JPH05272926A - Step-difference measuring apparatus - Google Patents

Step-difference measuring apparatus

Info

Publication number
JPH05272926A
JPH05272926A JP6812592A JP6812592A JPH05272926A JP H05272926 A JPH05272926 A JP H05272926A JP 6812592 A JP6812592 A JP 6812592A JP 6812592 A JP6812592 A JP 6812592A JP H05272926 A JPH05272926 A JP H05272926A
Authority
JP
Japan
Prior art keywords
light
optical system
reflected light
incident
distance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP6812592A
Other languages
Japanese (ja)
Inventor
Shoichi Tanimura
彰一 谷村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP6812592A priority Critical patent/JPH05272926A/en
Publication of JPH05272926A publication Critical patent/JPH05272926A/en
Withdrawn legal-status Critical Current

Links

Abstract

PURPOSE:To make it possible to measure the step difference without contact on the surface having minute irregularities. CONSTITUTION:In a step-difference measuring apparatus having a cofocal-point optical system 4, a stage 20, on which an object 5 is mounted, can be moved in the direction orthogonal to incident/reflected light 2 with a driving part 21. The light irradiation position on the object 5 is moved into the direction orthogonal to the incident/reflected light 2, and the intensity of the reflected light through the cofocal-point optical system 4 is detected. Thus, the changing waveform of the intensity of the continuous reflected light with respect to the irregularities of the surface of the object 5 is obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、微細な表面の凹凸の深
さを測定する非接触タイプの段差測定装置に関するもの
である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-contact type step measuring device for measuring the depth of fine irregularities on a surface.

【0002】[0002]

【従来の技術】近年、針等により対象物表面に接触する
ことなく行う微細な表面の凹凸の段差測定は、共焦点の
光学系を利用した段差測定装置を用いて行われている。
この従来の段差測定の一例について図面を参照しながら
説明する。図4は従来の共焦点段差測定装置の原理を示
すもので、1は光源、5は対象物、2は光源1から対象
物5の表面に対し入射して反射した入反射光である。9
はピンホール、11はレンズである。6は受光器、10
はビームスプリッタである。3は本光学系の焦点面であ
る。
2. Description of the Related Art In recent years, a step difference measuring device using a confocal optical system has been used to measure a step difference of fine irregularities on a surface without contacting the surface of an object with a needle or the like.
An example of this conventional step measurement will be described with reference to the drawings. FIG. 4 shows the principle of a conventional confocal level difference measuring apparatus, in which 1 is a light source, 5 is an object, and 2 is incident / reflected light that is incident on and reflected from the surface of the object 5 from the light source 1. 9
Is a pinhole, and 11 is a lens. 6 is a light receiver, 10
Is a beam splitter. 3 is a focal plane of the present optical system.

【0003】以上のように構成された段差測定装置の動
作について説明する。まず、図4(a)に示すように、
焦点面3が対象物5の表面と一致している場合、光源1
より発した光はピンホール9によって絞られ、このピン
ホール9を通過した光はレンズ11によって対象物5の
表面に焦点を結ぶ。対象物5の表面で反射した光は同様
にレンズ11によってピンホール9に焦点を結び、ほぼ
全部の光がピンホール9を通過する。ピンホール9を通
過した光はビームスプリッタ10によって反射され、受
光器6に入射する。
The operation of the step measuring device configured as described above will be described. First, as shown in FIG.
When the focal plane 3 coincides with the surface of the object 5, the light source 1
The emitted light is focused by the pinhole 9, and the light passing through the pinhole 9 is focused on the surface of the object 5 by the lens 11. Similarly, the light reflected on the surface of the object 5 is focused on the pinhole 9 by the lens 11, and almost all the light passes through the pinhole 9. The light passing through the pinhole 9 is reflected by the beam splitter 10 and enters the light receiver 6.

【0004】一方、図4(b)に示すように、焦点面3
が対象物5の表面と一致しない場合には、光源1より発
してピンホール9及びレンズ11を経た入射光12は対
象物5表面の一点に絞られることがなく、対象物5での
反射光13はレンズ11を通じてピンホール9に到達し
た時点で広がってしまう。つまり対象物5の表面に入射
した後に反射してきた光の一部のみがピンホール9を通
過する。
On the other hand, as shown in FIG.
Is not coincident with the surface of the object 5, the incident light 12 emitted from the light source 1 and passing through the pinhole 9 and the lens 11 is not focused on a single point on the surface of the object 5, and the reflected light on the object 5 is not reflected. 13 spreads when it reaches the pinhole 9 through the lens 11. That is, only a part of the light reflected after entering the surface of the object 5 passes through the pinhole 9.

【0005】このように、共焦点系の光学系では、焦点
面3に対象物5の表面が一致するか否かで、対象物5の
明るさが異なる。この性質を利用して、光学系の焦点面
3と対象物5の表面とが一致しているか否かを正確に把
握することができる。
As described above, in the confocal optical system, the brightness of the object 5 differs depending on whether the surface of the object 5 coincides with the focal plane 3. By utilizing this property, it is possible to accurately grasp whether or not the focal plane 3 of the optical system and the surface of the object 5 are coincident with each other.

【0006】図5は上記の共焦点の原理を用いた従来の
共焦点光学系段差測定装置の模式図である。1は光源、
5は対象物、2は入反射光であり、4は共焦点の光学系
を略して示したものである。14は観察部である。上記
の原理により、観察部14を通じて見える像は、焦点面
3と対象物5の表面とが一致した場所が明るく見える。
従って、対象物5と光学系4との距離を変化させて、測
定しようとする段差の底部及び上部の面がそれぞれ明る
くなるように一致させ、そのとき、両者の対象物と光学
系との距離の差を測定することにより、段差の大きさが
測定できる。
FIG. 5 is a schematic view of a conventional confocal optical system step measuring apparatus using the above-mentioned principle of confocal. 1 is a light source,
Reference numeral 5 is an object, 2 is incident / reflected light, and 4 is an abbreviated confocal optical system. Reference numeral 14 is an observation section. According to the above-mentioned principle, the image seen through the observation unit 14 looks bright at the position where the focal plane 3 and the surface of the object 5 coincide.
Therefore, the distance between the object 5 and the optical system 4 is changed so that the bottom surface and the upper surface of the step to be measured become bright, and at that time, the distance between the both objects and the optical system. The size of the step can be measured by measuring the difference.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、上記の
ような構成では、焦点面での光の広がりによって決まる
光学系の横方向の分解能に限界があり、対象物5表面の
凹凸の幅が小さくなると、上記分解能の限界により段差
が測定できなくなるという問題点を有していた。
However, in the above-mentioned structure, the lateral resolution of the optical system, which is determined by the spread of light on the focal plane, is limited, and when the width of the unevenness on the surface of the object 5 becomes small. However, there is a problem in that the step cannot be measured due to the above limit of resolution.

【0008】本発明は上記問題点に鑑みてなされたもの
で、その目的は、共焦点光学系段差測定装置に対し微細
な凹凸の段差であってもそれを正確に測定可能とするこ
とにある。
The present invention has been made in view of the above problems, and an object of the present invention is to make it possible to accurately measure even fine steps of unevenness in a confocal optical system step measuring device. ..

【0009】[0009]

【課題を解決するための手段】上記問題点を解決するた
めに、本発明の段差測定装置では、上記した共焦点の光
学系を有する段差測定装置に、対象物表面上の光を照射
する位置を該光と直交する方向に移動させる機能と、対
象物表面上の照射位置を移動しつつ該対象物からの反射
光を受光して強度を電気信号に変化させる機能とを加え
た。
In order to solve the above problems, in a step measuring apparatus of the present invention, a step measuring apparatus having the above confocal optical system is provided with a position for irradiating light on the surface of an object. And a function of moving the irradiation position on the surface of the object and receiving the reflected light from the object to change the intensity into an electric signal.

【0010】すなわち、請求項1の発明では、光を対象
物に照射する光源と、該光源から対象物に照射した光の
対象物からの反射光を共焦点の光学系を経て受光する受
光手段と、上記光学系の焦点距離を変化させ又は対象物
と光学系との距離を変化させる手段と、上記焦点距離の
変化の長さ又は対象物との距離の変化の長さを測定する
手段と、光源により対象物表面上を照射する位置を照射
光と直交する方向に移動させる移動手段と、この移動手
段により対象物表面上の照射位置を移動させたときの上
記受光手段で受光した、対象物からの反射光の強度を電
気信号に変換する手段とを備えたことを特徴とするもの
である。
That is, according to the first aspect of the invention, the light source for irradiating the object with light and the light receiving means for receiving the reflected light from the object of the light emitted from the light source through the confocal optical system. And means for changing the focal length of the optical system or changing the distance between the object and the optical system, and means for measuring the length of the change in the focal length or the change in the distance to the object. A moving means for moving the irradiation position on the surface of the object by the light source in a direction orthogonal to the irradiation light; and an object received by the light receiving means when the irradiation position on the surface of the object is moved by the moving means. And means for converting the intensity of the reflected light from the object into an electric signal.

【0011】[0011]

【作用】本発明では、上記した構成によって、光と直交
する方向の表面の連続した反射光の変化が電気信号とし
て得られるため、その信号の波形から対象物の表面上の
照射位置を明確にすることができる。また、連続した信
号の波形を見ながら焦点面と対象物との距離を変化させ
ることにより、測定位置を明確にしつつ、その部分が焦
点面と一致する距離を求めることができる。つまり、本
発明では、対象物の段差の凹凸の幅が小さい場合でも、
測定位置を正確に決定でき、焦点面との距離を正確に合
わせることができるため、その段差を正確に測定するこ
とが可能となる。
In the present invention, because of the above-described structure, a continuous change in the reflected light on the surface in the direction orthogonal to the light can be obtained as an electric signal. Therefore, the irradiation position on the surface of the object can be clearly defined from the waveform of the signal. can do. Further, by changing the distance between the focal plane and the object while observing the waveform of the continuous signal, it is possible to clarify the measurement position and obtain the distance at which the portion coincides with the focal plane. That is, in the present invention, even when the width of the unevenness of the step of the object is small,
Since the measurement position can be accurately determined and the distance to the focal plane can be accurately adjusted, the step can be accurately measured.

【0012】[0012]

【実施例】以下、本発明の一実施例の段差測定装置につ
いて図面を参照しながら説明する(尚、共焦点光学系段
差測定装置の基本構成は図5で説明したので、図5と同
じ部分については同じ符号を付してその詳細な説明は省
略する)。図1は本発明の実施例における段差測定装置
の概略図を示すものである。図1において、1は光を対
象物5に照射する光源、2は光源1からの照射に伴う対
象物5表面による入反射光、3は焦点面、4は共焦点光
学系、6は反射光を共焦点光学系4を経由して受光する
受光器で、この受光器4には受光機能の他に、受光した
対象物5からの反射光の強度を電気信号に変換する機能
が内蔵されている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A step measuring apparatus according to an embodiment of the present invention will be described below with reference to the drawings (note that since the basic configuration of the confocal optical system step measuring apparatus has been described with reference to FIG. Are denoted by the same reference numerals, and detailed description thereof will be omitted). FIG. 1 is a schematic view of a step measuring apparatus according to an embodiment of the present invention. In FIG. 1, 1 is a light source for irradiating the object 5 with light, 2 is incident light reflected by the surface of the object 5 due to irradiation from the light source 1, 3 is a focal plane, 4 is a confocal optical system, and 6 is reflected light. Is a light receiver for receiving light via the confocal optical system 4. In addition to the light receiving function, the light receiver 4 has a built-in function for converting the intensity of the reflected light from the received object 5 into an electric signal. There is.

【0013】20は対象物5を設置するステージ、21
はステージ20に駆動連結されていて対象物5を駆動す
る駆動部で、ステージ20上に設置された対象物5は、
駆動部21によってステージ20と共に入反射光2と垂
直な方向に移動可能であり、上記駆動部21が、光源1
により対象物5表面上の照射する位置を照射光と直交す
る方向に移動させる移動手段を構成している。
Reference numeral 20 denotes a stage on which the object 5 is set, 21
Is a drive unit that is drivingly connected to the stage 20 and drives the target object 5. The target object 5 installed on the stage 20 is
The drive unit 21 can move in the direction perpendicular to the incident / reflected light 2 together with the stage 20, and the drive unit 21 can move the light source 1
This constitutes a moving means for moving the irradiation position on the surface of the object 5 in the direction orthogonal to the irradiation light.

【0014】上記対象物5は、ステージ20及び駆動部
21と共に光源1及び受光器6を含む共焦点光学系4に
対して接離可能とされており、このことで対象物5と光
学系4との距離を変化させ得る構成とされている。ま
た、そのとき、上記光学系4と対象物5との距離の変化
の長さを測定可能とされている。そして、光源1より発
する光は対象物5の表面に入射して反射し、その入反射
光2は共焦点光学系4を経るようになっている。また、
反射光は受光器6によって検知され、その受光器6で光
の強度を電気信号に変換される。つまり、受光器6は、
光源1から対象物5に照射した光の対象物5からの反射
光を共焦点の光学系4を経て受光する受光手段と、駆動
部21により対象物5表面上の照射位置を移動させたと
きの上記受光手段で受光した、対象物5からの反射光の
強度を電気信号に変換する手段とを構成している。
The object 5 can be brought into contact with and separated from the confocal optical system 4 including the light source 1 and the light receiver 6 together with the stage 20 and the driving section 21, and this allows the object 5 and the optical system 4 to be separated from each other. It is configured to change the distance between and. At that time, the length of change in the distance between the optical system 4 and the object 5 can be measured. The light emitted from the light source 1 is incident on the surface of the object 5 and is reflected, and the incident / reflected light 2 passes through the confocal optical system 4. Also,
The reflected light is detected by the light receiver 6, and the light intensity of the light is converted into an electric signal by the light receiver 6. That is, the light receiver 6 is
When the irradiation position on the surface of the target object 5 is moved by the light receiving means for receiving the reflected light from the target object 5 of the light emitted from the light source 1 to the target object 5 through the confocal optical system 4, and the drive unit 21. And means for converting the intensity of the reflected light from the object 5 received by the light receiving means into an electric signal.

【0015】以上のように構成された段差測定装置の動
作を説明する。図2は図1に示す対象物5表面の段差部
分を拡大して示したものであって、図2(a)に示すよ
うに入反射光2のスポットサイズの方が対象物5表面に
おける段差の凸部7及び凹部8の幅よりも大きいため、
そのままでは対象物5表面の段差を測定できない。この
実施例では、対象物5上の光の照射位置を、ステージ2
0の駆動部21による駆動によって光と垂直方向(図2
の左右方向)に移動させると、図2(b)に示すよう
に、入反射光2の幅内に凸部7が含まれる状態が生じ
る。また、さらにステージ20が移動すると、図2
(c)に示すように入反射光2の幅内に凹部8が含まれ
る状態も生じる。その際、対象物5と焦点面3との距離
を一定に保ち、図2(b)のように焦点面3が凸部7の
表面に近いときには、図2(b)の場合に受光器6が検
知する反射光は最も強く、図2(c)の場合に最も弱く
なる。従って、対象物5の表面段差が図2のような繰返
しパターンである場合、入射光に垂直方向の変位に対す
る受光強度の変化は図3のようになる。つまり、入射光
が凸部7の中心を照射しているときに反射光は最も強
く、凹部8の中心を照射しているときに最も弱くなる。
ここで、受光器6から出力される図3の電気信号を見つ
つ、対象物5を光学系4から移動させてその焦点面3と
の距離を変化させると、図3の信号波形の高さが変化す
るので、その最も高くなる位置が焦点面3と凸部7の表
面とが一致した場合である。逆に、焦点面3を対象物5
の凹部8近くに一致させると、信号波形は逆転し、凹部
8の中央を照射したときに最も受光強度が強くなるの
で、上記の如く焦点面3と対象物5との距離を変化させ
て、凹部8に焦点面3が一致する距離を求める。これら
の距離の差を求めることにより、段差の測定が可能であ
る。
The operation of the step measuring device configured as described above will be described. FIG. 2 is an enlarged view of a stepped portion on the surface of the target object 5 shown in FIG. 1. As shown in FIG. 2A, the spot size of the incident / reflected light 2 is a stepped portion on the surface of the target object 5. Since it is larger than the width of the convex portion 7 and the concave portion 8 of
The level difference on the surface of the object 5 cannot be measured as it is. In this embodiment, the irradiation position of the light on the object 5 is set to the stage 2
Driven by the drive unit 21 of 0 (see FIG. 2).
2B), a state in which the convex portion 7 is included in the width of the incident / reflected light 2 occurs as shown in FIG. 2B. Further, when the stage 20 moves further, FIG.
As shown in (c), a state in which the concave portion 8 is included in the width of the incident / reflected light 2 also occurs. At that time, the distance between the object 5 and the focal plane 3 is kept constant, and when the focal plane 3 is close to the surface of the convex portion 7 as shown in FIG. 2B, the light receiver 6 in the case of FIG. The reflected light detected by is the strongest and the weakest in the case of FIG. Therefore, when the surface step of the object 5 has a repeating pattern as shown in FIG. 2, the change in the received light intensity with respect to the displacement in the direction perpendicular to the incident light is as shown in FIG. That is, the reflected light is the strongest when the incident light illuminates the center of the convex portion 7, and the weakest when the incident light illuminates the center of the concave portion 8.
Here, when the object 5 is moved from the optical system 4 and the distance to the focal plane 3 is changed while observing the electric signal of FIG. 3 output from the light receiver 6, the height of the signal waveform of FIG. Changes, so that the highest position is when the focal plane 3 and the surface of the convex portion 7 coincide with each other. On the contrary, the focal plane 3 is changed to the object 5
When it is made to coincide with the vicinity of the concave portion 8, the signal waveform is inverted, and the received light intensity becomes the highest when the center of the concave portion 8 is irradiated. Therefore, by changing the distance between the focal plane 3 and the object 5 as described above, The distance at which the focal plane 3 coincides with the concave portion 8 is obtained. The step can be measured by obtaining the difference between these distances.

【0016】したがって、本実施例によれば、対象物5
表面上の光を照射する位置を該光と直交する方向に移動
させ、反射光の強度を電気信号に変化させて段差を測定
するので、微細な凹凸の段差であっても、測定場所を正
確に指定しかつ段差を正確に測定することができる。
Therefore, according to this embodiment, the object 5
By moving the position of irradiating light on the surface in the direction orthogonal to the light and changing the intensity of the reflected light to an electric signal to measure the step, even if there is a minute uneven step, the measurement location is accurate. Can be specified and the step can be accurately measured.

【0017】尚、上記した光の照射位置及び焦点面と対
象物との距離は、上記実施例のように対象物の位置を移
動させる場合のみでなく、ミラーやレンズ系の光学的な
手段によって光学系の焦点距離を変化させることで変え
るようにしてもよい。
The light irradiation position and the distance between the focal plane and the object are not limited to the case where the position of the object is moved as in the above-mentioned embodiment, but are determined by optical means such as a mirror or a lens system. It may be changed by changing the focal length of the optical system.

【0018】[0018]

【発明の効果】以上説明したように、本発明によれば、
共焦点光学系を有する段差測定装置に、対象物表面上の
光を照射する位置を光と直交する方向に移動する機能
と、対象物表面上の照射位置を移動しつつ反射光を受光
して強度を電気信号に変化する機能とを設けることによ
って、微細な凹凸であっても、測定場所を正確に指定し
かつ段差を正確に測定することができる。
As described above, according to the present invention,
A step measuring device with a confocal optical system has the function of moving the position of irradiating light on the object surface in the direction orthogonal to the light, and receiving the reflected light while moving the irradiation position on the object surface. By providing the function of changing the intensity into an electric signal, it is possible to accurately specify the measurement location and accurately measure the step even with fine irregularities.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例における段差測定装置の全体
構成を示す概略図である。
FIG. 1 is a schematic diagram showing an overall configuration of a step measuring apparatus according to an embodiment of the present invention.

【図2】実施例における動作説明のために対象物に対す
る入反射光の位置を示す図である。
FIG. 2 is a diagram showing the position of incident / reflected light with respect to an object for explaining the operation in the embodiment.

【図3】実施例における動作説明のための入射光に垂直
方向の変位と受光強度との関係を示すグラフである。
FIG. 3 is a graph showing the relationship between displacement in the direction perpendicular to incident light and received light intensity for explaining the operation in the example.

【図4】共焦点段差測定装置の原理を示す概略図であ
る。
FIG. 4 is a schematic diagram showing the principle of a confocal step difference measuring device.

【図5】従来の段差測定装置の概略図である。FIG. 5 is a schematic view of a conventional step measuring device.

【符号の説明】[Explanation of symbols]

1 光源 2 入反射光 3 焦点面 4 共焦点光学系 5 対象物 6 受光器 7 凸部 8 凹部 20 ステージ 21 駆動部(移動手段) 1 light source 2 incident reflected light 3 focal plane 4 confocal optical system 5 object 6 light receiver 7 convex portion 8 concave portion 20 stage 21 drive unit (moving means)

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 光を対象物に照射する光源と、 上記光源から対象物に照射した光の対象物からの反射光
を共焦点の光学系を経て受光する受光手段と、 上記光学系の焦点距離を変化させ又は対象物と光学系と
の距離を変化させる手段と、 上記焦点距離の変化の長さ又は対象物との距離の変化の
長さを測定する手段と、 光源により対象物表面上を照射する位置を照射光と直交
する方向に移動させる移動手段と、 上記移動手段により対象物表面上の照射位置を移動させ
たときの上記受光手段で受光した反射光の強度を電気信
号に変換する手段とを備えたことを特徴とする段差測定
装置。
1. A light source for irradiating an object with light, a light receiving means for receiving reflected light of the light emitted from the light source onto the object through a confocal optical system, and a focus of the optical system. A means for changing the distance or changing the distance between the object and the optical system, a means for measuring the length of change in the focal length or the distance between the object and the surface of the object by a light source. Moving means for moving the irradiation position in the direction orthogonal to the irradiation light, and converting the intensity of the reflected light received by the light receiving means when the irradiation position on the surface of the object is moved by the moving means into an electric signal. A step measuring device comprising:
JP6812592A 1992-03-26 1992-03-26 Step-difference measuring apparatus Withdrawn JPH05272926A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6812592A JPH05272926A (en) 1992-03-26 1992-03-26 Step-difference measuring apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6812592A JPH05272926A (en) 1992-03-26 1992-03-26 Step-difference measuring apparatus

Publications (1)

Publication Number Publication Date
JPH05272926A true JPH05272926A (en) 1993-10-22

Family

ID=13364717

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6812592A Withdrawn JPH05272926A (en) 1992-03-26 1992-03-26 Step-difference measuring apparatus

Country Status (1)

Country Link
JP (1) JPH05272926A (en)

Similar Documents

Publication Publication Date Title
KR19980063666A (en) Auto focusing method and device
JPH0812046B2 (en) Two-step detection non-contact positioning device
EP0401909A1 (en) Method of and device for determining the position of a surface
JP2533514B2 (en) Depth / thickness measuring device
US4611115A (en) Laser etch monitoring system
WO2003060589A1 (en) Auto focussing device and method
JPH05272926A (en) Step-difference measuring apparatus
US4831272A (en) Apparatus for aligning a reticle mark and substrate mark
JP2663569B2 (en) Laser processing equipment
US4948984A (en) Optical scanning head with objective position measuring and mirrors
JPS63241407A (en) Method and device for measuring depth of fine recessed part
JP3184641B2 (en) Edge detecting device for tapered hole and its depth measuring device
JPS6288906A (en) Measuring method for solid shape
JP2828145B2 (en) Optical section microscope apparatus and method for aligning optical means thereof
JP3967058B2 (en) Method and apparatus for measuring surface shape and thickness of plate-like workpiece
JPH06137827A (en) Optical level difference measuring apparatus
JP2926777B2 (en) Shape measuring device
US4601581A (en) Method and apparatus of determining the true edge length of a body
JPH01304339A (en) Instrument for measuring angle of refraction
SU1629751A1 (en) Scanning differential optical microscope
SU1562689A1 (en) Method and apparatus for determining distance to object surface
RU2018792C1 (en) Method and device for aligning fabric-perot interferometer
JPS61153502A (en) Height detecting device
JPH1026515A (en) Step-measuring apparatus
JPH0648399Y2 (en) Non-contact micro surface abnormality detector

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19990608