion 24 can be displaced in the vertical direction. Reference numeral 31 is an insulating oxide film.

【0020】この構成における作用を説明すると、通常
はスイッチ34はオフしていて、ピエゾ抵抗ブリッジ回
路26は、加速度を受けたときに、ブリッジ回路が形成
されている梁23に生じる歪み応力に対応したオフセッ
トを生じ、このオフセットが増幅器33で増幅されて、
加速度信号等の出力を出すようになっている。
The operation of this structure will be described. Normally, the switch 34 is turned off, and the piezoresistive bridge circuit 26 responds to the strain stress generated in the beam 23 in which the bridge circuit is formed, when it receives acceleration. Generated offset, which is amplified by the amplifier 33,
It is designed to output acceleration signals and the like.

【0021】図示しない外部の制御システムから診断信
号が入ると、スイッチ34がオンとなり、診断抵抗28
が接地される。これによりピエゾ抵抗ブリッジ回路26
の抵抗値が変化し擬似的に出力を生じる形になるので自
己診断が可能となる。
When a diagnostic signal is input from an external control system (not shown), the switch 34 is turned on and the diagnostic resistor 28 is turned on.
Is grounded. As a result, the piezoresistive bridge circuit 26
The resistance value of changes and the pseudo output is generated, which enables self-diagnosis.

【0022】診断抵抗28の値としては、例えば応力に
よるピエゾ抵抗の変化率を0.1%、診断出力をフルレ
ンジの10%とすると、診断抵抗28をブリッジ回路2
6に接続した際の抵抗値の変化が10-4程度になるよう
に設定される。したがって診断抵抗28の値はピエゾ抵
抗のおよそ104倍となるので、ピエゾ抵抗を5kΩと
仮定すれば、診断抵抗28は50MΩ程度となる。
As the value of the diagnostic resistor 28, for example, when the rate of change of piezo resistance due to stress is 0.1% and the diagnostic output is 10% of the full range, the diagnostic resistor 28 is replaced by the bridge circuit 2.
It is set so that the change in resistance value when connected to 6 is about 10 −4 . Therefore, the value of the diagnostic resistor 28 is approximately 10 4 times that of the piezoresistor, and assuming the piezoresistor to be 5 kΩ, the diagnostic resistor 28 is about 50 MΩ.

【0023】このような高抵抗は通常の拡散抵抗では実
現が難しいが、ポリシリコン薄膜抵抗とすることによ
り、容易に基体の酸化膜上に形成できる。診断抵抗28
はこのように設定された抵抗値を得るため、固定部22
上で複数回折り返されて所定の長さを得ている。あるい
はまた図4に示すように、薄膜抵抗を半導体基体の外周
縁にそって延ばして診断抵抗28’とすることもでき
る。
Such a high resistance is difficult to realize with a normal diffusion resistance, but by using a polysilicon thin film resistance, it can be easily formed on the oxide film of the substrate. Diagnostic resistance 28
In order to obtain the resistance value set in this way,
A plurality of times are folded back to obtain a predetermined length. Alternatively, as shown in FIG. 4, a thin film resistor may be extended along the outer peripheral edge of the semiconductor substrate to form a diagnostic resistor 28 '.

【0024】以上のように、この構成によればオンチッ
プで自己診断回路をつくり込むことができ、しかもその
設計の自由度が大きい。なお、図示の実施例では片持ち
梁について説明したが、これに限定されることなく、両
持ち梁方式や4方向支持の半導体加速度センサにおいて
も適用でき、同じ効果が得られる。また、スイッチ34
は出力端子P1と診断抵抗28の間に設けるようにして
もよい。
As described above, according to this configuration, the self-diagnosis circuit can be built in on-chip, and the degree of freedom in designing is large. In the illustrated embodiment, the cantilever beam is described, but the present invention is not limited to this and can be applied to a double-supported beam system or a four-direction supported semiconductor acceleration sensor, and the same effect can be obtained. In addition, the switch 34
May be provided between the output terminal P1 and the diagnostic resistor 28.

【0025】[0025]

【発明の効果】以上のとおり、この発明は、スイッチに
より加速度センサのブリッジ回路に診断抵抗を接続する
ようにして自己診断回路を形成し、診断抵抗を薄膜抵抗
としたから、従来の微少電流源方式と比較して、複雑な
電流源回路を省略でき、通常のプロセスによって容易に
自己診断回路のオン・チップ化された半導体加速度セン
サが得られる。また静電力方式に比較して、ギャップの
管理を必要とせず、製造の困難性も伴なわない。
As described above, according to the present invention, the self-diagnosis circuit is formed by connecting the diagnostic resistor to the bridge circuit of the acceleration sensor by the switch, and the diagnostic resistor is a thin film resistor. Compared with the method, a complicated current source circuit can be omitted, and a semiconductor acceleration sensor with a self-diagnosis circuit on-chip can be easily obtained by a normal process. Further, as compared with the electrostatic force method, the management of the gap is not required and the manufacturing difficulty is not involved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例を示す回路図である。FIG. 1 is a circuit diagram showing an embodiment of the present invention.

【図2】実施例の半導体基体上のレイアウトを示す図で
ある。
FIG. 2 is a diagram showing a layout on a semiconductor substrate of an example.

【図3】図2のA−A部断面図である。FIG. 3 is a sectional view taken along the line AA of FIG.

【図4】他のレイアウト例を示す図である。FIG. 4 is a diagram showing another layout example.

【図5】従来例を示す図である。FIG. 5 is a diagram showing a conventional example.

【図6】従来例における回路を示す図である。FIG. 6 is a diagram showing a circuit in a conventional example.

【図7】他の従来例を示す図である。FIG. 7 is a diagram showing another conventional example.

【符号の説明】[Explanation of symbols]

1 ピエゾ抵抗ブリッジ回路 2 電流源回路 3 増幅器 4 微少電流源 5 スイッチ 6、11 梁 7 固定部 8、12 質量部 10 半導体基体 13、14 ストッパ基板 15 ピエゾ抵抗 16、17 凹部 18、19 突起部 20 金属電極 22 固定部 23 梁 24 質量部 25 溝 26 ピエゾ抵抗ブリッジ回路 27 周辺回路部 28、28’ 診断抵抗 29 台座 30 凹部 31 絶縁酸化膜 32 電流源回路 33 増幅器 34 スイッチ 1 Piezoresistive bridge circuit 2 Current source circuit 3 Amplifier 4 Micro current source 5 Switch 6, 11 Beam 7 Fixed part 8, 12 Mass part 10 Semiconductor substrate 13, 14 Stopper substrate 15 Piezoresistor 16, 17 Recessed part 18, 19 Projection part 20 Metal electrode 22 Fixed part 23 Beam 24 Mass part 25 Groove 26 Piezoresistive bridge circuit 27 Peripheral circuit part 28, 28 'Diagnostic resistance 29 Pedestal 30 Recess 31 Insulating oxide film 32 Current source circuit 33 Amplifier 34 Switch

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 半導体基体が固定部と質量部とこれら固
定部と質量部とを接続する薄肉の梁とに区分けされ、前
記梁上にピエゾ抵抗を有し、前記質量部の変位による前
記ピエゾ抵抗の抵抗値変化をブリッジ回路で検出する半
導体加速度センサにおいて、前記ブリッジ回路の出力端
子の一端に設けられた診断抵抗と、診断信号を受けて前
記ブリッジ回路の出力端子と接地との間を前記診断抵抗
を介して接続するスイッチを有する自己診断回路を備
え、前記診断抵抗が前記半導体基体上に形成された薄膜
抵抗で構成されていることを特徴とする半導体加速度セ
ンサ。
1. A semiconductor substrate is divided into a fixed part, a mass part, and a thin beam connecting the fixed part and the mass part, and has piezo resistance on the beam, and the piezo is caused by displacement of the mass part. In a semiconductor acceleration sensor that detects a change in resistance value of a resistor with a bridge circuit, a diagnostic resistor provided at one end of an output terminal of the bridge circuit, and a diagnostic signal between the output terminal of the bridge circuit and ground are provided. A semiconductor acceleration sensor, comprising a self-diagnosis circuit having a switch connected via a diagnostic resistor, wherein the diagnostic resistor is composed of a thin film resistor formed on the semiconductor substrate.
JP3293684A 1991-10-14 1991-10-14 Semiconductor acceleration sensor Expired - Fee Related JP3019549B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3293684A JP3019549B2 (en) 1991-10-14 1991-10-14 Semiconductor acceleration sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3293684A JP3019549B2 (en) 1991-10-14 1991-10-14 Semiconductor acceleration sensor

Publications (2)

Publication Number Publication Date
JPH05107262A true JPH05107262A (en) 1993-04-27
JP3019549B2 JP3019549B2 (en) 2000-03-13

Family

ID=17797897

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3293684A Expired - Fee Related JP3019549B2 (en) 1991-10-14 1991-10-14 Semiconductor acceleration sensor

Country Status (1)

Country Link
JP (1) JP3019549B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998015809A1 (en) * 1996-10-07 1998-04-16 Hitachi, Ltd. Semiconductor sensor having diagnostic function and diagnostic method for semiconductor sensor
JP2010025730A (en) * 2008-07-18 2010-02-04 Tokai Rika Co Ltd Magnetic sensor device
JP2010085190A (en) * 2008-09-30 2010-04-15 Denso Corp Sensor apparatus and self-diagnosis method of sensor apparatus
JP2012047608A (en) * 2010-08-27 2012-03-08 Hitachi Ltd Dynamic quantity measurement equipment

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6769389B2 (en) * 2017-05-09 2020-10-14 株式会社島津製作所 Gas supply control device, gas chromatograph and pressure sensor abnormality judgment method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998015809A1 (en) * 1996-10-07 1998-04-16 Hitachi, Ltd. Semiconductor sensor having diagnostic function and diagnostic method for semiconductor sensor
JP2010025730A (en) * 2008-07-18 2010-02-04 Tokai Rika Co Ltd Magnetic sensor device
JP2010085190A (en) * 2008-09-30 2010-04-15 Denso Corp Sensor apparatus and self-diagnosis method of sensor apparatus
JP2012047608A (en) * 2010-08-27 2012-03-08 Hitachi Ltd Dynamic quantity measurement equipment

Also Published As

Publication number Publication date
JP3019549B2 (en) 2000-03-13

Similar Documents

Publication Publication Date Title
US6275326B1 (en) Control arrangement for microelectromechanical devices and systems
US6360605B1 (en) Micromechanical device
US6272928B1 (en) Hermetically sealed absolute and differential pressure transducer
JP2575939B2 (en) Semiconductor acceleration sensor
JPH06302832A (en) Acceleration sensor
JPH05215766A (en) Inspectable acceleration sensor
JP3019550B2 (en) Self-diagnosis circuit of semiconductor sensor
CN100334453C (en) Acceleration transducer
US6683358B1 (en) Silicon integrated accelerometer
JP2004333133A (en) Inertial force sensor
JPH08178951A (en) Semiconductor acceleration detector
US7178403B2 (en) Transducer responsive to pressure, vibration/acceleration and temperature and methods of fabricating the same
Selvakumar et al. Low power, wide range threshold acceleration sensing system
JP3019549B2 (en) Semiconductor acceleration sensor
EP3336503B1 (en) Pressure sensor having a multiple wheatstone bridge configuration of sense elements
CN100422697C (en) Acceleration transducer
JP3019444B2 (en) Semiconductor acceleration sensor
JP3019701B2 (en) Acceleration sensor
US20150059430A1 (en) Inertial force sensor
JPS61139758A (en) Semiconductive acceleration sensor
JPH1144705A (en) Semiconductor acceleration sensor and its manufacture
JPH10160610A (en) Strain detection sensor
JPH11160349A (en) Acceleration sensor
JPH07128365A (en) Semiconductor acceleration sensor and fabrication thereof
JP5333354B2 (en) Mechanical quantity sensor

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19991207

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090107

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees