JPH05272917A - Displacement measuring apparatus - Google Patents

Displacement measuring apparatus

Info

Publication number
JPH05272917A
JPH05272917A JP6727492A JP6727492A JPH05272917A JP H05272917 A JPH05272917 A JP H05272917A JP 6727492 A JP6727492 A JP 6727492A JP 6727492 A JP6727492 A JP 6727492A JP H05272917 A JPH05272917 A JP H05272917A
Authority
JP
Japan
Prior art keywords
light
displacement
receiving surface
dimensional
spot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6727492A
Other languages
Japanese (ja)
Other versions
JP2524048B2 (en
Inventor
Chiyoharu Horiguchi
千代春 堀口
Koji Ichie
更治 市江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hamamatsu Photonics KK
Original Assignee
Hamamatsu Photonics KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hamamatsu Photonics KK filed Critical Hamamatsu Photonics KK
Priority to JP4067274A priority Critical patent/JP2524048B2/en
Publication of JPH05272917A publication Critical patent/JPH05272917A/en
Application granted granted Critical
Publication of JP2524048B2 publication Critical patent/JP2524048B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Abstract

PURPOSE:To make it possible to measure the relative three-dimensional displacement in high resolution without a powerfull light source by projecting a plurality of light beams on the light receiving surface of a two-dimensional incident-light-position detecting element, and operating the amount of the displacement at each incident spot position, respectively. CONSTITUTION:The luminous fluxes emitted from light sources 3 and 5, which are provided on a reference supporting stage 1, are condensed on the light receiving surface of a two-dimensional semiconductor position detector (two-dimensional PSD), which is provided on a material to be measured 2 through light projecting lenses 4 and 5 provided at a specified interval B. At this time, the light sources 3 and 5 are alternately lit and driven in time division. Thus, the approximately entire emitted luminous fluxes are condensed on the light receiving surface of the two-dimensional PSD. When the directions, which are in parallel with two longitudinal and lateral sides of the material to be measured 2 are made to be the (x) axis and (z) axis, and the direction orthogonal to two sides is made to be the (y) axis, the amounts of displacements DELTAx, DELTAy and DELTAz of the axes (x), (y) and (z) of the material to be measured have the relationships with the amounts of diaplacements of the spot lights C1, C2 and C3 as DELTAx=-C1, DELTAy=-C2 and DELTAz=C3L/B. L is the interval between the lenses 4 and 6 and the two-dimensional PSD. The amount of displacement of each spot light is obtained, and the three-dimensional displacement of the material to be measured 2 can be measured in high resolution without a powerful light source.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は光学式の変位計測装置に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical displacement measuring device.

【0002】[0002]

【従来の技術】従来、被測定物の変位量を非接触で計測
する方法として、被測定物上に光源を設置し、2つの二
次元用半導体位置検出器(二次元PSD)を基準となる
位置に一定間隔で設置し、受光レンズにより2つのPS
Dに集光して入射する光点位置の変位量から、被測定物
の変位量を検出する方式がよく用いられていた。
2. Description of the Related Art Conventionally, as a method of non-contactly measuring a displacement amount of an object to be measured, a light source is installed on the object to be measured and two two-dimensional semiconductor position detectors (two-dimensional PSD) are used as a reference. Installed at regular intervals in two positions, and two PS by the light receiving lens
A method of detecting the amount of displacement of the object to be measured from the amount of displacement of the position of the light spot that is condensed and incident on D is often used.

【0003】第7図は、一般的な一次元PSDの構成
図、第8図は第7図のPSDを用いた変位計測装置の構
成図である。
FIG. 7 is a block diagram of a general one-dimensional PSD, and FIG. 8 is a block diagram of a displacement measuring device using the PSD of FIG.

【0004】第7図において一般的なPSD25は、N
+ 型半導体層27と、高抵抗のN型半導体層28と、抵
抗率が均一なP型半導体層29とが順次に積層されて形
成されている。N型半導体層28およびP型半導体層2
9はフォトダイオードを構成しており、N+ 型半導体層
27にはフォトダイオードに逆バイアスの電圧を印加す
るための共通電極30が設けられている。また、P型半
導体層29の両端部には一対の電極31,32が設けら
れている。
In FIG. 7, a general PSD 25 is N
A + -type semiconductor layer 27, a high-resistance N-type semiconductor layer 28, and a P-type semiconductor layer 29 having a uniform resistivity are sequentially stacked. N-type semiconductor layer 28 and P-type semiconductor layer 2
Reference numeral 9 denotes a photodiode, and the N + type semiconductor layer 27 is provided with a common electrode 30 for applying a reverse bias voltage to the photodiode. Further, a pair of electrodes 31 and 32 are provided on both ends of the P-type semiconductor layer 29.

【0005】このPSD25の共通電極30に所定の電
圧を印加し、位置SPのところに光点が入射したとする
と、位置SPの下方のP型半導体層29とN型半導体層
28とのpn接合部には電子−正孔対が生じ、これによ
り光点の入射エネルギーに比例した光電流IO が共通電
極30からP型半導体層29に向って流れる。
When a predetermined voltage is applied to the common electrode 30 of the PSD 25 and a light spot is incident on the position SP, the pn junction between the P-type semiconductor layer 29 and the N-type semiconductor layer 28 below the position SP. An electron-hole pair is generated in the portion, and as a result, a photocurrent I O proportional to the incident energy of the light spot flows from the common electrode 30 toward the P-type semiconductor layer 29.

【0006】ところで、電極31,32間の距離をcと
し、その間のP型半導体層29の抵抗をRC とし、さら
に光点入射位置SPと電極32との間の距離をxとし、
その間のP型半導体層29の抵抗をRX とすれば、光電
流IO は光点入射位置SPのところで、P型半導体層2
9の抵抗によって分割される。すなわち、電極31への
電流IA および電極32への電流IB は、それぞれ、電
極31と光点入射位置SPとの間のP型半導体層29の
抵抗(RC −RX )、電極32と光点入射位置SPとの
間のP型半導体層29の抵抗RX に反比例するように分
割され、 IA =IO ・〔RX /RC 〕 IB =IO ・〔(RC −RX )/RC 〕…(1) のようになる。
By the way, the distance between the electrodes 31 and 32 is c, the resistance of the P-type semiconductor layer 29 between them is R C, and the distance between the light spot incident position SP and the electrode 32 is x.
If the resistance of the P-type semiconductor layer 29 in the meantime is R X , the photocurrent I O is at the light spot incident position SP.
Divided by 9 resistors. That is, the current I A to the electrode 31 and the current I B to the electrode 32 are respectively the resistance (R C −R X ) of the P-type semiconductor layer 29 between the electrode 31 and the light spot incident position SP, and the electrode 32. It is divided in inverse proportion to the resistance R X of the P-type semiconductor layer 29 between the light spot incident position SP and, I a = I O · [R X / R C] I B = I O · [(R C -R X ) / R C ] ... (1)

【0007】前述のように、P型半導体層29の抵抗率
は均一に分布しているので、抵抗RX ,RC は距離x,
cにそれぞれ同じ比例定数で比例する。
As described above, since the resistivity of the P-type semiconductor layer 29 is uniformly distributed, the resistances R X and R C are the distance x,
It is proportional to c with the same proportionality constant.

【0008】従って、(1)式は、 IA =IO ・x/c IB =IO ・〔(c−x)/c〕 …(2) のように表現される。Therefore, the equation (1) is expressed as follows: I A = I O · x / c I B = I O · [(c−x) / c] (2)

【0009】(2)式からわかるように、電流IA ・I
B を電極31,32から取り出し、所定の演算回路(図
示せず)において所定のアナログ演算処理を施すこと
で、電極32から光点入射位置SPまでの距離xを求め
ることができる。
As can be seen from the equation (2), the current I A · I
The distance x from the electrode 32 to the light spot incident position SP can be obtained by taking B out of the electrodes 31 and 32 and performing a predetermined analog calculation process in a predetermined calculation circuit (not shown).

【0010】第7図は一次元計測用の半導体位置検出器
(一次元PSD)の構成で図示されているが、同図の紙
面に垂直の方向にも一対の電極を配置することにより、
二次元計測用のPSD(例えば浜松ホトニクス(株)の
S1200等)を実現することができる。
FIG. 7 shows the structure of a semiconductor position detector (one-dimensional PSD) for one-dimensional measurement. By arranging a pair of electrodes also in the direction perpendicular to the paper surface of the same figure,
It is possible to realize a PSD for two-dimensional measurement (for example, S1200 of Hamamatsu Photonics KK).

【0011】第8図において、一般的な変位計測装置
は、被測定物9上に光源10を設置し、基準となる支持
台15上に2式の受光レンズ11,13と二次元PSD
12,14を設置した構成になっている。同図におい
て、各座標軸は図示した矢印のごとく、x軸、z軸また
紙面に垂直な方向をy軸に設定する。光源10の発光光
束の一部は受光レンズ11及び13により、二次元PS
D12及び14の受光面上に集光される。
In FIG. 8, in a general displacement measuring apparatus, a light source 10 is installed on an object 9 to be measured, and two sets of light receiving lenses 11 and 13 and a two-dimensional PSD are mounted on a supporting base 15 as a reference.
It has a configuration in which 12, 14 are installed. In the figure, each coordinate axis is set to the x axis, the z axis, or the y axis in the direction perpendicular to the paper surface as shown by the arrow. A part of the luminous flux of the light source 10 is received by the light-receiving lenses 11 and 13 to generate a two-dimensional PS.
The light is condensed on the light receiving surfaces of D12 and D14.

【0012】ここで、受光レンズ11と13の間隔を2
B、受光レンズ11,13と二次元PSD12,14の
間隔をfとし、光源10と受光レンズ11,13の間隔
をLとすると、被測定物9のx軸及びy軸の変位量△x
0 ,△yO に対して、二次元PSD12及び14の受光
面上に集光されたスポット光の変位量△x1 ,△y1
の間には、下記の(3)式及び(4)式の関係が成り立
つ。
Here, the distance between the light receiving lenses 11 and 13 is 2
B, the distance between the light receiving lenses 11 and 13 and the two-dimensional PSDs 12 and 14 is f, and the distance between the light source 10 and the light receiving lenses 11 and 13 is L, the displacement Δx of the DUT 9 on the x-axis and the y-axis.
With respect to 0 and Δy O , between the displacement amounts Δx 1 and Δy 1 of the spot light focused on the light receiving surfaces of the two-dimensional PSDs 12 and 14, the following formula (3) and (4 ) The relationship of formula is established.

【0013】 △x1 =−(f/L)△x0 …(3) △y1 =−(f/L)△y0 …(4) また、z軸方向の変位量△z0 に対して、二次元PSD
12及び14の受光面上に集光されたスポット光の変位
量をそれぞれ△z12,△z14とすると、下記の(5),
(6)式の関係が成り立つ。
[0013] △ x 1 = - (f / L) △ x 0 ... (3) △ y 1 = - Further (f / L) △ y 0 ... (4), relative displacement △ z 0 of the z-axis direction Two-dimensional PSD
When the displacement amounts of the spot lights focused on the light receiving surfaces of 12 and 14 are Δz 12 and Δz 14 , respectively, the following (5),
The relationship of equation (6) holds.

【0014】 △z12=B・f{1/(L−△z0 )−1/L} …(5) △z14=−B・f{1/(L−△z0 )−1/L}…(6) 2つの二次元PSDより検出されるスポット光の変位量
△x1 ,△y1 ,△z12,△z14より、逆に被測定物9
の三次元変位量を求めることができる。
Δz 12 = B · f {1 / (L−Δz 0 ) −1 / L} (5) Δz 14 = −B · f {1 / (L−Δz 0 ) −1 / L} ... (6) the amount of displacement of the two spots light detected from the two-dimensional PSD △ x 1, △ y 1 , △ z 12, △ than z 14, the object to be measured in the opposite 9
The three-dimensional displacement amount of can be obtained.

【0015】[0015]

【発明が解決しようとする課題】このような変位計測装
置にPSDを用いる利点は、次の通りである。すなわ
ち、受光面上に集光されたスポット光の位置を求めるた
めに、(1)式より信号光電流を抵抗分割して検出して
いるため、CCDカメラと異なりPSDでは、無段階の
位置検出が可能なことである。しかし、実際にはPSD
及び信号光電流の増幅回路で発生する雑音のために、位
置分解能は信号光電流値対増幅回路への入力換算雑音電
流値の比で制限されてしまう。即ち、PSDに入射する
信号光の強度が大きい程、位置分解能を向上できること
になる。
The advantages of using a PSD in such a displacement measuring device are as follows. That is, in order to obtain the position of the spot light focused on the light receiving surface, the signal photocurrent is detected by resistance division according to the equation (1). Is possible. But in reality PSD
Also, due to the noise generated in the amplifier circuit of the signal photocurrent, the position resolution is limited by the ratio of the signal photocurrent value to the noise equivalent current value converted into the amplifier circuit. That is, as the intensity of the signal light incident on the PSD is higher, the position resolution can be improved.

【0016】従来の変位計測装置においては、被測定物
上に設置された光源の発光光束のうち、ごく一部を受光
レンズによりPSDの受光面上に集光しているため、高
分解能を得るためには光源の発光強度を非常に大きくし
なければならない。また、PSDの受光面に集光された
スポット光の変位量は、(3)式及び(4)式に示され
るごとく、“光源と受光レンズ”の間隔Lと“受光レン
ズとPSD”の間隔fの比になるために、間隔Lを長く
とる必要のある計測系においては、受光レンズ系が非常
に大型化してしまい、実用に適さないという問題があっ
た。
In the conventional displacement measuring device, only a small part of the luminous flux of the light source installed on the object to be measured is focused on the light receiving surface of the PSD by the light receiving lens, so that high resolution is obtained. In order to do so, the light emission intensity of the light source must be extremely high. Further, the displacement amount of the spot light focused on the light receiving surface of the PSD is, as shown in the equations (3) and (4), the distance L between the “light source and the light receiving lens” and the distance between the “light receiving lens and the PSD”. In the measurement system in which the distance L needs to be long because of the ratio of f, the light receiving lens system becomes very large, which is not suitable for practical use.

【0017】上記の問題に加えて、従来装置では一応、
三次元変位量は計測できるものの、被測定物が各座標軸
上での回転変位を伴う場合、この変位量を計測できない
という問題があった。本発明は、これら問題点を解決す
ることを課題とする。
In addition to the above problems, in the conventional device,
Although the three-dimensional displacement amount can be measured, there is a problem in that the displacement amount cannot be measured when the object to be measured is accompanied by rotational displacement on each coordinate axis. An object of the present invention is to solve these problems.

【0018】[0018]

【課題を解決するための手段】本発明の係る変位計測装
置は、第1の物体と第2の物体の間の相対的な変位を光
学的に計測する変位計測装置において、第1の物体に取
り付けられた二次元光入射位置検出素子と、第2の物体
に所定の間隔で取り付けられ、二次元光入射位置検出素
子の受光面にそれぞれ光ビームを投射する複数の投光手
段と、受光面における光ビームの入射スポット位置の変
位量をそれぞれ演算する演算手段とを備え、演算された
変位量にもとづき第1,第2物体間の相対的変位を計測
することを特徴とする。
A displacement measuring device according to the present invention is a displacement measuring device for optically measuring a relative displacement between a first object and a second object. The attached two-dimensional light incident position detecting element, a plurality of light emitting means attached to the second object at a predetermined interval and projecting a light beam on the light receiving surface of the two-dimensional light incident position detecting element, and the light receiving surface. And a calculation means for calculating the displacement amount of the incident spot position of the light beam, and the relative displacement between the first and second objects is measured based on the calculated displacement amount.

【0019】[0019]

【作用】本発明の構成によれば、第1の物体と第2の物
体の間で相対的な変位があると、投光手段からの投光ビ
ームのスポット光位置が受光面上で変位する。ここにお
いて、本発明の変位計測装置においては、光源の発光光
束のほぼ全部を半導体位置検出器の受光面上に集光でき
るため、強力な光源を必要とせず、高分解能の三次元変
位と回転変位を計測する変位計測装置を実現させること
ができる。
According to the structure of the present invention, when there is a relative displacement between the first object and the second object, the spot light position of the projection beam from the projection means is displaced on the light receiving surface. .. Here, in the displacement measuring device of the present invention, since almost all of the luminous flux of the light source can be focused on the light receiving surface of the semiconductor position detector, a strong light source is not required, and high resolution three-dimensional displacement and rotation are possible. A displacement measuring device that measures displacement can be realized.

【0020】[0020]

【実施例】図1は本発明の変位計測装置における一実施
例を示す。同図において、基準となる支持台1に2式の
光源3,5と投光レンズ4,6を所定の間隔に設置し、
2つの光源3及び5の発光光束を各投光レンズ4,6に
より、被測定物2の上に設置された二次元PSDの受光
面上に集光させる。光源3及び5を時分割で交互に点灯
駆動させると、各発光光束のほぼ全体を二次元用PSD
の受光面上に集光できることになる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 shows an embodiment of the displacement measuring device of the present invention. In the figure, two types of light sources 3 and 5 and light projecting lenses 4 and 6 are installed at a predetermined interval on a supporting base 1 as a reference,
The luminous fluxes of the two light sources 3 and 5 are condensed by the light projecting lenses 4 and 6 on the light receiving surface of the two-dimensional PSD installed on the object to be measured 2. When the light sources 3 and 5 are driven to be alternately turned on in a time-division manner, almost all of the emitted light beams are PSD for two-dimensional use.
The light can be condensed on the light receiving surface of.

【0021】ここで、投光レンズ4と6の間隔をBと
し、投光レンズ4,6と二次元PSDの間隔をLとし、
三次元座標系の設定において、同図右側の矢印で示すご
とく、x軸及びz軸を同図平面上に設定し、またy軸を
同図紙面に垂直の方向に設定すると、被測定物2のz軸
方向の変位(点線で描いた二次元PSDの受光面上での
スポット光の変位)は基準距離Lの前後で互いに逆方向
に変位する。
Here, the distance between the light projecting lenses 4 and 6 is B, and the distance between the light projecting lenses 4 and 6 and the two-dimensional PSD is L.
In setting the three-dimensional coordinate system, if the x-axis and the z-axis are set on the plane of the figure and the y-axis is set in a direction perpendicular to the plane of the figure as shown by the arrow on the right side of the figure, the DUT 2 In the z-axis direction (the displacement of the spot light on the light receiving surface of the two-dimensional PSD drawn by the dotted line) are displaced in the opposite directions before and after the reference distance L.

【0022】次に、被測定物2の三次元座標系における
各軸方向の変位と、二次元PSDの受光面上に集光され
たスポット光の変位との関係について説明する。図2で
は、被測定物2上に設置された二次元PSDの受光面上
におけるスポット光の変位の様子が図示されている。実
線で描かれているスポット光SP2 及びSP3 は、被測
定物2を基準位置に置き、図1に示す光源3及び5と投
光レンズ4及び6で受光面上に集光されたときの、それ
ぞれのスポット光を示している。被測定物2がx軸方向
に変位した時、2つのスポット光の変位は図2(a)の
点線で示される。この場合、2つのスポット光はC1
け変位し、被測定物2の変位量△xとスポット光の変位
量C1 との関係は、下記の(7)式になる。
Next, the relationship between the displacement of the DUT 2 in each axial direction in the three-dimensional coordinate system and the displacement of the spot light focused on the light receiving surface of the two-dimensional PSD will be described. In FIG. 2, the state of displacement of the spot light on the light receiving surface of the two-dimensional PSD installed on the DUT 2 is illustrated. When the spot lights SP 2 and SP 3 drawn by the solid lines are focused on the light receiving surface by the light sources 3 and 5 and the light projecting lenses 4 and 6 shown in FIG. , Each spot light is shown. When the DUT 2 is displaced in the x-axis direction, the displacement of the two spot lights is shown by the dotted line in FIG. In this case, two spotlight displaced by C 1, the relationship between the displacement amount C 1 in the displacement △ x and spot light of the object 2 will the following equation (7).

【0023】 △x=−C1 …(7) 同様に、被測定物2のy軸変位(△y)に対するスポッ
ト光の変位(C2 )の様子を図2(b)に示す。この時
も、変位量△yとC2 の間には下記の(8)式が成り立
つ。
Δx = −C 1 (7) Similarly, FIG. 2B shows how the spot light is displaced (C 2 ) with respect to the y-axis displacement (Δy) of the DUT 2. Also at this time, the following equation (8) is established between the displacement amount Δy and C 2 .

【0024】 △y=−C2 …(8) 被測定物2のz軸変位に対して、PSDの受光面上に集
光されたスポット光の変位の様子は、x軸変位及びy軸
変位と異なる。即ち、x軸及びy軸の変位における2つ
のスポット光の変位は、同一方向に同じ値であるが、z
軸変位の場合、図2(c)に示すごとく集光されたスポ
ット光SP2 とSP3 の変位方向は互いに逆方向であ
る。また、被測定物のz軸変位量△zと受光面上の2つ
のスポット光の変位量C3 の間には、下記の(9)式が
成り立つ。
Δy = −C 2 (8) With respect to the z-axis displacement of the DUT 2, the displacement of the spot light focused on the light receiving surface of the PSD is the x-axis displacement and the y-axis displacement. Different from That is, the displacements of the two spot lights in the displacements of the x-axis and the y-axis have the same value in the same direction, but z
In the case of axial displacement, the displacement directions of the spot lights SP 2 and SP 3 condensed as shown in FIG. 2C are opposite to each other. Further, the following equation (9) is established between the z-axis displacement amount Δz of the object to be measured and the displacement amount C 3 of the two spot lights on the light receiving surface.

【0025】 △z=C3 L/B …(9) 図1に示す実施例の構成により、強力な光源を必要とせ
ずに、高分解能の三次元変位計測が可能となる。但し、
3軸の回転変位のうち、z軸の回転変位は検出可能であ
るが、x軸及びy軸の正確な回転変位を検出することが
できない。
Δz = C 3 L / B (9) The configuration of the embodiment shown in FIG. 1 enables high-resolution three-dimensional displacement measurement without requiring a strong light source. However,
Among the rotational displacements of the three axes, the rotational displacement of the z axis can be detected, but the accurate rotational displacement of the x axis and the y axis cannot be detected.

【0026】図3は高分解能の三次元変位計測と共に、
3軸の回転変位を計測可能にした変位計測装置の構成図
である。同図において、被測定物2の上に剛体からなる
支持台2´を設置し、この上に二次元PSD、半透明鏡
BS及び光源7と投光レンズ8が設置されている。一
方、基準となる剛体の支持台1には、図1と同様に二式
の光源3及び5と投光レンズ4及び6が所定の間隔で設
置されており、これに加えて、反射鏡Mが設置されてい
る。
FIG. 3 shows high-resolution three-dimensional displacement measurement,
It is a block diagram of a displacement measuring device capable of measuring the rotational displacement of three axes. In the figure, a support base 2'made of a rigid body is installed on the object to be measured 2, and a two-dimensional PSD, a semitransparent mirror BS, a light source 7 and a light projecting lens 8 are installed on this. On the other hand, as in FIG. 1, the two types of light sources 3 and 5 and the light projecting lenses 4 and 6 are installed at a predetermined interval on the rigid support base 1 serving as a reference. Is installed.

【0027】光源7の発光光束は投光レンズ8により半
透明鏡BSで反射させられ、支持台1に設置された反射
鏡Mでさらに反射させられ、半透明鏡BSに再び入射す
る。そして、半透明鏡BSを透過した光束が、二次元P
SDの受光面上のほぼ中心に集光されている。
The luminous flux emitted from the light source 7 is reflected by the semitransparent mirror BS by the light projecting lens 8, further reflected by the reflecting mirror M installed on the support 1, and then enters the semitransparent mirror BS again. Then, the light flux transmitted through the semitransparent mirror BS is
The light is condensed almost at the center on the light receiving surface of the SD.

【0028】図4は図3に示す実施例の構成の斜視図で
ある。光源7と投光レンズ8で投光手段S1 を形成し、
この投光ビームは二次元PSDの受光面上のほぼ中心位
置にスポット光SP1 として集光されている。また、光
源3と投光レンズ4で投光手段S2 を、光源5と投光レ
ンズ6で投光手段S3 をそれぞれ形成しており、投光手
段S2 及びS3 はy軸方向に2aの段差をもって設置さ
れており、これらの投光ビームは二次元PSDの受光面
上にスポット光SP2 及びSP3 として集光されてい
る。スポット光SP2 とSP3 のy軸方向における間隔
は、投光手段S2とS3 の段差2aと等しくなるように
設定されている。
FIG. 4 is a perspective view of the structure of the embodiment shown in FIG. The light source 7 and the light projecting lens 8 form a light projecting means S 1 ,
This projection beam is condensed as spot light SP 1 at a substantially central position on the light receiving surface of the two-dimensional PSD. Further, the light source 3 and the light projecting lens 4 form a light projecting means S 2 , and the light source 5 and the light projecting lens 6 form a light projecting means S 3 , respectively. The light projecting means S 2 and S 3 are arranged in the y-axis direction. They are installed with a step difference of 2a, and these projection beams are condensed as spot lights SP 2 and SP 3 on the light receiving surface of the two-dimensional PSD. The distance between the spot lights SP 2 and SP 3 in the y-axis direction is set to be equal to the step 2a between the light projecting means S 2 and S 3 .

【0029】ここで、x軸,y軸,z軸をそれぞれ回転
軸とする回転変位量をθx ,θy ,θz とすると、被測
定物2の三次元移動変位量△x,△y,△z及び回転変
位量θx ,θy ,θz と、二次元PSDの受光面上にお
けるスポット光SP1 ,SP2 ,SP3 の各変位量C1
〜C8 との関係は図5,6に示すごとくなる。
Here, if the rotational displacements with the x-axis, the y-axis, and the z-axis as the rotational axes are θ x , θ y , and θ z , respectively, the three-dimensional movement displacement Δx, Δy of the object 2 to be measured. , Δz and the rotational displacements θ x , θ y , θ z, and the displacement amounts C 1 of the spot lights SP 1 , SP 2 , SP 3 on the light receiving surface of the two-dimensional PSD.
The relationship with C 8 is as shown in FIGS.

【0030】図5,6はスポット光の変位の説明図であ
る。被測定物の三次元移動変位量△x,△y,△zと受
光面上に集光されたスポット光SP1 ,SP2 ,SP3
の変位量C1 ,C2 ,C3 との関係は、図5(a)〜
(c)に示されており、それぞれの関係式は、前述の
(7)〜(9)式が適用可能である。但し、z軸の移動
変位量△z軸に関しては、回転変位量θz との判別をす
る必要があるため、スポット光SP2 とSP3 の間隔の
変位量C4 に係わる条件として、下記の(10)式が与
えられる。
5 and 6 are explanatory views of displacement of spot light. Three-dimensional displacement amount Δx, Δy, Δz of the object to be measured and spot lights SP 1 , SP 2 , SP 3 focused on the light receiving surface.
The relationship between the displacement amounts C 1 , C 2 , and C 3 of FIG.
The relational expressions shown in (c) are applicable to the above-mentioned expressions (7) to (9). However, with respect to the displacement amount Δz axis of the z axis, it is necessary to discriminate the displacement amount θ z from the rotation amount. Therefore, the following conditions are related to the displacement amount C 4 of the interval between the spot lights SP 2 and SP 3 . Equation (10) is given.

【0031】 C4 =(4a2 +C3 2 1/2 …(10) (10)式で与えられる条件の意味するところは、次の
通りである。即ち、被測定物2のz軸移動変位量△zに
対して、スポット光SP1 は変位せずに、スポット光S
2 とSP3 がx軸に平行な方向にのみ変位し、しかも
互いに逆の方向に変位することを示唆している。
C 4 = (4a 2 + C 3 2 ) 1/2 (10) The meaning of the condition given by the formula (10) is as follows. That is, the spot light SP 1 is not displaced with respect to the z-axis movement displacement amount Δz of the DUT 2, and the spot light S 1 is not displaced.
It suggests that P 2 and SP 3 are displaced only in the direction parallel to the x-axis, and are displaced in the opposite directions.

【0032】図6(a)は、被測定物2におけるx軸を
回転軸とする回転変位量θx と、受光面上に集光された
スポット光SP1 〜SP3 の変位の様子を示す。回転変
位量θxに対してスポット光SP1 のみが敏感に変位
し、この変位量をC5 とすると(11)式の関係が成り
立つ。
FIG. 6A shows the amount of rotational displacement θ x of the DUT 2 about the x-axis and the displacement of the spot lights SP 1 to SP 3 focused on the light receiving surface. .. Only the spot light SP 1 is sensitively displaced with respect to the rotational displacement amount θx, and if this displacement amount is C 5 , then the relationship of equation (11) holds.

【0033】 θx =sin-1{〔(L/2C5 2 +0.5〕1/2 −L/2C5 } …(11) これに対して、スポット光SP2 とSP3 はy軸方向に
平行な方向にわずかに変位するだけであり、スポット光
SP2 とSP3 の間隔をC6 とすると、回転変位量θx
との間には(12)式が成り立つ。
Θ x = sin −1 {[(L / 2C 5 ) 2 +0.5] 1/2 −L / 2C 5 } (11) On the other hand, the spot lights SP 2 and SP 3 are on the y-axis. It is only slightly displaced in the direction parallel to the direction, and if the spacing between the spot lights SP 2 and SP 3 is C 6 , the rotational displacement θ x
Equation (12) holds between and.

【0034】θx =cos-1{2a/C6 }…(12) 図6(b)はy軸を回転軸とする回転変位量θy と、ス
ポット光SP1 〜SP3の変位の様子を示す。この場
合、スポット光SP2 とSP3 は変位せず、スポット光
SP1 のみがx軸方向に敏感に変位する。この変位量を
7 とすると、回転変位量θy の間には(13)式が成
り立つ。
Θ x = cos -1 {2a / C 6 } (12) FIG. 6B shows the amount of rotational displacement θ y with the y axis as the axis of rotation and the displacement of the spot lights SP 1 to SP 3. Indicates. In this case, the spot lights SP 2 and SP 3 are not displaced, and only the spot light SP 1 is sensitively displaced in the x-axis direction. When this displacement amount is C 7 , the equation (13) is established between the rotational displacement amounts θ y .

【0035】 θy =sin-1{〔(L/2C7 2 +0.5〕1/2 −L/2C7 }…(13 ) 但し、スポット光SP2 、SP3 は変位しないことが条
件となる。
Θ y = sin −1 {[(L / 2C 7 ) 2 +0.5] 1/2 −L / 2C 7 } (13) However, the spot lights SP 2 and SP 3 are not displaced. Becomes

【0036】図6(c)はz軸を回転軸とする回転変位
量θz と、スポット光SP1 〜SP3 の変位の様子を示
す。この場合、スポット光SP1 は変位せず、スポット
光SP2 とSP3 がスポット光SP1 を回転中心として
Ψだけ回転する。それ故、被測定物2の回転変位量θz
との間には(14)式が成り立つ。
FIG. 6C shows the amount of rotational displacement θ z about the z-axis and the displacement of the spot lights SP 1 to SP 3 . In this case, the spot light SP 1 is not displaced, and the spot lights SP 2 and SP 3 rotate by Ψ with the spot light SP 1 as the rotation center. Therefore, the amount of rotational displacement θ z of the DUT 2
Equation (14) holds between and.

【0037】θz =−Ψ…(14) ここで、z軸の移動変位量Δzとの判別をする必要があ
り、スポット光SP1 とSP2 の間隔をC8 とすると、
下記(15)式が成り立つ。
Θ z = −Ψ (14) Here, it is necessary to discriminate from the displacement amount Δz of the z axis, and if the distance between the spot lights SP 1 and SP 2 is C 8 ,
The following expression (15) is established.

【0038】C8 =2a…(15) (15)式の条件を与えることにより、z軸の移動変位
量Δzと判別することができる。
C 8 = 2a (15) By giving the condition of the expression (15), it is possible to determine the displacement amount Δz of the z axis.

【0039】なお、実施例には示さなかったが、基準と
なる支持台に二式の投光手段を設置できない環境下での
計測が必要になる場合がある。たとえば、物理空間的に
投光手段を設置するスペースがない場合や、高温で光源
に可視光用半導体レーザーを用いることのできない環境
下での測定が必要になる場合である。この様な場合、光
ファイバーを用いて三式の投光手段の位置に信号光を転
送し、また光イメージガイドで二次元PSDの受光面位
置のスポット光の画像を転送することにより、図4に示
す構成と等価な変位計測装置を実現することができる。
Although not shown in the embodiment, it may be necessary to perform measurement in an environment in which the two types of light projecting means cannot be installed on the reference support. For example, there is a case where there is no space for installing the light projecting means in physical space, or there is a need for measurement under an environment where a semiconductor laser for visible light cannot be used as a light source at high temperature. In such a case, the signal light is transferred to the position of the three types of light projecting means using the optical fiber, and the image of the spot light at the light receiving surface position of the two-dimensional PSD is transferred by the optical image guide. A displacement measuring device equivalent to the configuration shown can be realized.

【0040】[0040]

【発明の効果】以上詳しく述べてきたように、本発明の
変位計測装置によれば、強力な光源を用いることなし
に、高分解能な三次元移動変位量と3軸の回転変位量を
求めることができる。また、基準となる支持台と被測定
物の間隔を長くとる必要がある測定系においても、光源
の発光光束のほぼ全光量を二次元用半導体位置検出器
(PSD)の受光面上に集光することができるため、近
接した測定系と同様の高精度な検出が可能となる利点が
ある。
As described above in detail, according to the displacement measuring apparatus of the present invention, it is possible to obtain a high resolution three-dimensional movement displacement amount and a triaxial rotation displacement amount without using a powerful light source. You can Further, even in a measurement system that requires a long distance between the reference support and the object to be measured, almost the total amount of light emitted from the light source is focused on the light receiving surface of the two-dimensional semiconductor position detector (PSD). Therefore, there is an advantage that detection can be performed with high accuracy as in the case of a measurement system in close proximity.

【図面の簡単な説明】[Brief description of drawings]

【図1】第1実施例の構成図。FIG. 1 is a configuration diagram of a first embodiment.

【図2】第1実施例におけるスポット光の変位図。FIG. 2 is a displacement diagram of spot light in the first embodiment.

【図3】第2実施例の構成図。FIG. 3 is a configuration diagram of a second embodiment.

【図4】第2実施例の斜視図。FIG. 4 is a perspective view of a second embodiment.

【図5】第2実施例におけるスポット光の変位図。FIG. 5 is a displacement diagram of spot light in the second embodiment.

【図6】第2実施例におけるスポット光の変位図。FIG. 6 is a displacement diagram of spot light in the second embodiment.

【図7】半導体位置検出器の構成図。FIG. 7 is a configuration diagram of a semiconductor position detector.

【図8】従来の構成図。FIG. 8 is a conventional configuration diagram.

【符号の説明】[Explanation of symbols]

1…支持台、2…被測定物、3,5…光源、4,6…投
光レンズ。
1 ... Support base, 2 ... Object to be measured, 3, 5 ... Light source, 4, 6 ... Projection lens.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 第1の物体と第2の物体の間の相対的な
変位を光学的に計測する変位計測装置において、 前記第1の物体に取り付けられた二次元光入射位置検出
素子と、 前記第2の物体に所定の間隔で取り付けられ、前記二次
元光入射位置検出素子の受光面にそれぞれ光ビームを投
射する複数の投光手段と、 前記受光面における前記光ビームの入射スポット位置の
変位量をそれぞれ演算する演算手段とを備え、前記演算
された変位量にもとづき前記第1,第2物体間の相対的
変位を計測することを特徴とする変位計測装置。
1. A displacement measuring device for optically measuring a relative displacement between a first object and a second object, comprising: a two-dimensional light incident position detecting element attached to the first object; A plurality of light-projecting means attached to the second object at a predetermined interval and projecting a light beam on the light-receiving surface of the two-dimensional light-incidence position detecting element; and an incident spot position of the light beam on the light-receiving surface. A displacement measuring device comprising: a calculating unit that calculates a displacement amount, and measures a relative displacement between the first and second objects based on the calculated displacement amount.
【請求項2】 前記複数の投光手段は、時分割で交互に
点灯駆動される光源と、この光源からの光ビームを前記
受光面に集光する投光レンズとをそれぞれ有し、 前記演算手段は、前記光源の点灯タイミングに同期して
時分割で交互に前記変位量を演算する請求項1記載の変
位計測装置。
2. The plurality of light projecting means respectively include a light source that is driven to be alternately turned on in a time-sharing manner, and a light projecting lens that focuses a light beam from the light source on the light receiving surface. The displacement measuring device according to claim 1, wherein the means alternately calculates the displacement amount in a time division manner in synchronization with a lighting timing of the light source.
【請求項3】 前記受光面の前面の前記第1の物体に取
り付けられた半透明鏡と、前記半透明鏡に光ビームを投
射するよう前記第1の物体に取り付けられた別の投光手
段と、前記半透明鏡を挟んで前記受光面に対向するよう
前記第2の物体に取り付けられ、前記半透明鏡からの反
射光束を当該半透明鏡に向けて反射する全反射鏡とを更
に備え、前記別の投光手段からの光ビームのうち前記半
透明鏡を透過した前記全反射鏡の反射光束が前記受光面
の略中心に入射されるようにした請求項1記載の変位計
測装置。
3. A semitransparent mirror attached to the first object in front of the light receiving surface, and another light projecting means attached to the first object so as to project a light beam on the semitransparent mirror. And a total reflection mirror which is attached to the second object so as to face the light receiving surface with the semitransparent mirror interposed therebetween, and which reflects a reflected light beam from the semitransparent mirror toward the semitransparent mirror. 2. The displacement measuring device according to claim 1, wherein among the light beams from said another light projecting means, the reflected light flux of said total reflection mirror which has passed through said semitransparent mirror is made incident on substantially the center of said light receiving surface.
JP4067274A 1992-03-25 1992-03-25 Displacement measuring device Expired - Fee Related JP2524048B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4067274A JP2524048B2 (en) 1992-03-25 1992-03-25 Displacement measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4067274A JP2524048B2 (en) 1992-03-25 1992-03-25 Displacement measuring device

Publications (2)

Publication Number Publication Date
JPH05272917A true JPH05272917A (en) 1993-10-22
JP2524048B2 JP2524048B2 (en) 1996-08-14

Family

ID=13340229

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4067274A Expired - Fee Related JP2524048B2 (en) 1992-03-25 1992-03-25 Displacement measuring device

Country Status (1)

Country Link
JP (1) JP2524048B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011007667A (en) * 2009-06-26 2011-01-13 System Keisoku Kk Displacement measuring device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61212707A (en) * 1985-03-18 1986-09-20 Nippon Soken Inc Angle displacement measuring apparatus for moving object
JPS63109305A (en) * 1986-10-28 1988-05-14 Koito Ind Co Ltd Distance measuring device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61212707A (en) * 1985-03-18 1986-09-20 Nippon Soken Inc Angle displacement measuring apparatus for moving object
JPS63109305A (en) * 1986-10-28 1988-05-14 Koito Ind Co Ltd Distance measuring device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011007667A (en) * 2009-06-26 2011-01-13 System Keisoku Kk Displacement measuring device

Also Published As

Publication number Publication date
JP2524048B2 (en) 1996-08-14

Similar Documents

Publication Publication Date Title
JP3921004B2 (en) Displacement tilt measuring device
JPS59762B2 (en) displacement measuring device
US4395123A (en) Interferometric angle monitor
JP2524048B2 (en) Displacement measuring device
KR100291226B1 (en) Laser interferometric measuring system for acculately determining position of wafer stage without influence of environment and method used in the system
US5471302A (en) Interferometric probe for distance measurement utilizing a diffraction reflecting element as a reference surface
JP2003097924A (en) Shape measuring system and method using the same
JP2698446B2 (en) Interval measuring device
JPH069285Y2 (en) Laser measuring device
JP3271221B2 (en) Method of detecting light emission position of light emitter and method of assembling optical parts using the same
US5113082A (en) Electro-optical instrument with self-contained photometer
JP3265549B2 (en) Distance measuring device
JPH06129840A (en) Surface measuring device
JPH01320430A (en) Optical displacement detector
JPH08304020A (en) Movement-accuracy measuring apparatus
JPH11142110A (en) Charge coupled device photodetector and distance measuring apparatus using the same
SU1527495A1 (en) Method of measuring displacements
SU1441190A1 (en) Interference device for measuring small displacements
JP2749900B2 (en) Position detection method
JPH044966Y2 (en)
JPH0690030B2 (en) Distance detector
JP2671915B2 (en) Position detector for surface inspection equipment
JPH08219733A (en) Three-dimensional scanner
RU2155321C1 (en) Device for measuring object linear shift
JPH02204712A (en) Instrument for measuring face inclination

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees