JPH05273217A - Measuring apparatus for microbe - Google Patents

Measuring apparatus for microbe

Info

Publication number
JPH05273217A
JPH05273217A JP7401992A JP7401992A JPH05273217A JP H05273217 A JPH05273217 A JP H05273217A JP 7401992 A JP7401992 A JP 7401992A JP 7401992 A JP7401992 A JP 7401992A JP H05273217 A JPH05273217 A JP H05273217A
Authority
JP
Japan
Prior art keywords
liquid
sample
filter cartridge
sample liquid
microbial
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7401992A
Other languages
Japanese (ja)
Inventor
Akira Matsuyuki
昭 松行
Shigeo Sato
茂雄 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Original Assignee
Meidensha Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp filed Critical Meidensha Corp
Priority to JP7401992A priority Critical patent/JPH05273217A/en
Publication of JPH05273217A publication Critical patent/JPH05273217A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To easily collect microbes in a short time and to enhance and stabilize the collecting rate of microbes by controlling a sample feeding means, a transfer device, etc., by a controlling device and automatizing the measurement of microbes. CONSTITUTION:A transportation pipe 14 of a sample liquid connecting a sample liquid tank 1 and a solenoid valve 6 is provided with an electromagnetic valve 2, a flowmeter 3, a pump 4 as a sample liquid feeding means and a pressure gauge 5. When the pump 4 is driven, the sample liquid is fed to a filter cartridge 9 through the solenoid valve 6 and an injection pipe 16. At this time, it is possible to measure the flow rate of the sample liquid by the flowmeter 3 and also the liquid pressure of the sample liquid by the pressure gauge 5. A broken liquid transportation pipe 15 connecting a tank 8 of a liquid of broken microbes with the solenoid valve 6 is provided with a pump 7 which is a distributing means of the liquid of broken microbes. The broken liquid is, through the solenoid valve 6 and the injection pipe 16, injected into the filter cartridge 9 by this pump 7.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、微生物の免疫学的測定
方法に関し、特に試料水中の微生物数を測定する際の前
処理に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for immunologically measuring microorganisms, and more particularly to pretreatment for measuring the number of microorganisms in sample water.

【0002】[0002]

【従来の技術】従来、試料水中の微生物の測定は、メン
ブランフィルタにより試料水を濃縮して超音波破砕した
後に免疫測定を行うことによりなされている。
2. Description of the Related Art Conventionally, the measurement of microorganisms in sample water has been carried out by concentrating the sample water with a membrane filter and ultrasonically crushing it, and then performing immunoassay.

【0003】このメンブランフィルタにより試料水の濃
縮を行う際は、濃縮時間の短縮や夾雑物の除去を行うた
めにプレフィルタを用いる必要がある。
When the sample water is concentrated with this membrane filter, it is necessary to use a pre-filter in order to shorten the concentration time and remove impurities.

【0004】図3に上記プレフィルタ及びメンブランフ
ィルタを用いた微生物濃縮装置の説明図を示す。
FIG. 3 shows an explanatory view of a microorganism concentrating device using the above prefilter and membrane filter.

【0005】この図に示されるように、この微生物濃縮
装置は試料水を入れる漏斗21、この試料水を濾過濃縮
する濾過部22、濾過濃縮された試料水を収容する枝付
きフラスコ23、及び漏斗21と枝付きフラスコ23と
を固定する固定ばさみ26により構成されている。
As shown in this figure, this microorganism concentrator comprises a funnel 21 for containing sample water, a filter section 22 for filtering and concentrating the sample water, a side flask 23 for containing the filtered and concentrated sample water, and a funnel. It is composed of fixed scissors 26 for fixing 21 and the flask with side branch 23.

【0006】図4はこの微生物濃縮装置の濾過部の拡大
図を示し、濾過部22は漏斗21とOリング24、メン
ブランフィルタ25、枝付きフラスコ23ががこの順に
配置されて形成されている。
FIG. 4 is an enlarged view of the filtration section of this microorganism concentrating apparatus. The filtration section 22 is formed by arranging a funnel 21, an O-ring 24, a membrane filter 25, and a side flask 23 in this order.

【0007】上記装置にて微生物の濃縮を行うには、漏
斗21に試料水をいれ、枝付きフラスコ27の枝管を通
じて吸引ポンプにて内圧を低くすることにより試料水を
枝付きフラスコ内部に吸引する。
In order to concentrate microorganisms with the above apparatus, sample water is put into the funnel 21 and the sample water is sucked into the inside of the side-arm flask by lowering the internal pressure with a suction pump through the side tube of the side-arm flask 27. To do.

【0008】この際、試料水中の微生物は濾過部のメン
ブランフィルタ5に捕捉されるので、このメンブランフ
ィルタ5を回収し、ガラスビーカ内にて緩衝液及びガラ
スビーズを加えて振とうする。
At this time, since the microorganisms in the sample water are captured by the membrane filter 5 of the filtration section, the membrane filter 5 is collected, and the buffer solution and the glass beads are added and shaken in the glass beaker.

【0009】これによりメンブランフィルタの表面に補
足された菌を緩衝液中に均一に懸濁させた後、上記懸濁
液をピペットにて分取し、サンプルチューブに移す。
Thus, the bacteria trapped on the surface of the membrane filter are uniformly suspended in the buffer solution, and the suspension is pipetted and transferred to a sample tube.

【0010】更に、超音波破砕器にてサンプルチューブ
内の懸濁液の超音波破砕を行った後に酵素免疫測定を行
うことにより試料水中の微生物を測定している。
Furthermore, the microorganisms in the sample water are measured by ultrasonically disrupting the suspension in the sample tube with an ultrasonic disruptor and then performing enzyme immunoassay.

【0011】[0011]

【発明が解決しようとする課題】しかし、上記従来の測
定方法においては酵素免疫測定の前処理である回収操作
が繁雑で回収率が一定とはなり難く、測定精度が低くな
る。また回収操作に15分程度を必要とし、時間のロス
が大きい。
However, in the above-mentioned conventional measuring method, the collecting operation, which is a pretreatment of the enzyme immunoassay, is complicated and the collecting rate is difficult to be constant, and the measuring accuracy becomes low. Further, the recovery operation requires about 15 minutes, which causes a large loss of time.

【0012】更に枝付きフラスコや漏斗等の濾過装置や
回収時に用いる振とう機等の大がかりな装置や器具が必
要となるうえ、前処理の自動化も困難である。
Further, a large-scale apparatus or instrument such as a filtering apparatus such as a side-branched flask or a funnel and a shaker used at the time of recovery is required, and automation of pretreatment is also difficult.

【0013】本発明は上記背景の下になされたものであ
り、微生物の回収操作を容易かつ短時間に行うことがで
き、かつ微生物の回収率を高くかつ安定化することがで
きる微生物の免疫学的測定方法及び微生物濾過容器を提
供することを目的とする。
The present invention has been made under the above-mentioned background, and a microbial immunology capable of performing a microbial recovery operation easily and in a short time and having a high microbial recovery rate and stabilization. An object of the present invention is to provide a method for dynamic measurement and a microorganism filtration container.

【0014】[0014]

【課題を解決するための手段】上記課題を解決するた
め、本発明は試料液を貯蔵する試料液タンクと、微生物
破砕液を貯蔵する微生物破砕液タンクと、試料液流入口
及び濾過水流出口を備えた外筒の内部に、この外筒内を
試料水流入口側と試料液流出口側とに仕切る微生物捕捉
フィルタを有するフィルターカートリッジと、フィルタ
ーカートリッジ供給装置とを備え、移送装置により前記
フィルターカートリッジ供給装置から得られる前記フィ
ルターカートリッジを試料液の供給及び微生物破砕液の
供給が可能な位置に設置し、その後このフィルターカー
トリッジに前記試料液タンクから得られる試料液を試料
液流入手段により流入して試料液の濾過を行った後に、
前記微生物破砕液タンクから得られる微生物破砕液を微
生物破砕液注入手段により注入し、前記微生物破砕液が
注入されたフィルターカートリッジを移送装置により微
生物破砕器に設置して微生物破砕を行った後に、前記フ
ィルターカートリッジを移送装置により試料液採取装置
に設置し、前記試料採取装置により、前記微生物破砕を
うけた試料液を採取した後に測定器によりこの試料液中
の微生物の測定を行う微生物測定装置であって、前記微
生物測定装置は前記試料液流入手段、前記微生物破砕液
注入手段、前記フィルターカートリッジ供給装置、前記
移送装置、前記微生物破砕器、前記試料液採取装置、及
び前記測定器を制御する制御手段を有し、これにより微
生物の測定を自動化したことを特徴とする。
In order to solve the above problems, the present invention provides a sample liquid tank for storing a sample liquid, a microbial disruption liquid tank for storing a microbial disruption liquid, a sample liquid inlet and a filtered water outlet. A filter cartridge having a microbial capture filter for partitioning the inside of the outer cylinder into a sample water inlet side and a sample liquid outlet side, and a filter cartridge supply device are provided inside the outer cylinder provided, and the filter cartridge is supplied by a transfer device. The filter cartridge obtained from the device is installed at a position where the supply of the sample solution and the microbial disruption solution can be provided, and then the sample solution obtained from the sample solution tank is introduced into the filter cartridge by the sample solution inflow means. After filtering the liquid,
The microbial crushed liquid obtained from the microbial crushed liquid tank is injected by the microbial crushed liquid injecting means, and the filter cartridge in which the microbial crushed liquid is injected is installed in the microbial crusher by the transfer device to perform microbial crushing, A microbe measuring device in which a filter cartridge is installed in a sample liquid sampling device by a transfer device, and the sample liquid that has been subjected to the microbe crushing is sampled by the sample sampling device and then the measuring device measures the microorganisms in the sample liquid. The microorganism measuring device is a control means for controlling the sample liquid inflow means, the microorganism crushing liquid injecting means, the filter cartridge supply device, the transfer device, the microorganism crusher, the sample liquid collecting device, and the measuring device. And characterized by automating the measurement of microorganisms.

【0015】また、上記微生物測定装置において、前記
試料液流入手段は試料液の液圧検出手段を有し、かつ前
記制御手段はこの液圧検出手段より得られる液圧に基づ
いて試料液の流入量を制御することを特徴とする微生物
測定装置も提供される。
Further, in the above-mentioned microorganism measuring apparatus, the sample liquid inflow means has a liquid pressure detecting means for the sample liquid, and the control means flows in the sample liquid based on the liquid pressure obtained by the liquid pressure detecting means. There is also provided a microorganism measuring device characterized by controlling the amount.

【0016】更に、上記各微生物測定装置において、前
記微生物測定装置は前記フィルターカートリッジにおけ
る試料液の流入量及び微生物破砕液の注入量の検出手段
を有し、前記制御装置は前記試料液の流入量及び微生物
破砕液の注入量の検出手段から得られる試料液の流入量
及び微生物破砕液の注入量に基づいて微生物の濃縮倍率
を算出するとともに、予め前記微生物測定装置に設けら
れた出力部にこの濃縮倍率を出力することを特徴とする
微生物測定装置も提供される。
Further, in each of the above-mentioned microorganism measuring devices, the microorganism measuring device has means for detecting the inflow amount of the sample liquid and the injecting amount of the microbial disruption liquid in the filter cartridge, and the control device is the inflow amount of the sample liquid. And calculating the concentration rate of the microorganisms based on the inflow rate of the sample solution and the injection rate of the microbial disruption solution obtained from the means for detecting the injection rate of the microbial disruption solution, and to the output unit provided in advance in the microorganism measuring device. There is also provided a microorganism measuring device characterized by outputting a concentration factor.

【0017】更にまた、上記各微生物測定装置におい
て、前記微生物測定装置はフィルターカートリッジにお
ける試料液流出部を密封する密封手段を有し、かつ前記
制御装置によってこの密封手段を制御することにより、
試料液の濾過を終えた後に前記密封手段により前記フィ
ルターカートリッジにおける試料液流出部の密閉を行
い、更に、前記微生物破砕器として超音波破砕器を用
い、この超音波破砕器に前記フィルターカートリッジを
浸漬して微生物の超音波破砕を行うことにより、微生物
の破砕を行うことを特徴とする微生物測定装置も提供さ
れる。
Furthermore, in each of the above-mentioned microorganism measuring devices, the microorganism measuring device has a sealing means for sealing the sample liquid outflow portion of the filter cartridge, and the sealing means is controlled by the control device.
After the filtration of the sample solution is completed, the sample solution outflow portion of the filter cartridge is sealed by the sealing means, and further, an ultrasonic crusher is used as the microbial crusher, and the filter cartridge is immersed in the ultrasonic crusher. There is also provided a microorganism measuring device characterized by crushing microorganisms by ultrasonically crushing the microorganisms.

【0018】[0018]

【作用】本発明に係る微生物測定装置においては、制御
装置により試料流入手段、移送装置等を制御することに
より微生物の測定を自動化している。以下にその詳細を
示す。
In the microorganism measuring apparatus according to the present invention, the control apparatus controls the sample inflow means, the transfer apparatus and the like to automate the measurement of microorganisms. The details are shown below.

【0019】まず、試料液流入手段を作動させて試料液
の濾過を行い、濾過を終えた後にこの試料液流入手段を
停止させる。その後に微生物破砕液注入手段を作動させ
てフィルターカートリッジ内に微生物破砕液を注入す
る。
First, the sample liquid inflow means is operated to filter the sample liquid, and after the filtration is completed, the sample liquid inflow means is stopped. After that, the microorganism crushed liquid injection means is operated to inject the microbial crushed liquid into the filter cartridge.

【0020】次に、移送装置を作動させて上記微生物破
砕液を注入されたフィルターカートリッジを微生物破砕
器に設置する。その後に微生物破砕器を作動させて微生
物の破砕を行う。
Next, the transfer device is operated to install the filter cartridge into which the above-mentioned microorganism crushing liquid has been injected into the microbial crusher. After that, the microorganism crusher is operated to crush the microorganisms.

【0021】更に、移送装置を作動させてこのフィルタ
ーカートリッジを試料液採取装置に設置し、この試料液
採取装置を作動させて試料液を採取するとともに、この
試料液を測定器に輸送し、この測定器を作動させること
により微生物の測定を行う。尚、上記制御装置におい
て、フィルターカートリッジに試料液を流入する際の試
料液の液圧の検出装置を設け、この液圧の値により試料
液流入手段を制御して試料液の流入量を制御することが
好ましい。
Further, the transfer device is operated to install the filter cartridge in the sample liquid collecting device, and the sample liquid collecting device is operated to collect the sample liquid, and the sample liquid is transported to the measuring device. The microorganisms are measured by operating the measuring device. In the above control device, a device for detecting the liquid pressure of the sample liquid when the sample liquid flows into the filter cartridge is provided, and the sample liquid inflow means is controlled by the value of this liquid pressure to control the inflow amount of the sample liquid. Preferably.

【0022】同様に、フィルターカートリッジにおける
試料液の流入量及び微生物破砕液の注入量を検出し、こ
れらの値から得られる微生物の濃縮倍率を出力すること
が好ましい。
Similarly, it is preferable to detect the inflow amount of the sample liquid and the injection amount of the crushed microorganism liquid in the filter cartridge, and output the concentration ratio of the microorganism obtained from these values.

【0023】更に、微生物測定装置にフィルターカート
リッジにおける試料液流出部の密封手段を設けるととも
に、試料液の濾過を行った後にこの試料液流出部を密閉
し、かつ微生物破砕器として超音波破砕器を用いて超音
波破砕を行うことが好ましい。
Further, the microorganism measuring device is provided with a sealing means for the sample liquid outflow portion in the filter cartridge, the sample liquid outflow portion is sealed after filtering the sample liquid, and an ultrasonic disintegrator is used as a microorganism disintegrator. It is preferable to carry out ultrasonic disruption.

【0024】[0024]

【実施例】本実施例においては図2に示す濾過容器(フ
ィルターカートリッジ)を用いて微生物の超音波破砕を
行った。
Example In this example, ultrasonic disruption of microorganisms was carried out using the filtration container (filter cartridge) shown in FIG.

【0025】図2において31は試料水流入口32及び
濾過水流出口33を有する外筒である。
In FIG. 2, reference numeral 31 is an outer cylinder having a sample water inlet 32 and a filtered water outlet 33.

【0026】この外筒31の内部には、円筒状で一端側
が開口し、この開口側を濾過水流出口33側に配置して
外筒内部を試料水流入口32側と濾過水流出口33側と
に仕切るフィルタ支持部34が設けられている。尚、上
記フィルタ支持部は、その開口側を試料水32側に配置
してもよい。
Inside the outer cylinder 31, one end side is cylindrical and is opened. The opening side is arranged on the filtered water outlet 33 side so that the inside of the outer cylinder is on the sample water inlet 32 side and the filtered water outlet 33 side. A partitioning filter support portion 34 is provided. The opening side of the filter support part may be arranged on the sample water 32 side.

【0027】また、このフィルタ支持部34の試料水流
入口32側の表面を、微生物捕捉フィルタであるミクロ
フィルタ35にて覆う構成となっている。
The surface of the filter support portion 34 on the side of the sample water inlet 32 is covered with a microfilter 35 which is a microorganism trapping filter.

【0028】尚、このフィルタ支持部34は、水の透過
が可能な材質にて形成するか、もしくは金属メッシュ等
の水の透過が可能な構造とする等の方法により、ミクロ
フィルタ35により濾過された水の透過が可能な構成と
する。また、ミクロフィルタとしては好ましくはポアサ
イズ0.45μm以下のものを用いる。従って、上記濾過容
器においては、試料水流入口32から流入する試料水は
必ず上記ミクロフィルタ35により濾過された後に濾過
水流出口3から流出する構成となる。
The filter support portion 34 is filtered by the micro filter 35 by a method such as being formed of a water permeable material or having a water permeable structure such as a metal mesh. The structure will allow water to pass through. Further, as the micro filter, one having a pore size of 0.45 μm or less is preferably used. Therefore, in the filtration container, the sample water flowing in from the sample water inlet 32 is always filtered by the microfilter 35 and then flows out from the filtered water outlet 3.

【0029】特に、通常上記ミクロフィルタにおいては
吸引濾過や圧縮濾過等により濾過を行い、常圧にては試
料水や微生物破砕液がこのミクロフィルタを透過するこ
とはないとして差し支えない。
In particular, the above-mentioned microfilter is usually filtered by suction filtration, compression filtration or the like, and it does not matter that the sample water or the disrupted microorganism solution does not permeate the microfilter under normal pressure.

【0030】従って、上記濾過容器において、吸引濾過
等により試料水の濾過を行った後に、外筒31の試料水
流入口32から微生物破砕液を加えることにより、内筒
31と外筒32の間に微生物破砕液を貯留することが可
能である。
Therefore, in the above filtration container, after filtering the sample water by suction filtration or the like, the microbial disruption liquid is added from the sample water inflow port 32 of the outer cylinder 31 so that the space between the inner cylinder 31 and the outer cylinder 32 is increased. It is possible to store the disrupted liquid of microorganisms.

【0031】図1に本実施例に係る微生物測定装置の構
成図を示す。
FIG. 1 shows a block diagram of the microorganism measuring apparatus according to this embodiment.

【0032】この図において1は試料液タンク、14は
試料液タンク1と電磁バルブ6とを接続する試料液輸送
管であり、この試料液輸送管14には電磁バルブ2、流
量計3、試料液流入手段であるポンプ4、圧力計5が設
けられ、ポンプ4を駆動することにより試料液を電磁バ
ルブ6及び注入管16を通じて上記したフィルターカー
トリッジ9に注入できる構成となっている。
In the figure, 1 is a sample liquid tank, 14 is a sample liquid transport pipe connecting the sample liquid tank 1 and an electromagnetic valve 6, and the sample liquid transport pipe 14 has an electromagnetic valve 2, a flowmeter 3, and a sample. A pump 4 and a pressure gauge 5, which are liquid inflow means, are provided, and by driving the pump 4, the sample liquid can be injected into the filter cartridge 9 through the electromagnetic valve 6 and the injection pipe 16.

【0033】この際、流量計3により試料液の流量を、
また圧力計5により試料液の液圧をそれぞれ測定するこ
とが可能である。
At this time, the flow rate of the sample liquid is measured by the flow meter 3.
Further, the pressure gauge 5 can measure the liquid pressure of each sample liquid.

【0034】尚、電磁バルブ2を切り替えることによ
り、試料液の輸送を停止するとともに、試料液輸送管1
4の電磁バルブ側を解放し、試料液輸送管14内を常圧
とすることもできる。
By switching the electromagnetic valve 2, the transport of the sample liquid is stopped and the sample liquid transport pipe 1
It is also possible to open the electromagnetic valve side of No. 4 and make the inside of the sample liquid transport pipe 14 at normal pressure.

【0035】また、8は微生物破砕液タンク、15は微
生物破砕液タンク8と電磁バルブ6とを接続する微生物
破砕液輸送管であり、この微生物破砕液輸送管15には
微生物破砕液注入手段であるポンプ7が設けられ、この
ポンプ7を駆動することにより、微生物破砕液を電磁バ
ルブ6及び注入管16を通じてフィルターカートリッジ
9に注入することができる構成となっている。
Further, 8 is a microbial crushed liquid tank, 15 is a microbial crushed liquid transport pipe connecting the microbial crushed liquid tank 8 and the electromagnetic valve 6, and the microbial crushed liquid transport pipe 15 is provided with a microbial crushed liquid injection means. A certain pump 7 is provided, and by driving this pump 7, the microbial disruption liquid can be injected into the filter cartridge 9 through the electromagnetic valve 6 and the injection pipe 16.

【0036】また、上記フィルターカートリッジ9はフ
ィルターカートリッジ供給装置13により、上記注入管
16を通じて試料液及び微生物破砕液が供給可能な位置
に供給される。
The filter cartridge 9 is supplied by the filter cartridge supply device 13 to the position where the sample solution and the microbial disruption solution can be supplied through the injection pipe 16.

【0037】このフィルターカートリッジにおける試料
液の濾過及び微生物破砕液の供給を終えた後に、図示省
略した移送装置によって超音波破砕容器にセットされ、
更に、超音波破砕を終えた後に図示省略した移送装置に
より、吸引ノズル11にセットされ、試料液採取装置で
あるポンプ12を駆動することによりフィルターカート
リッジ内の超音波破砕をうけた微生物濃縮液をEIA測
定装置に輸送し、EIAにより微生物の測定を行う構成
となっている。
After the filtration of the sample solution and the supply of the microbial disruption solution in this filter cartridge are completed, the sample is set in the ultrasonic disruption container by a transfer device (not shown),
Further, after the ultrasonic crushing is completed, the microbial concentrated liquid in the filter cartridge, which is set in the suction nozzle 11 and driven by the pump 12 which is the sample liquid collecting device, is set by the transfer device (not shown). It is configured to be transported to an EIA measuring device and to measure microorganisms by EIA.

【0038】上記装置において、上記ポンプ、電磁バル
ブ等は制御装置により制御されており、微生物の測定を
自動的に行うことができる。その制御内容を以下に示
す。
In the above apparatus, the pump, electromagnetic valve and the like are controlled by the control device, and the microorganisms can be measured automatically. The control contents are shown below.

【0039】1.採水装置17により試料水タンクに試
料水を供給する。
1. The sample water is supplied to the sample water tank by the water sampling device 17.

【0040】2.移送装置を駆動してフィルターカート
リッジ供給装置13からフィルターカートリッジ9を注
入管6にセットする。(図1におけるAの位置) 3.ポンプ4を駆動してフィルターカートリッジ9に試
料水を送り濾過する。これにより微生物は残渣としてフ
ィルター表面に残る。
2. The transfer device is driven to set the filter cartridge 9 in the injection pipe 6 from the filter cartridge supply device 13. (Position A in FIG. 1) 3. The pump 4 is driven to feed the sample water to the filter cartridge 9 for filtration. As a result, the microorganisms remain on the filter surface as a residue.

【0041】4.流量計3により試料液の流入量を測定
し、この試料液の流入量が予め設定された積算量に達し
た時点でポンプ4を停止する。
4. The inflow amount of the sample liquid is measured by the flow meter 3, and the pump 4 is stopped when the inflow amount of the sample liquid reaches a preset integrated amount.

【0042】または、圧力計5により試料液の液圧を測
定し、制御装置によりこの測定値が予め設定された値に
達した時点で、フィルターの目詰まりと判断してポンプ
4を停止することもできる。
Alternatively, the pressure of the sample liquid is measured by the pressure gauge 5, and when the measured value reaches a preset value by the control device, it is judged that the filter is clogged and the pump 4 is stopped. You can also

【0043】この際、それまでの流量積算値を記憶して
おく。
At this time, the flow rate integrated value up to that point is stored.

【0044】5.電磁バルブ2を切り替えてポンプ4の
サクション側を大気解放とするとともに、ポンプ4から
フィルターカートリッジに残った試料水を押し出して濾
過を終了させる。この際、濾過の終了は圧力計により検
出し、この値に基づいて制御を行う。
5. The electromagnetic valve 2 is switched to open the suction side of the pump 4 to the atmosphere, and the sample water remaining in the filter cartridge is pushed out from the pump 4 to complete the filtration. At this time, the end of filtration is detected by a pressure gauge, and control is performed based on this value.

【0045】6.封管器20を作動させ、フィルターカ
ートリッジ9における流出側の管を封じる。封管方法と
しては例えば圧着、溶着、融着等が挙げられる。
6. The sealing tube 20 is actuated to seal the tube on the outflow side of the filter cartridge 9. Examples of the sealing tube method include pressure bonding, welding and fusion.

【0046】7.電磁バルブ9を切り替えた後にポンプ
7を駆動し、一定量の微生物破砕液をフィルターカート
リッジ9に注入する。
7. After switching the electromagnetic valve 9, the pump 7 is driven to inject a fixed amount of microbial disruption liquid into the filter cartridge 9.

【0047】8.移送装置を駆動してフィルターカート
リッジ9を超音波破砕器10にセットし、(図1におけ
るBの位置)超音波破砕器10を駆動してフィルターカ
ートリッジ9内の微生物を破砕する。
8. The transfer device is driven to set the filter cartridge 9 in the ultrasonic crusher 10, and the ultrasonic crusher 10 is driven (position B in FIG. 1) to crush the microorganisms in the filter cartridge 9.

【0048】9.移送装置にてフィルターカートリッジ
9を吸引ノズル11にセットし、(図1におけるCの位
置)ポンプ12を駆動して微生物濃縮液を吸引し、EI
A装置に一定量を輸送する。
9. The filter cartridge 9 is set in the suction nozzle 11 by the transfer device, the pump 12 is driven (at the position C in FIG. 1) to suck the microbial concentrated liquid, and the EI
Transport a fixed amount to the A device.

【0049】10.EIA測定装置により、微生物の濃
度等を測定する。この際、項目4.における濾過した試
料水の量と、項目7.における微生物破砕液の量から微
生物の濃縮倍率を算出し、EIA測定における参照デー
タとして送信する。
10. The concentration of microorganisms and the like are measured by the EIA measuring device. At this time, item 4. 7. Amount of filtered sample water in step 7 and item 7. The concentration ratio of the microorganism is calculated from the amount of the crushed liquid of the microorganism, and transmitted as reference data in the EIA measurement.

【0050】上記のように構成された装置にて上記制御
を行うことにより、微生物の測定を自動的に、また容易
かつ正確に行うことができる。
By carrying out the above-mentioned control with the apparatus constructed as described above, the microorganisms can be measured automatically, easily and accurately.

【0051】また、上記動作を行った後にフィルターカ
ートリッジを廃棄することを繰り返すことにより、試料
水中の微生物濃度を連続的に、かつリアルタイムに測定
することができる。
By repeatedly discarding the filter cartridge after performing the above operation, the concentration of microorganisms in the sample water can be measured continuously and in real time.

【0052】従って、特に排水処理場等においては水質
の変化をリアルタイムに把握することができるので、水
質管理等に大きく貢献する。
Therefore, especially in a wastewater treatment plant or the like, it is possible to grasp the change in water quality in real time, which greatly contributes to water quality management.

【0053】尚、項目4.において、流量計の代わりに
受水タンク18を設け、この受水タンク中の水質をレベ
ル計19にて測定し、この値をもとにしてポンプ4の制
御を行うものとしてもよい。
Note that item 4. In the above, the water receiving tank 18 may be provided instead of the flow meter, the water quality in the water receiving tank may be measured by the level meter 19, and the pump 4 may be controlled based on this value.

【0054】尚、図1においてはポンプ4及びポンプ7
をそれぞれ設けているが、これらのポンプを電磁バルブ
6とフィルターカートリッジ9との間に設けることもで
きる。この際、電磁バルブ6を切り替え制御することに
よりこれらのポンプを1つのポンプにて代用することも
できる。
In FIG. 1, pump 4 and pump 7
However, these pumps may be provided between the electromagnetic valve 6 and the filter cartridge 9. At this time, one pump can be substituted for these pumps by switching and controlling the electromagnetic valve 6.

【0055】更に、微生物破砕液側を閉鎖してポンプを
1つのポンプにて圧送側に設けているが、これらのポン
プをフィルターカートリッジ9の吸引側に設けてもよ
い。この際、ポンプ4及びポンプ7は、1つのポンプに
て代用することも可能である。尚、上記各移送装置はそ
れぞれ異なるものとしてもよいが、1台もしくは2台の
移送装置にてフィルターカートリッジを注入管16、超
音波破砕容器10、吸引ノズル11にセットすることも
可能である。
Further, although the crushed liquid side of microorganisms is closed and the pumps are provided on the pumping side by one pump, these pumps may be provided on the suction side of the filter cartridge 9. At this time, the pump 4 and the pump 7 may be replaced by one pump. The transfer devices may be different from each other, but the filter cartridge can be set in the injection pipe 16, the ultrasonic crushing container 10, and the suction nozzle 11 by one or two transfer devices.

【0056】[0056]

【発明の効果】本発明においては微量な微生物濃度等を
自動的、連続的に測定でき、また微生物の濃縮及び破砕
も自動的、連続的に行うことができる。
INDUSTRIAL APPLICABILITY In the present invention, the concentration of a minute amount of microorganisms can be automatically and continuously measured, and the concentration and crushing of microorganisms can be automatically and continuously performed.

【0057】更に、例えば塩素殺菌設備における塩素注
入量制御等において、大腸菌の数を目標値としたフィー
ドバックシステムを構築することもできる。
Further, for example, in controlling the amount of chlorine injection in a chlorine sterilization facility, it is possible to construct a feedback system with the target number of E. coli.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例に係る微生物測定装置の説明
FIG. 1 is an explanatory diagram of a microorganism measuring apparatus according to an embodiment of the present invention.

【図2】本発明の一実施例に係る微生物の濾過装置の説
明図
FIG. 2 is an explanatory view of a microorganism filtration device according to an embodiment of the present invention.

【図3】従来例に係る微生物の濾過装置の説明図FIG. 3 is an explanatory view of a microorganism filtration device according to a conventional example.

【図4】従来例に係る微生物の濾過装置の説明図FIG. 4 is an explanatory view of a microorganism filtration device according to a conventional example.

【符号の説明】[Explanation of symbols]

1…試料液タンク、 2…電磁バルブ 3…流量計 4…ポンプ 5…圧力計 6…電磁バルブ 7…ポンプ 8…微生物破砕液タンク 9…フィルターカートリッジ 10…超音波破砕器 11…吸引ノズル 12…ポンプ 13…フィルターカートリッジ供給装置 14…試料液輸送管 15…微生物破砕液輸送管 16…注入管 17…採水装置 18…受水タンク 19…レベル計 20…封管器 1 ... Sample liquid tank, 2 ... Electromagnetic valve 3 ... Flowmeter 4 ... Pump 5 ... Pressure gauge 6 ... Electromagnetic valve 7 ... Pump 8 ... Microbial disruption liquid tank 9 ... Filter cartridge 10 ... Ultrasonic disrupter 11 ... Suction nozzle 12 ... Pump 13 ... Filter cartridge supply device 14 ... Sample liquid transport pipe 15 ... Microbial disruption liquid transport pipe 16 ... Injection pipe 17 ... Water sampling device 18 ... Water receiving tank 19 ... Level meter 20 ... Seal tube

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 試料液を貯蔵する試料液タンクと、 微生物破砕液を貯蔵する微生物破砕液タンクと、 試料液流入口及び濾過水流出口を備えた外筒の内部に、
この外筒内を試料水流入口側と試料液流出口側とに仕切
る微生物捕捉フィルタを有するフィルターカートリッジ
と、 フィルターカートリッジ供給装置とを備え、 移送装置により、前記フィルターカートリッジ供給装置
から供給されるフィルターカートリッジを試料液の供給
及び微生物破砕液の供給が可能な位置に設置し、その後
このフィルターカートリッジに前記試料液タンクから得
られる試料液を試料液流入手段により流入して試料液の
濾過を行った後に、前記微生物破砕液タンクから得られ
る微生物破砕液を微生物破砕液注入手段により注入し、 前記微生物破砕液が注入されたフィルターカートリッジ
を移送装置により微生物破砕器に設置して微生物破砕を
行った後に、前記フィルターカートリッジを移送装置に
より試料液採取装置に設置し、 前記試料採取装置により、前記微生物破砕をうけた試料
液を採取した後に測定器によりこの試料液中の微生物の
測定を行う微生物測定装置であって、 前記微生物測定装置は前記試料液流入手段、前記微生物
破砕液注入手段、前記フィルターカートリッジ供給装
置、前記移送装置、前記微生物破砕器、前記試料液採取
装置、及び前記測定器を制御する制御手段を有し、これ
により微生物の測定を自動化したことを特徴とする微生
物測定装置。
1. A sample liquid tank for storing a sample liquid, a microorganism crushed liquid tank for storing a microbial crushed liquid, and an inside of an outer cylinder provided with a sample liquid inlet and a filtered water outlet,
A filter cartridge having a microorganism-trapping filter for partitioning the inside of the outer cylinder into a sample water inlet side and a sample liquid outlet side, and a filter cartridge supply device, and a filter cartridge supplied from the filter cartridge supply device by a transfer device. Is installed at a position where the supply of the sample solution and the microbial disruption solution can be supplied, and then the sample solution obtained from the sample solution tank is introduced into the filter cartridge by the sample solution inflow means to filter the sample solution. Injecting a microbial crushed liquid obtained from the microbial crushed liquid tank by a microbial crushed liquid injecting means, after performing microbial crushing by installing the filter cartridge in which the microbial crushed liquid is injected into the microbial crusher by a transfer device, Transfer the filter cartridge to a sample liquid sampling device by a transfer device. The sample collecting device is a microorganism measuring device for measuring the microorganisms in the sample liquid by a measuring device after collecting the sample liquid that has been subjected to the microbe crushing, and the microorganism measuring device is the sample liquid inflow Means, the microorganism crushed liquid injecting means, the filter cartridge supply device, the transfer device, the microbial crusher, the sample liquid sampling device, and a control means for controlling the measuring device, thereby automating the measurement of microorganisms What has been done is a microorganism measuring device.
【請求項2】 請求項1記載の微生物測定装置におい
て、 前記試料液流入手段は試料液の液圧検出手段を有し、か
つ前記制御手段はこの液圧検出手段より得られる液圧に
基づいて試料液の流入量を制御することを特徴とする微
生物測定装置。
2. The microorganism measuring device according to claim 1, wherein the sample liquid inflow means has a liquid pressure detecting means for the sample liquid, and the control means is based on the liquid pressure obtained by the liquid pressure detecting means. A microorganism measuring device characterized by controlling the inflow of a sample liquid.
【請求項3】 請求項1又は2記載の微生物測定装置に
おいて、 前記微生物測定装置は前記フィルターカートリッジにお
ける試料液の流入量及び微生物破砕液の注入量の検出手
段を有し、前記制御装置は前記試料液の流入量及び微生
物破砕液の注入量の検出手段から得られる試料液の流入
量及び微生物破砕液の注入量に基づいて微生物の濃縮倍
率を算出するとともに、予め前記微生物測定装置に設け
られた出力部にこの濃縮倍率を出力することを特徴とす
る微生物測定装置。
3. The microorganism measuring apparatus according to claim 1 or 2, wherein the microorganism measuring apparatus has means for detecting the inflow amount of the sample liquid and the injecting amount of the crushed microorganism liquid into the filter cartridge, and the control device is the The concentration ratio of microorganisms is calculated based on the inflow amount of the sample liquid and the injection amount of the microbial disruption liquid obtained from the detection means of the inflow amount of the sample liquid and the injection amount of the microbial disruption liquid, and is provided in advance in the microorganism measuring device. The microorganism measuring device, which outputs the concentration factor to the output unit.
【請求項4】 請求項1又は2又は3記載の微生物測定
装置において、 前記微生物測定装置はフィルターカートリッジにおける
試料液流出部を密封する密封手段を有し、かつ前記制御
装置によってこの密封手段を制御することにより、試料
液の濾過を終えた後に前記密封手段により前記フィルタ
ーカートリッジにおける試料液流出部の密閉を行い、 更に、前記微生物破砕器として超音波破砕器を用い、こ
の超音波破砕器に前記フィルターカートリッジを浸漬し
て微生物の超音波破砕を行うことにより、微生物の破砕
を行うことを特徴とする微生物測定装置。
4. The microorganism measuring device according to claim 1, 2 or 3, wherein the microorganism measuring device has a sealing means for sealing a sample liquid outflow portion in the filter cartridge, and the sealing means is controlled by the control device. By doing so, after the filtration of the sample liquid is completed, the sample liquid outflow portion in the filter cartridge is sealed by the sealing means, and further, an ultrasonic crusher is used as the microbial crusher, and the ultrasonic crusher is A microorganism measuring apparatus characterized by crushing microorganisms by immersing a filter cartridge and ultrasonically crushing the microorganisms.
JP7401992A 1992-03-30 1992-03-30 Measuring apparatus for microbe Pending JPH05273217A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7401992A JPH05273217A (en) 1992-03-30 1992-03-30 Measuring apparatus for microbe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7401992A JPH05273217A (en) 1992-03-30 1992-03-30 Measuring apparatus for microbe

Publications (1)

Publication Number Publication Date
JPH05273217A true JPH05273217A (en) 1993-10-22

Family

ID=13534986

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7401992A Pending JPH05273217A (en) 1992-03-30 1992-03-30 Measuring apparatus for microbe

Country Status (1)

Country Link
JP (1) JPH05273217A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5560889A (en) * 1994-05-09 1996-10-01 Toa Medical Electronics Co., Ltd. Sample treatment apparatus
JP2002153297A (en) * 2000-11-24 2002-05-28 Matsushita Electric Ind Co Ltd Method for counting microorganisms and microorganisms counter with pretreatment device
WO2003012397A1 (en) * 2001-07-30 2003-02-13 Matsushita Ecology Systems Co., Ltd. Microorganism-collecting chip, microorganism-collecting kit, method of quantifying microorganisms, specimen for confirming normal state of microorganism-quantifying apparatus and microorganism-quantifying apparatus

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5560889A (en) * 1994-05-09 1996-10-01 Toa Medical Electronics Co., Ltd. Sample treatment apparatus
JP2002153297A (en) * 2000-11-24 2002-05-28 Matsushita Electric Ind Co Ltd Method for counting microorganisms and microorganisms counter with pretreatment device
WO2003012397A1 (en) * 2001-07-30 2003-02-13 Matsushita Ecology Systems Co., Ltd. Microorganism-collecting chip, microorganism-collecting kit, method of quantifying microorganisms, specimen for confirming normal state of microorganism-quantifying apparatus and microorganism-quantifying apparatus
KR100841827B1 (en) * 2001-07-30 2008-06-26 마쓰시타 에코시스테무즈 가부시키가이샤 Microorganism-collecting chip, microorganism-collecting kit, method of quantifying microorganisms, specimen for confirming normal state of microorganism-quantifying apparatus and microorganism-quantifying apparatus
US7947224B2 (en) 2001-07-30 2011-05-24 Matsushita Ecology Systems Co., Ltd. Device for calibrating a microorganism quantifying apparatus

Similar Documents

Publication Publication Date Title
CN101509843B (en) Sampling system for water filtrated by unattended shipborne multichannel film
US6544424B1 (en) Fluid filtration system
EP2010901B1 (en) The ultra filtration system for on-line analyzer
CA2824907C (en) Pneumatic alternating pressure membrane cell separation system
EP1007855A1 (en) Liquid transfer system
CN101592568B (en) Sailing multi-channel membrane filtration suspended particle sampling system
JPH05306978A (en) Microorganism measuring instrument
JPH05273217A (en) Measuring apparatus for microbe
CN106872225A (en) A kind of water sample pretreatment device and its application method
CN209911094U (en) Detect preprocessing equipment of "two worms" content in water
CN116515611A (en) Online sterile cell sampling system and sampling method
JP5003614B2 (en) Biological cell separation method and culture apparatus
CN210480932U (en) Separation and concentration equipment for high-concentration high-chroma high-salinity degradation-resistant organic wastewater
US3733906A (en) Method and apparatus for the continuous withdrawal of samples from industrial process baths or the like for analysis
CN109482069A (en) For the test device of extraordinary tubular membrane
JP6705725B2 (en) Cell separation device and culture device
CN117088527B (en) Continuous monitoring device and monitoring method for degrading sewage by utilizing flora
JPH03147778A (en) Sampling device of culture tank
CN219399298U (en) Filtering and degassing system of micro flow device
CN220684786U (en) Ballast water field concentration device
CN217535631U (en) Pretreatment device for online analysis of wastewater quality
CN220626361U (en) Automatic sampling and detecting system for water quality
CN214503073U (en) On-site rapid enrichment, purification and blow-drying device for target pollutants in water environment
CN211954941U (en) Water pathogen enrichment facility
CN214232985U (en) Solid waste leachate filter residue collection device