JPS6288906A - Measuring method for solid shape - Google Patents

Measuring method for solid shape

Info

Publication number
JPS6288906A
JPS6288906A JP23065185A JP23065185A JPS6288906A JP S6288906 A JPS6288906 A JP S6288906A JP 23065185 A JP23065185 A JP 23065185A JP 23065185 A JP23065185 A JP 23065185A JP S6288906 A JPS6288906 A JP S6288906A
Authority
JP
Japan
Prior art keywords
light
measured
intensity
bright line
image
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23065185A
Other languages
Japanese (ja)
Inventor
Satoshi Itami
伊丹 敏
Fumitaka Abe
文隆 安部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP23065185A priority Critical patent/JPS6288906A/en
Publication of JPS6288906A publication Critical patent/JPS6288906A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To measure a shape with high accuracy by measuring intensity of light of reflected light from a bright line pattern with an optical detector and controlling the intensity of light uniformly so as to make the intensity of light of the reflected light constant based on the measured data. CONSTITUTION:The irradiated light 2 from an emission light source 1 is optically scanned vertically to the surface to be measured and moreover, in the vertical direction while synchronizing the intensity of light with the optical scanning of an optical deflector 4 and modulating the intensity of light by a light modulator 10 so that the intensity of light of the reflected light 9 is made constant based on sampling data. At this time, a bright line image (deformation slit image) 11 formed on the surface to be measured of a solid object 3 to be measured is picked up by two sets of image pickup cameras 12 and 12 arranged at both sides of the emission light source 1 and the position of the surface part to be measured on the bright line image 11 is measured to calculate its shape. The position of the bright line image 11 and the shape of the solid object 3 to be measured can be measured with high accuracy by repeating aforementioned measuring operation while moving the surface to be measured of the solid object 3 to be measured hereafter.

Description

【発明の詳細な説明】 〔概 要〕 本発明は光切断法と三角測量方式の原理を利用して被測
定立体物の形状を非接触で測定するに際し、予め被測定
立体物の被測定面に一定光強度の照射光を光走査し、こ
の時形成される輝線パターンからの反射光の光強度を光
検知器で測定し、その測定データに基づいて前記反射光
の光強度が一定となるように、照射光を光強度変調しな
がら前記被測定面を光走査して、この時に形成される輝
線像(変形スリット像)の光強度を、該被測定立体物の
性状、色合い等にかかわりなく均一に制御することによ
り、精度良く形状測定を行うようにしたものである。
[Detailed Description of the Invention] [Summary] The present invention utilizes the principles of optical section method and triangulation method to measure the shape of a three-dimensional object in a non-contact manner. irradiated light with a constant light intensity is optically scanned, the light intensity of the reflected light from the bright line pattern formed at this time is measured with a photodetector, and the light intensity of the reflected light becomes constant based on the measurement data. As shown in FIG. By uniformly controlling the shape, shape measurement can be performed with high precision.

〔産業上の利用分野〕[Industrial application field]

本発明は光切断法と三角測量方式の原理を利用して、被
測定立体物の形状を非接触で測定する立体形状の測定方
法に係り、特に発光光源からの照射光を被測定立体物の
被測定面に光走査する方法に関するものである。
The present invention relates to a three-dimensional shape measurement method for non-contact measurement of the shape of a three-dimensional object to be measured using the principles of light sectioning and triangulation. The present invention relates to a method of optically scanning a surface to be measured.

外形形状の異なる種々の立体形状物の形状を非接触で測
定する方法として、被測定立体物の被測定面に垂直にレ
ーザ光等を光走査し、この時、該測定面に形成される輝
線像を側方より2台の撮像カメラにより撮像して三角測
量方式の原理により形状測定を行う方法が知られている
As a non-contact method for measuring the shapes of various three-dimensional objects with different external shapes, a laser beam or the like is scanned perpendicularly to the surface of the three-dimensional object to be measured, and at this time, the bright line formed on the measurement surface is measured. A method is known in which an image is captured from the side by two imaging cameras and shape measurement is performed using the principle of triangulation.

このような測定方法においては、被測定立体物の被測定
面にレーザ光等を光走査した際に、該被測定面の輝線像
から反射してくる反射光の光強度が、被III定面の仕
上げ状態及び材質等による色の違いなどにより大きく変
化し、これらの反射光を受光する撮像カメラ中の撮像素
子の出力に飽和、或いは不足が発生し、これに起因して
測定精度が低下する問題があり、かかる問題点の解消が
要望されている。
In such a measurement method, when a laser beam or the like is scanned over the surface of the three-dimensional object to be measured, the light intensity of the reflected light reflected from the bright line image of the surface to be measured is The output of the imaging device in the imaging camera that receives these reflected lights may become saturated or insufficient, resulting in a decrease in measurement accuracy. There are problems, and it is desired to solve these problems.

〔従来の技術〕[Conventional technology]

従来、立体形状物の形状を非接触で測定する方法におい
て、被測定立体物の被測定面に垂直に線状光を照射する
方法としては、■スリットにより形成された線状光パタ
ーンを投射する方法、■単純にスポット状のレーザビー
ム等を光走査する方法、■シリンドリカルレンズを介し
てレーザビーム等を光走査する方法などが用いられてい
る。
Conventionally, in the non-contact method of measuring the shape of a three-dimensional object, the method of irradiating linear light perpendicularly to the surface of the three-dimensional object to be measured is: ■ Projecting a linear light pattern formed by a slit. The following methods are used: (1) A method in which a spot-shaped laser beam or the like is simply optically scanned; (2) A method in which a laser beam or the like is optically scanned through a cylindrical lens.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

ところで、被測定立体物の被測定面にレーザ光等を光走
査した際に、該被測定面に形成される輝線像から反射し
て(る反射光の光強度は、撮像カメラと被測定点の距離
、被測定面の加工仕上げ状態、材質等による色、色調の
違い、或いは大きな凹凸面の違いなどにより大きく変化
し、該輝線像(変形スリット像)に明るい輝線部分と暗
い輝線部分が生じる。そしてこの明暗の差が著しくなる
と、該該−輝線像(変形スリット像)を撮像した撮像カ
メラ中の撮像素子の出力に飽和や不足等が起こる。
By the way, when a laser beam or the like is optically scanned over the measurement surface of a three-dimensional object to be measured, the light intensity of the reflected light (reflected from the bright line image formed on the measurement surface) is determined by the distance between the imaging camera and the measurement point. The bright line image (deformed slit image) will have bright bright line parts and dark bright line parts. When this difference in brightness becomes significant, the output of the image sensor in the image pickup camera that captures the bright line image (modified slit image) becomes saturated or insufficient.

この出力の飽和により輝線像の幅が太くなり、該像の位
置測定の精度が低下する。また出力不足により輝線像が
不明確となり、該像の位置測定が不可能になる欠点があ
った。
Due to this output saturation, the width of the bright line image increases, and the accuracy of position measurement of the image decreases. Furthermore, due to insufficient output, the bright line image becomes unclear, making it impossible to measure the position of the image.

本発明はこのような従来の欠点に鑑みてなされたもので
、その目的とするところは、被測定立体物の被測定面に
レーザ光等を光走査した際に形成される輝線像(変形ス
リット像)の光強度の分布を、該被測定立体物の性状、
色合い等にかかわりなく常に一定レベルとなるように制
御して、精度良く形状測定を行うことを可能とした新規
な立体形状の測定方法をを提供することにある。
The present invention has been made in view of these conventional drawbacks, and its purpose is to eliminate the bright line image (deformed slit the distribution of the light intensity of the image), the properties of the three-dimensional object to be measured,
It is an object of the present invention to provide a novel method for measuring a three-dimensional shape, which makes it possible to perform shape measurement with high precision by controlling the shape to always be at a constant level regardless of the color tone, etc.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は上記目的を達成するため、第1図に示すように
レーザ等からなる発光光源1より出射した照射光2を被
測定立体物3の被測定面に光走査するに先立って、予め
一定光強度の照射光2′を被測定立体物3の被測定面に
光偏向器4によって光走査する。
In order to achieve the above object, the present invention, as shown in FIG. The irradiated light 2' having a light intensity is optically scanned onto the surface to be measured of the three-dimensional object 3 to be measured by the optical deflector 4.

この光走査に伴って該被測定面から反射される反射光5
を撮像カメラ12、または13に隣接して配置した光検
知器6にレンズ7によって集光して結像せしめ、その−
走査分の検出出力を記憶装置8に−は記憶しておき、そ
の検出データに基づいて反射光9の光強度が一定となる
ように、該発光光源1からの照射光2の光強度を光変調
器10により変調制御しながら光走査する。
Reflected light 5 reflected from the surface to be measured along with this optical scanning
is focused by a lens 7 on a photodetector 6 placed adjacent to the imaging camera 12 or 13 to form an image, and the -
The detection output for each scan is stored in the storage device 8, and the light intensity of the irradiation light 2 from the light emitting light source 1 is adjusted based on the detection data so that the light intensity of the reflected light 9 is constant. Optical scanning is performed while modulation is controlled by the modulator 10.

〔作 用〕[For production]

このような光走査方法により、前記被測定立体物3の被
測定面に形成された輝線像(変形スリット像)11の光
強度の分布が、該被測定立体物3の性状、色合い等にか
かわりなく一定となり、該輝線像11を発光光源1の両
側方に配置された2台の撮像カメラ12.13により撮
像して該輝線像11上の被測定面部分の位置測定を行う
ことにより、該像11の位置測定を精度よく行うことが
可能となる。
With such a light scanning method, the distribution of the light intensity of the bright line image (deformed slit image) 11 formed on the surface to be measured of the three-dimensional object 3 to be measured depends on the properties, color tone, etc. of the three-dimensional object 3 to be measured. By capturing the bright line image 11 with two imaging cameras 12.13 placed on both sides of the light emitting light source 1 and measuring the position of the surface to be measured on the bright line image 11, the bright line image 11 becomes constant. It becomes possible to measure the position of the image 11 with high precision.

因に、光強度Pを有する照射光2を被測定面に一走査し
た際に、撮像カメラ12.’ 13の撮像素子に受光さ
れた反射光9の光強度を時間の関数I (tlとすれば
、減衰率「(【)は次式によって求められる。
Incidentally, when the irradiation light 2 having the light intensity P is scanned over the surface to be measured, the imaging camera 12. If the light intensity of the reflected light 9 received by the image sensor 13 is a function of time I (tl), then the attenuation rate "([)" can be obtained by the following equation.

r(t)=  f(tl ・ P f(tl−I(tl/ P ここで反射光9の光強度が一定(C)であるための条件
は、変調関数をG (11とすれば、次式で表される。
r(t)=f(tl・P f(tl−I(tl/P) Here, the condition for the light intensity of the reflected light 9 to be constant (C) is as follows if the modulation function is G (11) Expressed by the formula.

f(tl・ G(t) = に の変調関数G(tlは上式を変形して次式で表される。f(tl・G(t)= to The modulation function G(tl is expressed by the following equation by modifying the above equation.

G(t)= C/ f(tl= P −C/ I(t)
このCの値は撮像素子の飽和する出力よりも多少、小さ
い値にすることが望ましい。
G(t)=C/f(tl=P-C/I(t)
It is desirable that the value of C be set to a value somewhat smaller than the saturated output of the image sensor.

〔実施例〕〔Example〕

以下図面を用いて本発明の実施例について詳細に説明す
る。
Embodiments of the present invention will be described in detail below with reference to the drawings.

第1図は本発明に係る立体形状の測定方法を説明するた
めの測定光学系の一実施例を示す構成図である。
FIG. 1 is a configuration diagram showing an embodiment of a measuring optical system for explaining a method for measuring a three-dimensional shape according to the present invention.

図示のように、先ずレーザ等からなる発光光源1より出
射した一定光強度の照射光2゛を被測定立体物3の被測
定面に、例えばガルバノミラ−1或いは回転多面鏡等か
らなる光偏向器4によって上下方向に光走査する。
As shown in the figure, first, irradiation light 2' of a constant light intensity emitted from a light emitting source 1 consisting of a laser or the like is applied to a surface to be measured of a three-dimensional object 3 to be measured using a light deflector such as a galvanometer mirror 1 or a rotating polygon mirror. 4 to perform optical scanning in the vertical direction.

この光走査によって該被測定面から反射される反射光5
は、レンズ7を介して、例えば撮像カメラ12に隣接し
て配置された光電子増倍管等からなる光検知器6に集光
され、この−走査分の反射光5の検出光強度をサンプリ
ング、或いは逆数演算後、サンプリングして記憶装置8
に一旦記憶しておく。
Reflected light 5 reflected from the surface to be measured by this optical scanning
is focused through a lens 7 on a photodetector 6 consisting of, for example, a photomultiplier tube placed adjacent to the imaging camera 12, and the detected light intensity of this -scanning reflected light 5 is sampled. Alternatively, after reciprocal calculation, it is sampled and stored in the storage device 8.
Please remember it once.

次に、そのサンプリングデータに基づいて前記発光光源
1からの照射光2を、その光強度を光変調器10により
反射光9の光強度が一定となるように、光偏向器4の光
走査に同期させて光強度変調しながら前記被測定面に対
して垂直に、かつ上下方向に光走査する。
Next, based on the sampling data, the irradiated light 2 from the light emitting light source 1 is changed in intensity by the optical modulator 10 to the optical scanning of the optical deflector 4 so that the intensity of the reflected light 9 is constant. The light is scanned perpendicularly to the surface to be measured in the vertical direction while modulating the light intensity in synchronization.

この時、前記被測定立体物3の被測定面に形成された輝
線像(変形スリット像)11を発光光源1の両側方に配
置された2台の撮像カメラ12.13により撮像して該
輝線像11上の被測定面部分の位置測定を行い、その形
状を計算する。
At this time, the bright line image (modified slit image) 11 formed on the surface to be measured of the three-dimensional object 3 to be measured is imaged by two imaging cameras 12 and 13 arranged on both sides of the light emitting light source 1, and the bright line image is The position of the surface to be measured on the image 11 is measured, and its shape is calculated.

以下、該被測定立体物3の被測定面を移動しながら上記
測定操作を繰り返すことにより、前記輝線像11の位置
測定、及び被測定立体物3の形状測定を精度よく行うこ
とが可能となる。
Thereafter, by repeating the above measurement operation while moving the surface to be measured of the three-dimensional object to be measured 3, it becomes possible to accurately measure the position of the bright line image 11 and the shape of the three-dimensional object to be measured 3. .

尚、本実施例では発光光源1として、一般的なレーザ等
を適用した場合の例゛:ついて説明したが、集束レンズ
と半導体レーザとを組み合わせて成るレーザモジュール
を用いても良く、該レーザモジュールを用いた場合には
、半導体レーザ自身で出射するレーザ光の光強度の変調
が可能であることから、光変調器を別に設ける必要はな
い。
In this embodiment, an example in which a general laser or the like is applied as the light emitting light source 1 has been described, but a laser module formed by combining a focusing lens and a semiconductor laser may also be used. When using a semiconductor laser, it is possible to modulate the light intensity of the laser light emitted by the semiconductor laser itself, so there is no need to provide a separate optical modulator.

第2図は本発明に係る立体形状の測定方法を説明するた
めの測定光学系の他の実施例を示す概略構成平面図であ
る。
FIG. 2 is a schematic plan view showing another embodiment of the measuring optical system for explaining the three-dimensional shape measuring method according to the present invention.

本実施例が第1図の実施例と異なるところは、発光光源
1として集束レンズと半導体レーザとを組み合わせて成
るレーザモジュールを用いると共に、被測定立体物3に
対する光偏向器4の光軸上にスリット状孔22付きの球
面鏡21、或いは放物面鏡を配置して該被測定立体物3
の被測定面から反射される反射光5を効率よく集光して
光検知器6に入射させるようにしたことである。
This embodiment differs from the embodiment shown in FIG. A spherical mirror 21 with a slit-like hole 22 or a parabolic mirror is arranged to measure the three-dimensional object 3.
The reflected light 5 reflected from the surface to be measured is efficiently collected and made to enter the photodetector 6.

この実施例の方法によっても前記第1図の実施例と同様
の効果が得られる。
The method of this embodiment also provides the same effects as the embodiment of FIG. 1.

尚、光検知器6の配置位置は、反射光を受光する角度に
より光強度が異なることから、特に被I11定立体物3
における被測定面の凹凸が小さい場合には、撮像カメラ
12、又は13にできるだけ近く配置することが好まし
い。
Note that the placement position of the photodetector 6 should be determined especially when the light intensity is different depending on the angle at which the reflected light is received.
When the surface to be measured has small irregularities, it is preferable to arrange it as close as possible to the imaging camera 12 or 13.

更に、被測定立体物3の被測定面に対する走査ビームの
位置を光偏向器4にフィードバックするために、光検知
器6を被測定立体物3の載置台の近傍に設置して、該光
検知器6にて走査ビーム位置を検出した時間を被測定立
体物3の被測定面に対する照射光の光強度変調のタイミ
ングとすることにより変調制御の精度を向上することが
可能となる。
Furthermore, in order to feed back the position of the scanning beam with respect to the surface to be measured of the three-dimensional object to be measured 3 to the optical deflector 4, a photodetector 6 is installed near the mounting table of the three-dimensional object to be measured 3, and the photodetector 6 is used to detect the light. By using the time when the scanning beam position is detected by the device 6 as the timing for modulating the light intensity of the irradiated light onto the surface to be measured of the three-dimensional object 3 to be measured, it is possible to improve the accuracy of modulation control.

〔発明の効果〕〔Effect of the invention〕

以上の説明から明らかなように、本発明に係る立体形状
の測定方法によれば、被測定立体物の被測定面にレーザ
光等を光走査した際に形成される輝線像(変形スリット
像)の光強度が、該被測定立体物の性状、色合い及び凹
凸等にかかわりなく一定レベルとなるように制御するこ
とが可能となり、該輝線像の位置及び立体物の形状を光
切断法と三角測量の原理を利用して精度よく測定するこ
とが出来る優れた利点を有し、被測定面の性状、色合い
及び凹凸等の異なる種々の外形形状を有する立体物の形
状測定に適用して極めて有利である。
As is clear from the above description, according to the method for measuring a three-dimensional shape according to the present invention, a bright line image (deformed slit image) is formed when a laser beam or the like is scanned over the surface of a three-dimensional object to be measured. It is now possible to control the light intensity at a constant level regardless of the properties, hue, unevenness, etc. of the three-dimensional object to be measured, and the position of the bright line image and the shape of the three-dimensional object can be determined by light sectioning and triangulation. It has the excellent advantage of being able to measure accurately using the principle of be.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る立体形状の測定方法を説明するた
めの測定光学系の一実施例を 示す概略構成斜視図、 第2図は本発明に係る立体形状の測定方法を説明するた
めの測定光学系の他の実施例 を示す概略構成平面図である。 第1図及び第2図において、 1は発光光源、2.2゛は照射光、3は被測定立体物、
4は光偏向器、5.9は反射光、6は光検出器、7は集
光レンズ、8は記憶装置、10は光変調器、11は輝線
像、12.13は撮像カメラ、21はスリット状孔22
付き球面鏡をそれぞれ示す。
FIG. 1 is a schematic perspective view showing an embodiment of a measuring optical system for explaining the method for measuring a three-dimensional shape according to the present invention, and FIG. FIG. 7 is a schematic configuration plan view showing another example of the measurement optical system. In Figures 1 and 2, 1 is a light emitting source, 2.2 is an irradiation light, 3 is a three-dimensional object to be measured,
4 is a light deflector, 5.9 is reflected light, 6 is a photodetector, 7 is a condensing lens, 8 is a storage device, 10 is a light modulator, 11 is a bright line image, 12.13 is an imaging camera, 21 is Slit hole 22
Each shows a spherical mirror with a

Claims (1)

【特許請求の範囲】 発光光源(1)からの照射光(2)を被測定立体物(3
)の被測定面に光走査した際に形成される輝線パターン
(11)を光切断法により計測し、三角測量方式の原理
を利用して該被測定立体物(3)の形状を測定する方法
において、 前記照射光(2)を被測定面に光走査するに先立って、
予め発光光源(1)からの一定光強度の照射光(2′)
を被測定立体物(3)の被測定面に光走査し、この時形
成される輝線パターン(11)からの反射光(5)の光
強度を光検知器(6)で測定し、その測定データに基づ
いて前記反射光(9)の光強度が一定となるように、該
発光光源(1)からの照射光(2)を光強度変調しなが
ら前記被測定面に光走査することを特徴とする立体形状
の測定方法。
[Claims] The irradiation light (2) from the light emitting light source (1) is transmitted to the three-dimensional object to be measured (3).
) A method of measuring the shape of the three-dimensional object (3) by measuring the bright line pattern (11) formed when the surface to be measured is scanned with light using a light cutting method, and using the principle of triangulation method. In, prior to scanning the irradiation light (2) on the surface to be measured,
Irradiated light (2') with a constant light intensity from a pre-emitted light source (1)
is scanned with light onto the surface to be measured of the three-dimensional object to be measured (3), and the light intensity of the reflected light (5) from the bright line pattern (11) formed at this time is measured by the photodetector (6). The irradiated light (2) from the light emitting light source (1) is optically scanned over the surface to be measured while modulating the light intensity so that the light intensity of the reflected light (9) is constant based on data. A method for measuring three-dimensional shapes.
JP23065185A 1985-10-15 1985-10-15 Measuring method for solid shape Pending JPS6288906A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23065185A JPS6288906A (en) 1985-10-15 1985-10-15 Measuring method for solid shape

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23065185A JPS6288906A (en) 1985-10-15 1985-10-15 Measuring method for solid shape

Publications (1)

Publication Number Publication Date
JPS6288906A true JPS6288906A (en) 1987-04-23

Family

ID=16911134

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23065185A Pending JPS6288906A (en) 1985-10-15 1985-10-15 Measuring method for solid shape

Country Status (1)

Country Link
JP (1) JPS6288906A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5376796A (en) * 1992-11-25 1994-12-27 Adac Laboratories, Inc. Proximity detector for body contouring system of a medical camera
WO2007125081A1 (en) * 2006-04-27 2007-11-08 Metris N.V. Optical scanning probe
JP2008096117A (en) * 2006-10-05 2008-04-24 Keyence Corp Optical displacement meter, optical method and program for recording displacement, computer-readable recording medium, and apparatus with the program stored
JP2011089927A (en) * 2009-10-23 2011-05-06 Fujitsu Ltd Optical scanning apparatus and optical scanning method
JP2016534346A (en) * 2013-08-20 2016-11-04 グーグル インコーポレイテッド Apparatus and method for rotating LIDAR platform with shared transmission / light receiving path

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5376796A (en) * 1992-11-25 1994-12-27 Adac Laboratories, Inc. Proximity detector for body contouring system of a medical camera
WO2007125081A1 (en) * 2006-04-27 2007-11-08 Metris N.V. Optical scanning probe
JP2009534969A (en) * 2006-04-27 2009-09-24 スリーディー スキャナーズ リミテッド Optical scanning probe
US8117668B2 (en) 2006-04-27 2012-02-14 Stephen James Crampton Optical scanning probe
US8353059B2 (en) 2006-04-27 2013-01-08 Metris N.V. Optical scanning probe
JP2008096117A (en) * 2006-10-05 2008-04-24 Keyence Corp Optical displacement meter, optical method and program for recording displacement, computer-readable recording medium, and apparatus with the program stored
JP2011089927A (en) * 2009-10-23 2011-05-06 Fujitsu Ltd Optical scanning apparatus and optical scanning method
JP2016534346A (en) * 2013-08-20 2016-11-04 グーグル インコーポレイテッド Apparatus and method for rotating LIDAR platform with shared transmission / light receiving path

Similar Documents

Publication Publication Date Title
US7679723B2 (en) Measuring device and method that operates according to the basic principles of confocal microscopy
US4629324A (en) Arrangement for measuring depth based on lens focusing
US6459493B1 (en) Apparatus for measuring surface form
JP2002131016A (en) Apparatus and method of distance measurement
US6052189A (en) Height measurement device and height measurement method
US5101442A (en) Three-dimensional imaging technique using sharp gradient of illumination
JPH0585845B2 (en)
JP2002542042A (en) Laser calibration device and method
JP2002139304A (en) Distance measuring device and distance measuring method
US4657393A (en) Pattern optimization when measuring depth to a surface using lens focusing
US5048965A (en) Three-dimensional imaging technique with occlusion avoidance
JPS6288906A (en) Measuring method for solid shape
US20010022829A1 (en) Method of setting a position of an object of measurement in layer thickness measurement by x-ray fluorescence
JPS63127106A (en) Method for measuring three-dimensional shape
JP3184641B2 (en) Edge detecting device for tapered hole and its depth measuring device
JP2002131017A (en) Apparatus and method of distance measurement
JPS63127105A (en) Method for measuring three-dimensional shape
EP0235941B1 (en) Surface measurement
JPH0560529A (en) Height measuring device
JPS63127107A (en) Method for measuring three-dimensional shape
US3713739A (en) Method for gauging the linear cross-sectional dimensions of moving rolled products and an apparatus for its realization
JPS59164910A (en) Distance measuring apparatus
JPH07198348A (en) Measurement device of surface shape
JPH0560553A (en) Height measuring apparatus
JPH0285704A (en) Gap measuring instrument